Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Cell Rep ; 39(7): 110818, 2022 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-35584683

RESUMEN

Histone deacetylases (HDACs) are a class of enzymes that control chromatin state and influence cell fate. We evaluated the chromatin accessibility and transcriptome dynamics of zinc-containing HDACs during cell differentiation in vitro coupled with chemical perturbation to identify the role of HDACs in mesendoderm cell fate specification. Single-cell RNA sequencing analyses of HDAC expression during human pluripotent stem cell (hPSC) differentiation in vitro and mouse gastrulation in vivo reveal a unique association of HDAC1 and -3 with mesendoderm gene programs during exit from pluripotency. Functional perturbation with small molecules reveals that inhibition of HDAC1 and -3, but not HDAC2, induces mesoderm while impeding endoderm and early cardiac progenitor specification. These data identify unique biological functions of the structurally homologous enzymes HDAC1-3 in influencing hPSC differentiation from pluripotency toward mesendodermal and cardiac progenitor populations.


Asunto(s)
Endodermo , Histona Desacetilasas , Células Madre Pluripotentes , Animales , Diferenciación Celular/genética , Cromatina/metabolismo , Endodermo/citología , Endodermo/enzimología , Endodermo/metabolismo , Histona Desacetilasa 1/genética , Histona Desacetilasa 1/metabolismo , Histona Desacetilasa 2/genética , Histona Desacetilasa 2/metabolismo , Histona Desacetilasas/genética , Histona Desacetilasas/metabolismo , Ratones , Células Madre Pluripotentes/citología , Células Madre Pluripotentes/enzimología , Células Madre Pluripotentes/metabolismo
2.
Mol Biol Evol ; 37(7): 1986-2001, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32145025

RESUMEN

Genetic variation in the enzymes that catalyze posttranslational modification of proteins is a potentially important source of phenotypic variation during evolution. Ubiquitination is one such modification that affects turnover of virtually all of the proteins in the cell in addition to roles in signaling and epigenetic regulation. UBE2D3 is a promiscuous E2 enzyme, which acts as an ubiquitin donor for E3 ligases that catalyze ubiquitination of developmentally important proteins. We have used protein sequence comparison of UBE2D3 orthologs to identify a position in the C-terminal α-helical region of UBE2D3 that is occupied by a conserved serine in amniotes and by alanine in anamniote vertebrate and invertebrate lineages. Acquisition of the serine (S138) in the common ancestor to modern amniotes created a phosphorylation site for Aurora B. Phosphorylation of S138 disrupts the structure of UBE2D3 and reduces the level of the protein in mouse embryonic stem cells (ESCs). Substitution of S138 with the anamniote alanine (S138A) increases the level of UBE2D3 in ESCs as well as being a gain of function early embryonic lethal mutation in mice. When mutant S138A ESCs were differentiated into extraembryonic primitive endoderm, levels of the PDGFRα and FGFR1 receptor tyrosine kinases were reduced and primitive endoderm differentiation was compromised. Proximity ligation analysis showed increased interaction between UBE2D3 and the E3 ligase CBL and between CBL and the receptor tyrosine kinases. Our results identify a sequence change that altered the ubiquitination landscape at the base of the amniote lineage with potential effects on amniote biology and evolution.


Asunto(s)
Endodermo/enzimología , Evolución Molecular , Proteínas Proto-Oncogénicas c-cbl/metabolismo , Enzimas Ubiquitina-Conjugadoras/genética , Vertebrados/genética , Sustitución de Aminoácidos , Animales , Aurora Quinasa B/metabolismo , Femenino , Humanos , Ratones , Fosforilación , Proteínas Tirosina Quinasas Receptoras/metabolismo , Enzimas Ubiquitina-Conjugadoras/metabolismo , Vertebrados/metabolismo
3.
J Mol Cell Cardiol ; 137: 132-142, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31668971

RESUMEN

Specification of the primary heart field in mouse embryos requires signaling from the anterior visceral endoderm (AVE). The nature of these signals is not known. We hypothesized that the TGFß-activated kinase (TAK1/Map3k7) may act as a cardiogenic factor, based on its expression in heart-inducing endoderm and its requirement for cardiac differentiation of p19 cells. To test this, mouse embryonic stem (ES) cells overexpressing Map3k7 were isolated and differentiated as embryoid bodies (EBs). Map3k7-overexpressing EBs showed increased expression of AVE markers but interestingly, showed little effect on mesoderm formation and had no impact on overall cardiomyocyte formation. To test whether the pronounced expansion of endoderm masks an expansion of cardiac lineages, chimeric EBs were made consisting of Map3k7-overexpressing ES and wild type ES cells harboring a cardiac reporter transgene, MHCα::GFP, allowing cardiac differentiation to be assessed specifically in wild type ES cells. Wild type ES cells co-cultured with Map3k7-overexpressing cells had a 4-fold increase in expression of the cardiac reporter, supporting the hypothesis that Map3k7 increases the formation of cardiogenic endoderm. To further examine the role of Map3k7 in early lineage specification, other endodermal markers were examined. Interestingly, markers that are expressed in both the VE and later in gut development were expanded, whereas transcripts that specifically mark the early definitive (streak-derived) endoderm (DE) were not. To determine if Map3k7 is necessary for endoderm differentiation, EBs were grown in the presence of the Map3k7 specific inhibitor 5Z-7-oxozeaenol. Endoderm differentiation was dramatically decreased in these cells. Western blot analysis showed that known downstream targets of Map3k7 (Jnk, Nemo-like kinase (NLK) and p38 MAPK) were all inhibited. By contrast, transcripts for another TGFß target, Sonic Hedgehog (Shh) were markedly upregulated, as were transcripts for Gli2 (but not Gli1 and Gli3). Together these data support the hypothesis that Map3k7 governs the formation, or proliferation of cardiogenic endoderm.


Asunto(s)
Diferenciación Celular , Endodermo/embriología , Endodermo/enzimología , Corazón/embriología , Quinasas Quinasa Quinasa PAM/metabolismo , Células Madre Embrionarias de Ratones/citología , Organogénesis , Animales , Línea Celular , Cuerpos Embrioides/citología , Regulación del Desarrollo de la Expresión Génica , Proteínas Hedgehog/metabolismo , Quinasas Quinasa Quinasa PAM/genética , Sistema de Señalización de MAP Quinasas , Mesodermo/embriología , Ratones , Miocitos Cardíacos/citología , Regulación hacia Arriba/genética , Proteína Gli2 con Dedos de Zinc/metabolismo
4.
Stem Cells ; 37(3): 306-317, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30471152

RESUMEN

Directed differentiation of human induced pluripotent stem cells (iPSCs) toward hepatobiliary lineages has been increasingly used as models of human liver development/diseases. As protein kinases are important components of signaling pathways regulating cell fate changes, we sought to define the key molecular mediators regulating human liver development using inhibitors targeting tyrosine kinases during hepatic differentiation of human iPSCs. A library of tyrosine kinase inhibitors was used for initial screening during the multistage differentiation of human iPSCs to hepatic lineage. Among the 80 kinase inhibitors tested, only Src inhibitors suppressed endoderm formation while none had significant effect on later stages of hepatic differentiation. Transient inhibition of c-Src during endodermal induction of human iPSCs reduced endodermal commitment and expression of endodermal markers, including SOX17 and FOXA2, in a dose-dependent manner. Interestingly, the transiently treated cells later developed into profibrogenic cholangiocyte-like cells expressing both cholangiocyte markers, such as CK7 and CK19, and fibrosis markers, including Collagen1 and smooth muscle actin. Further analysis of these cells revealed colocalized expression of collagen and yes-associated protein (YAP; a marker associated with bile duct proliferation/fibrosis) and an increased production of interleukin-6 and tumor necrosis factor-α. Moreover, treatment with verteporfin, a YAP inhibitor, significantly reduced expression of fibrosis markers. In summary, these results suggest that c-Src has a critical role in cell fate determination during endodermal commitment of human iPSCs, and its alteration in early liver development in human may lead to increased production of abnormal YAP expressing profibrogenic proinflammatory cholangiocytes, similar to those seen in livers of patients with biliary fibrosis. Stem Cells 2019;37:306-317.


Asunto(s)
Proteína Tirosina Quinasa CSK/antagonistas & inhibidores , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Endodermo/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Conductos Biliares/enzimología , Conductos Biliares/patología , Proteína Tirosina Quinasa CSK/metabolismo , Endodermo/patología , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Células Madre Pluripotentes Inducidas/enzimología , Células Madre Pluripotentes Inducidas/patología , Hígado/enzimología , Hígado/patología
5.
Dev Cell ; 44(2): 179-191.e5, 2018 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-29275993

RESUMEN

Specification of the three germ layers by graded Nodal signaling has long been seen as a paradigm for patterning through a single morphogen gradient. However, by exploiting the unique properties of the zebrafish embryo to capture the dynamics of signaling and cell fate allocation, we now demonstrate that Nodal functions in an incoherent feedforward loop, together with Fgf, to determine the pattern of endoderm and mesoderm specification. We show that Nodal induces long-range Fgf signaling while simultaneously inducing the cell-autonomous Fgf signaling inhibitor Dusp4 within the first two cell tiers from the margin. The consequent attenuation of Fgf signaling in these cells allows specification of endoderm progenitors, while the cells further from the margin, which receive Nodal and/or Fgf signaling, are specified as mesoderm. This elegant model demonstrates the necessity of feedforward and feedback interactions between multiple signaling pathways for providing cells with temporal and positional information.


Asunto(s)
Endodermo/embriología , Sistema de Señalización de MAP Quinasas , Mesodermo/embriología , Animales , Fosfatasas de Especificidad Dual/metabolismo , Endodermo/enzimología , Endodermo/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Retroalimentación Fisiológica , Factores de Crecimiento de Fibroblastos/fisiología , Mesodermo/enzimología , Mesodermo/metabolismo , Ligandos de Señalización Nodal/fisiología , Pez Cebra/embriología , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/fisiología
6.
Dev Biol ; 408(1): 56-65, 2015 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-26460096

RESUMEN

Pten is a multifunctional tumor suppressor. Deletions and mutations in the Pten gene have been associated with multiple forms of human cancers. Pten is a central regulator of several signaling pathways that influences multiple cellular functions. One such function is in cell motility and migration, although the precise mechanism remains unknown. In this study, we deleted Pten in the embryonic lung epithelium using Gata5-cre mice. Absence of Pten blocked branching morphogenesis and ERK and AKT phosphorylation at E12.5. In an explant model, Pten(Δ/Δ) mesenchyme-free embryonic lung endoderm failed to branch. Inhibition of budding in Pten(Δ/Δ) explants was associated with major changes in cell migration, while cell proliferation was not affected. We further examined the role of ERK and AKT in branching morphogenesis by conditional, endodermal-specific mutants which blocked ERK or AKT phosphorylation. MEK(DM/+); Gata5-cre (blocking of ERK phosphorylation) lung showed more severe phenotype in branching morphogenesis. The inhibition of budding was also associated with disruption of cell migration. Thus, the mechanisms by which Pten is required for early endodermal morphogenesis may involve ERK, but not AKT, mediated cell migration.


Asunto(s)
Endodermo/embriología , Endodermo/enzimología , Pulmón/embriología , Sistema de Señalización de MAP Quinasas , Morfogénesis , Fosfohidrolasa PTEN/metabolismo , Animales , Movimiento Celular , Epitelio/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor de Transcripción GATA5/metabolismo , Eliminación de Gen , Integrasas/metabolismo , Ratones , Modelos Biológicos , Especificidad de Órganos , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo
7.
Int J Clin Exp Pathol ; 8(4): 4064-73, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26097594

RESUMEN

Glycogen synthase kinase 3ß (GSK3ß) and phosphorylated GSK3ß at Ser9 (pS9GSK3ß) are crucial in cellular proliferation and metabolism. GSK3ß and pS9GSK3ß are deregulated in many diseases including tumors. Data on altered expression of GSK3ß and pS9GSK3ß are mainly limited to tumor tissues, thus the expression of GSK3ß and pS9GSK3ß in normal human tissue has been largely unknown. Thus, we examined the immunohistochemical localization of GSK3ß and pS9GSK3ß in human fetal and adult tissues, and also compared the expression pattern of GSK3ß and pS9GSK3ß with that of the CK7 and CK20. We found GSK3ß expression in neurons of brain, myenteric plexus in gastrointestinal tract, squamous epithelium of skin, and mammary gland. The expression of pS9GSK3ß was restricted to the epithelial cells of breast and pancreaticobiliary duct, distal nephron of kidney, gastrointestinal tract, fallopian tube, epididymis, secretory cell of prostatic gland, and umbrella cell of urinary tract. The staining pattern of pS9GSK3ß and CK7 was overlapped in most organs except for gastrointestinal tract where CK7 was negative and CK20 was positive. Our results show that the expression of GSK3ß may be associated with differentiation of ectodermal derived tissues and pS9GSK3ß with that of epithelial cells of endodermal derived tissues in human. In addition, the expression of pS9GSK3ß in the selective epithelial cells may indicate its association with secretory or barrier function of specific cells and may serve as another immunohistochemical marker for epithelial cells.


Asunto(s)
Células Epiteliales/enzimología , Epitelio/enzimología , Feto/enzimología , Glucógeno Sintasa Quinasa 3/análisis , Biomarcadores/análisis , Diferenciación Celular , Ectodermo/enzimología , Endodermo/enzimología , Epitelio/embriología , Femenino , Feto/citología , Edad Gestacional , Glucógeno Sintasa Quinasa 3 beta , Humanos , Inmunohistoquímica , Queratina-20/análisis , Queratina-7/análisis , Masculino , Especificidad de Órganos , Fosforilación
8.
Genesis ; 52(4): 300-8, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24616249

RESUMEN

Senescence-associated ß-galactosidase (SA-ß-gal) activity is widely used as a marker of cellular senescence and as an indicator of organismal aging. Here, we report that SA-ß-gal activity is present in the visceral endoderm layer of early postimplantation mouse embryos in predictable patterns that vary as the embryo progresses in development. However, determination of the mitotic index and analysis of the expression of Cdkn1a (p21), a marker of senescent cells, do not indicate cellular senescence. Instead, analysis of embryos in culture revealed the presence of SA-ß-gal activity in apical vacuoles of visceral endoderm cells likely a reflection of acidic ß-galactosidase function in these organelles. SA-ß-gal serves as a practical marker of the dynamics of the visceral endoderm that can be applied to developmental as well as functional studies of early mammalian embryos.


Asunto(s)
Senescencia Celular , Endodermo/enzimología , beta-Galactosidasa/metabolismo , Animales , Embrión de Mamíferos/citología , Embrión de Mamíferos/enzimología , Endodermo/citología , Ratones , Mitosis , Índice Mitótico , Vacuolas/enzimología
9.
J Cell Sci ; 127(Pt 10): 2204-16, 2014 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-24481813

RESUMEN

Endoderm formation in the mammal is a complex process with two lineages forming during the first weeks of development, the primitive (or extraembryonic) endoderm, which is specified in the blastocyst, and the definitive endoderm that forms later, at gastrulation, as one of the germ layers of the embryo proper. Fate mapping evidence suggests that the definitive endoderm arises as two waves, which potentially reflect two distinct cell populations. Early primitive ectoderm-like (EPL) cell differentiation has been used successfully to identify and characterise mechanisms regulating molecular gastrulation and lineage choice during differentiation. The roles of the p38 MAPK family in the formation of definitive endoderm were investigated using EPL cells and chemical inhibitors of p38 MAPK activity. These approaches define a role for p38 MAPK activity in the formation of the primitive streak and a second role in the formation of the definitive endoderm. Characterisation of the definitive endoderm populations formed from EPL cells demonstrates the formation of two distinct populations, defined by gene expression and ontogeny, that were analogous to the proximal and distal definitive endoderm populations of the embryo. Formation of the proximal definitive endoderm was found to require p38 MAPK activity and is correlated with molecular gastrulation, defined by the expression of brachyury (T). Distal definitive endoderm formation also requires p38 MAPK activity but can form when T expression is inhibited. Understanding lineage complexity will be a prerequisite for the generation of endoderm derivatives for commercial and clinical use.


Asunto(s)
Ectodermo/metabolismo , Endodermo/citología , Endodermo/enzimología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Células Madre Embrionarias/citología , Células Madre Embrionarias/enzimología , Gastrulación , Ratones , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 110(10): 3800-5, 2013 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-23431188

RESUMEN

The N-end rule pathway is a proteolytic system in which destabilizing N-terminal residues of short-lived proteins act as degradation determinants (N-degrons). Substrates carrying N-degrons are recognized by N-recognins that mediate ubiquitylation-dependent selective proteolysis through the proteasome. Our previous studies identified the mammalian N-recognin family consisting of UBR1/E3α, UBR2, UBR4/p600, and UBR5, which recognize destabilizing N-terminal residues through the UBR box. In the current study, we addressed the physiological function of a poorly characterized N-recognin, 570-kDa UBR4, in mammalian development. UBR4-deficient mice die during embryogenesis and exhibit pleiotropic abnormalities, including impaired vascular development in the yolk sac (YS). Vascular development in UBR4-deficient YS normally advances through vasculogenesis but is arrested during angiogenic remodeling of primary capillary plexus associated with accumulation of autophagic vacuoles. In the YS, UBR4 marks endoderm-derived, autophagy-enriched cells that coordinate differentiation of mesoderm-derived vascular cells and supply autophagy-generated amino acids during early embryogenesis. UBR4 of the YS endoderm is associated with a tissue-specific autophagic pathway that mediates bulk lysosomal proteolysis of endocytosed maternal proteins into amino acids. In cultured cells, UBR4 subpopulation is degraded by autophagy through its starvation-induced association with cellular cargoes destined to autophagic double membrane structures. UBR4 loss results in multiple misregulations in autophagic induction and flux, including synthesis and lipidation/activation of the ubiquitin-like protein LC3 and formation of autophagic double membrane structures. Our results suggest that UBR4 plays an important role in mammalian development, such as angiogenesis in the YS, in part through regulation of bulk degradation by lysosomal hydrolases.


Asunto(s)
Proteínas Asociadas a Microtúbulos/fisiología , Ubiquitina-Proteína Ligasas/fisiología , Saco Vitelino/irrigación sanguínea , Saco Vitelino/enzimología , Animales , Autofagia/genética , Autofagia/fisiología , Proteínas de Unión a Calmodulina/antagonistas & inhibidores , Proteínas de Unión a Calmodulina/genética , Proteínas de Unión a Calmodulina/fisiología , Diferenciación Celular/genética , Diferenciación Celular/fisiología , Proteínas del Citoesqueleto/antagonistas & inhibidores , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/fisiología , Desarrollo Embrionario/genética , Desarrollo Embrionario/fisiología , Endodermo/irrigación sanguínea , Endodermo/citología , Endodermo/enzimología , Femenino , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , Mesodermo/irrigación sanguínea , Mesodermo/citología , Mesodermo/enzimología , Redes y Vías Metabólicas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas Asociadas a Microtúbulos/deficiencia , Proteínas Asociadas a Microtúbulos/genética , Neovascularización Fisiológica/genética , Embarazo , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitina-Proteína Ligasas/genética , Saco Vitelino/citología , Saco Vitelino/embriología
11.
Methods Mol Biol ; 839: 187-200, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22218902

RESUMEN

Parietal endoderm (PE) migration is the first long-range migratory event in the mammalian embryo contributing to the parietal yolk sac. PE migration can be studied in vitro using the F9 teratocarcinoma stem cell model system. We have found that PE migration is directed and modulated via the Planar Cell Polarity (PCP) pathway through Rho/ROCK signaling. Wnt inhibition using sFRP results in a loss of orientation, visualized by Golgi apparatus localization, along with disorganized microtubules and a lack of robust focal adhesions. Small GTPases are downstream of PCP signaling and Rho/ROCK inhibition results in a loss of orientation, whereas inhibition of Rac does not affect PCP. Activation of canonical Wnt signaling combined with Wnt inhibition does not prevent loss of oriented migration. These data support a role for non-canonical Wnt/PCP signaling directing oriented migration of PE.


Asunto(s)
Movimiento Celular , Polaridad Celular , Endodermo/citología , Transducción de Señal , Animales , Western Blotting , Movimiento Celular/efectos de los fármacos , Polaridad Celular/efectos de los fármacos , Cuerpos Embrioides/metabolismo , Endodermo/efectos de los fármacos , Endodermo/enzimología , Endodermo/metabolismo , Receptores Frizzled/química , Receptores Frizzled/metabolismo , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Glucógeno Sintasa Quinasa 3 beta , Inmunohistoquímica , Indoles/farmacología , Oximas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Solubilidad , Transfección , Proteínas de Unión al GTP rac/metabolismo , Quinasas Asociadas a rho/metabolismo
12.
PLoS One ; 6(11): e27965, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22132182

RESUMEN

Generation of hepatocyte from embryonic stem cells (ESCs) holds great promise for hepatocyte replacement therapy to treat liver diseases. Achieving high efficiency of directed differentiation of ESCs to hepatocyte is of critical importance. Previously, Wnt3a has been reported to promote Activin A-induced human definitive endoderm (DE) differentiation, the early stage of hepatocyte differentiation. However, the underlying molecular mechanisms are not clear. Growing evidence demonstrated that microRNAs (miRNAs) are key regulators involved in various important biological processes including the regulation of stem cell differentiation. In the present study, we profiled genome wide miRNA expression during Wnt3a and Activin A induced mouse DE differentiation. We uncovered distinct miRNA expression patterns during DE differentiation with the identification of a subset of miRNAs whose expression is synergistically regulated by Wnt3a/Activin A treatment at different stages of DE differentiation. Forced expression of a pool of such synergistically regulated miRNAs alone could partially promote DE differentiation, indicating a regulatory role of them. Using TargetScan and GeneGO pathway analyses, the synergistically regulated miRNAs are predicted to regulate key pathways involved in DE differentiation; among them includes the regulation of histone acetylation. Consistently, Wnt3a and Activin A treatment increased global histone acetylation which can be partially mimicked by over expression of the pooled miRNAs. Chromatin IP (ChIP) experiments demonstrated that the promoter regions of Sox17 and Foxa2 are subjected to histone acetylation regulation. Administration of Hdac inhibitors greatly augmented DE differentiation. Our data uncovered a novel epigenetic mechanism of Wnt3a and Activin A induced DE differentiation, whereby the treatment of growth factors induced histone acetylation at least in part by the regulation of miRNA expression.


Asunto(s)
Diferenciación Celular/genética , Endodermo/citología , Proteínas HMGB/genética , Factor Nuclear 3-beta del Hepatocito/genética , Histonas/metabolismo , MicroARNs/metabolismo , Regiones Promotoras Genéticas/genética , Factores de Transcripción SOXF/genética , Acetilación/efectos de los fármacos , Activinas/farmacología , Animales , Biomarcadores/metabolismo , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Células Madre Embrionarias/metabolismo , Endodermo/efectos de los fármacos , Endodermo/enzimología , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Histona Desacetilasas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Ratones , MicroARNs/genética , Transducción de Señal/efectos de los fármacos , Proteína Wnt3A/farmacología
13.
J Cell Sci ; 124(Pt 12): 1992-2000, 2011 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-21610099

RESUMEN

The use of small molecules to 'chemically direct' differentiation represents a powerful approach to promote specification of embryonic stem cells (ESCs) towards particular functional cell types for use in regenerative medicine and pharmaceutical applications. Here, we demonstrate a novel route for chemically directed differentiation of human ESCs (hESCs) into definitive endoderm (DE) exploiting a selective small-molecule inhibitor of glycogen synthase kinase 3 (GSK-3). This GSK-3 inhibitor, termed 1m, when used as the only supplement to a chemically defined feeder-free culture system, effectively promoted differentiation of ESC lines towards primitive streak (PS), mesoderm and DE. This contrasts with the role of GSK-3 in murine ESCs, where GSK-3 inhibition promotes pluripotency. Interestingly, 1m-mediated induction of differentiation involved transient NODAL expression and Nodal signalling. Prolonged treatment of hESCs with 1m resulted in the generation of a population of cells displaying hepatoblast characteristics, that is expressing α-fetoprotein and HNF4α. Furthermore, 1m-induced DE had the capacity to mature and generate hepatocyte-like cells capable of producing albumin. These findings describe, for the first time, the utility of GSK-3 inhibition, in a chemically directed approach, to a method of DE generation that is robust, potentially scalable and applicable to different hESC lines.


Asunto(s)
Células Madre Embrionarias/citología , Células Madre Embrionarias/efectos de los fármacos , Endodermo/citología , Endodermo/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Glucógeno Sintasa Quinasa 3/antagonistas & inhibidores , Activinas/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Células Madre Embrionarias/enzimología , Endodermo/enzimología , Regulación del Desarrollo de la Expresión Génica , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Humanos , Mesodermo/citología , Mesodermo/efectos de los fármacos , Mesodermo/metabolismo , Ratones , Proteína Nodal/metabolismo , Transducción de Señal
14.
Gene Expr Patterns ; 11(3-4): 221-32, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21167960

RESUMEN

The Lim-kinase (LIMK) proteins are important for the regulation of the actin cytoskeleton, in particular the control of actin nucleation and depolymerisation via regulation of cofilin, and hence may control a large number of processes during development, including cell tensegrity, migration, cell cycling, and axon guidance. LIMK1/LIMK2 knockouts disrupt spinal cord morphogenesis and synapse formation but other tissues and developmental processes that require LIMK are yet to be fully determined. To identify tissues and cell-types that may require LIMK, we characterised the pattern of LIMK1 protein during mouse embryogenesis. We showed that LIMK1 displays an expression pattern that is temporally dynamic and tissue-specific. In several tissues LIMK1 is detected in cell-types that also express Wilms' tumour protein 1 and that undergo transitions between epithelial and mesenchymal states, including the pleura, epicardium, kidney nephrons, and gonads. LIMK1 was also found in a subset of cells in the dorsal retina, and in mesenchymal cells surrounding the peripheral nerves. This detailed study of the spatial and temporal expression of LIMK1 shows that LIMK1 expression is more dynamic than previously reported, in particular at sites of tissue-tissue interactions guiding multiple developmental processes.


Asunto(s)
Quinasas Lim/metabolismo , Animales , Ectodermo/enzimología , Desarrollo Embrionario , Endodermo/enzimología , Transición Epitelial-Mesenquimal , Epitelio/embriología , Epitelio/enzimología , Ojo/embriología , Ojo/enzimología , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Regulación del Desarrollo de la Expresión Génica , Corazón/embriología , Riñón/embriología , Riñón/enzimología , Quinasas Lim/genética , Pulmón/embriología , Pulmón/enzimología , Mesodermo/enzimología , Ratones , Ratones Endogámicos C57BL , Miocardio/enzimología , Especificidad de Órganos
15.
Biochem Biophys Res Commun ; 391(3): 1477-82, 2010 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-20034473

RESUMEN

To establish an effective induction method for hepatic differentiation using serum-free media, the effects of activin in serum-containing and serum-free conditions on embryoid body (EB) induction into mesendoderm were investigated by Western blot analysis and real-time reverse transcription-polymerase chain reaction (RT-PCR) as a first step. The expression of P-smad2 and mesendodermal markers was markedly enhanced by 100ng/ml activin under serum-free conditions but were inhibited or masked under serum-containing conditions. Next, serum-free Lanford medium was used to attempt the direct induction of activin-treated EBs expressing mesendodermal markers into hepatic lineage cells and this induction was compared to that induced using Iscove's Modified Dulbecco's medium containing 20% fetal bovine serum. Once immersed in the Lanford medium, EBs began to show typical hepatic features by day 17, including Alb, AFP, TTR, and AAT expression detected by RT-PCR, and ALB, AFP, and CK18 expression detected by immunostaining. On day 22, these cells were of high quality characterized by the expression of metabolizing enzymes, including Ugt1a1, Slcola4, cyp3a11, cyp2b10, and cyp7a1 detected by real-time PCR, a 50-fold greater cyp3A11 response than control to 100muM dexamethasone stimulation, specific cellular uptake of indocyanine green, and glycogen storage in the cytoplasm. These results indicate that this simple two-step induction method under serum-free conditions induces hepatic lineage cells with high quality directly from mouse embryonic stem (ES) cell-derived mesendoderm.


Asunto(s)
Diferenciación Celular , Linaje de la Célula , Células Madre Embrionarias/efectos de los fármacos , Hepatocitos/citología , Animales , Técnicas de Cultivo de Célula , Medio de Cultivo Libre de Suero/farmacología , Células Madre Embrionarias/enzimología , Células Madre Embrionarias/fisiología , Endodermo/citología , Endodermo/enzimología , Endodermo/fisiología , Hepatocitos/enzimología , Mesodermo/citología , Mesodermo/enzimología , Mesodermo/fisiología , Ratones
16.
Int J Dev Biol ; 54(10): 1503-8, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-21302259

RESUMEN

The iodotyrosine dehalogenase1 (DEHAL1) enzyme is a transmembrane protein that belongs to the nitroreductase family and shows a highly conserved N-terminal domain. DEHAL1 is present in the liver, kidney and thyroid of mammals. DEHAL1 is known to act on diiodotyrosine (DIT) and monoiodotyrosine (MIT), and is involved in iodine recycling in relation to thyroglobulin. Here, we show the distribution of DEHAL1 during gastrulation to neurulation in developing chick. Immunocytochemistry using an anti-serum directed against the N-terminal domain (met(27)-trp(180) fragment) of human DEHAL1 revealed labelled cells in the embryonic ectoderm, embryonic endoderm, neural plate and in the yolk platelets of the chick embryo at gastrulation stage. Distinct DEHAL1 positive cells were located in the presumptive head ectoderm, presumptive neural crest, head mesenchymal cells and in the dorsal, lateral and ventral parts of neural tube during neurulation. Some cells located at the margin of the developing notochord and somites were also DEHAL1-positive. While the functional significance of this observation is not known, it is likely that DEHAL1 might serve as an agent that regulates cell specific deiodination of MIT and DIT before the onset of thyroidal secretion. The presence of DEHAL1 in different components of the chick embryo suggests its involvement in iodine turnover prior to the formation of functional thyroid.


Asunto(s)
Embrión de Pollo/enzimología , Diyodotirosina/metabolismo , Hidrolasas/metabolismo , Proteínas de la Membrana/metabolismo , Monoyodotirosina/metabolismo , Glándula Tiroides/embriología , Animales , Tipificación del Cuerpo , Ectodermo/enzimología , Endodermo/enzimología , Gastrulación , Regulación del Desarrollo de la Expresión Génica , Hidrolasas/genética , Immunoblotting , Yodo/metabolismo , Mesodermo/enzimología , Cresta Neural/enzimología , Placa Neural/enzimología , Tubo Neural/enzimología , Neurulación , Glándula Tiroides/enzimología , Saco Vitelino/enzimología
17.
J Histochem Cytochem ; 58(1): 1-15, 2010 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19755715

RESUMEN

Casein kinase 1 epsilon (CK1epsilon) is involved in various cellular processes, including cell growth, differentiation, and apoptosis, vesicle transport, and control of the circadian rhythm. Deregulation of CK1epsilon has been linked to neurodegenerative diseases and cancer. To better understand the cell type-specific functions of CK1epsilon, we determined its localization by immunhistochemistry in tissues of healthy, young adult BALB/c mice and in mammary tumors of SV40 T-antigen-transgenic mice. CK1epsilon expression was found to be highly regulated in normal tissues of endodermal, mesodermal, and ectodermal origin and in neoplastic tissue of mammary cancer. The data presented here give an overview of CK1epsilon reactivity in different organs under normal conditions and outline changes in its expression in mammary carcinomas. Our data suggest a cell/organ type-specific function of CK1epsilon and indicate that tumorigenic conversion of mammary glands in SV40 T-antigen-transgenic mice leads to downregulation of CK1epsilon. This manuscript contains online supplemental material at http://www.jhc.org. Please visit this article online to view these materials.


Asunto(s)
Antígenos Virales de Tumores/genética , Caseína Cinasa 1 épsilon/genética , Neoplasias Mamarias Animales/virología , Neoplasias Mamarias Experimentales/enzimología , Animales , Antígenos Transformadores de Poliomavirus/genética , Transformación Celular Neoplásica/genética , Ectodermo/enzimología , Endodermo/enzimología , Femenino , Masculino , Glándulas Mamarias Animales/enzimología , Glándulas Mamarias Animales/fisiología , Neoplasias Mamarias Animales/enzimología , Neoplasias Mamarias Experimentales/genética , Mesodermo/enzimología , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Especificidad de Órganos
18.
FASEB J ; 22(11): 3853-65, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18676401

RESUMEN

Recent advances reveal emerging unique functions of poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 in heterochromatin integrity and cell differentiation. However, the chromatin-mediated molecular and cellular events involved remain elusive. Here we describe specific physical and functional interactions of Parp-1 and Parp-2 with the transcriptional intermediary factor (TIF1beta) and the heterochromatin proteins (HP1) that affect endodermal differentiation. We show that Parp-2 binds to TIF1beta with high affinity both directly and through HP1alpha. Both partners colocalize at pericentric heterochromatin in primitive endoderm-like cells. Parp-2 also binds to HP1beta but not to HP1gamma. In contrast Parp-1 binds weakly to TIF1beta and HP1beta only. Both Parps selectively poly(ADP-ribosyl)ate HP1alpha. Using shRNA approaches, we provide evidence for distinct participation of both Parps in endodermal differentiation. Whereas Parp-2 and its activity are required for the relocation of TIF1beta to heterochromatic foci during primitive endodermal differentiation, Parp-1 and its activity modulate TIF1beta-HP1alpha association with consequences on parietal endodermal differentiation. Both Parps control TIF1beta transcriptional activity. In addition, this work identifies both Parps as new modulators of the HP1-mediated subcode histone.-Quénet, D., Gasser, V., Fouillen, L., Cammas, F., Sanglier-Cianferani, S., Losson, R., Dantzer, F. The histone subcode: poly(ADP-ribose) polymerase-1 (Parp-1) and Parp-2 control cell differentiation by regulating the transcriptional intermediary factor TIF1beta and the heterochromatin protein HP1alpha.


Asunto(s)
Diferenciación Celular/fisiología , Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Endodermo/enzimología , Heterocromatina/metabolismo , Poli(ADP-Ribosa) Polimerasas/metabolismo , Proteínas Represoras/metabolismo , Línea Celular , Homólogo de la Proteína Chromobox 5 , Endodermo/citología , Humanos , Poli(ADP-Ribosa) Polimerasa-1 , Proteína 28 que Contiene Motivos Tripartito
19.
Development ; 135(17): 2969-79, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18667462

RESUMEN

The canonical Wnt/beta-catenin signaling has remarkably diverse roles in embryonic development, stem cell self-renewal and cancer progression. Here, we show that stabilized expression of beta-catenin perturbed human embryonic stem (hES)-cell self-renewal, such that up to 80% of the hES cells developed into the primitive streak (PS)/mesoderm progenitors, reminiscent of early mammalian embryogenesis. The formation of the PS/mesoderm progenitors essentially depended on the cooperative action of beta-catenin together with Activin/Nodal and BMP signaling pathways. Intriguingly, blockade of BMP signaling completely abolished mesoderm generation, and induced a cell fate change towards the anterior PS progenitors. The PI3-kinase/Akt, but not MAPK, signaling pathway had a crucial role in the anterior PS specification, at least in part, by enhancing beta-catenin stability. In addition, Activin/Nodal and Wnt/beta-catenin signaling synergistically induced the generation and specification of the anterior PS/endoderm. Taken together, our findings clearly demonstrate that the orchestrated balance of Activin/Nodal and BMP signaling defines the cell fate of the nascent PS induced by canonical Wnt/beta-catenin signaling in hES cells.


Asunto(s)
Activinas/metabolismo , Proteínas Morfogenéticas Óseas/metabolismo , Linaje de la Célula , Células Madre Embrionarias/citología , Factor de Crecimiento Transformador beta/metabolismo , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , Proteínas Morfogenéticas Óseas/farmacología , Diferenciación Celular/efectos de los fármacos , Linaje de la Célula/efectos de los fármacos , Células Madre Embrionarias/efectos de los fármacos , Endodermo/citología , Endodermo/efectos de los fármacos , Endodermo/enzimología , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Mesodermo/citología , Mesodermo/efectos de los fármacos , Mesodermo/embriología , Mesodermo/enzimología , Proteína Nodal , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Línea Primitiva/citología , Línea Primitiva/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Termodinámica , Factores de Tiempo
20.
Mol Cell Biol ; 28(8): 2659-74, 2008 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-18268007

RESUMEN

The three closely related human Ras genes, Hras, Nras, and Kras, are all widely expressed, engage a common set of downstream effectors, and can each exhibit oncogenic activity. However, the vast majority of activating Ras mutations in human tumors involve Kras. Moreover, Kras mutations are most frequently seen in tumors of endodermally derived tissues (lung, pancreas, and colon), suggesting that activated Kras may affect an endodermal progenitor to initiate oncogenesis. Using a culture model of retinoic acid (RA)-induced stem cell differentiation to endoderm, we determined that while activated HrasV12 promotes differentiation and growth arrest in these endodermal progenitors, KrasV12 promotes their proliferation. Furthermore, KrasV12-expressing endodermal progenitors fail to differentiate upon RA treatment and continue to proliferate and maintain stem cell characteristics. NrasV12 neither promotes nor prevents differentiation. A structure-function analysis demonstrated that these distinct effects of the Ras isoforms involve their variable C-terminal domains, implicating compartmentalized signaling, and revealed a requirement for several established Ras effectors. These findings indicate that activated Ras isoforms exert profoundly different effects on endodermal progenitors and that mutant Kras may initiate tumorigenesis by expanding a susceptible stem/progenitor cell population. These results potentially explain the high frequency of Kras mutations in tumors of endodermal origin.


Asunto(s)
Diferenciación Celular , Endodermo/citología , Neoplasias/enzimología , Neoplasias/patología , Proteínas Proto-Oncogénicas/metabolismo , Células Madre/citología , Células Madre/enzimología , Proteínas ras/metabolismo , Línea Celular , Linaje de la Célula , Proliferación Celular , Endodermo/enzimología , Activación Enzimática , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Modelos Biológicos , Mutación/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Quinasas raf/metabolismo , Factor de Intercambio de Guanina Nucleótido ral/metabolismo , Proteínas ras/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA