Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 561
Filtrar
Más filtros

Intervalo de año de publicación
1.
Int J Mol Sci ; 25(18)2024 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-39337646

RESUMEN

Histidine ammonia-lyase (HAL) plays a pivotal role in the non-oxidative deamination of L-histidine to produce trans-urocanic, a crucial process in amino acid metabolism. This study examines the cloning, purification, and biochemical characterization of a novel HAL from Geobacillus kaustophilus (GkHAL) and eight active site mutants to assess their effects on substrate binding, catalysis, thermostability, and secondary structure. The GkHAL enzyme was successfully overexpressed and purified to homogeneity. Its primary sequence displayed 40.7% to 43.7% similarity with other known HALs and shared the same oligomeric structure in solution. Kinetic assays showed that GkHAL has optimal activity at 85 °C and pH 8.5, with high thermal stability even after preincubation at high temperatures. Mutations at Y52, H82, N194, and E411 resulted in a complete loss of catalytic activity, underscoring their essential role in enzyme function, while mutations at residues Q274, R280, and F325 did not abolish activity but did reduce catalytic efficiency. Notably, mutants R280K and F325Y displayed novel activity with L-histidinamide, expanding the substrate specificity of HAL enzymes. Circular dichroism (CD) analysis showed minor secondary structure changes in the mutants but no significant effect on global GkHAL folding. These findings suggest that GkHAL could be a promising candidate for potential biotechnological applications.


Asunto(s)
Geobacillus , Histidina Amoníaco-Liasa , Termodinámica , Geobacillus/enzimología , Geobacillus/genética , Cinética , Especificidad por Sustrato , Histidina Amoníaco-Liasa/metabolismo , Histidina Amoníaco-Liasa/genética , Histidina Amoníaco-Liasa/química , Estabilidad de Enzimas , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Dominio Catalítico , Secuencia de Aminoácidos , Concentración de Iones de Hidrógeno , Clonación Molecular , Mutación
2.
Sci Total Environ ; 951: 175671, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39168328

RESUMEN

The high moisture content of kitchen waste (KW) restricts the future treatment and resource utilization. Biodrying is an effective approach to remove the water of KW. However, conventional biodrying only uses the heat generated by the indigenous microorganisms to remove water, which has long treatment cycle and low moisture removal rate. Microbial bioaugmentation is an emerging approach to improve the biodrying efficiency of KW. In this study, a thermophilic bacterial agent (TBA) composed of Bacillus, Geobacillus and Acinetobacter was used to promote water evaporation during the biodrying process. Based on the results, the moisture removal rate of experimental group inoculated with TBA was 82.20 %, which was notably higher than CK group without inoculation. Moreover, TBA significantly increased the amount of organic matter degradation. Microbial community analysis revealed that TBA could promote the proliferation of thermophilic bacteria and make bacterial community more tolerant to high temperature environment. Further analysis of metabolic pathways showed that quorum sensing and glyoxylate and dicarboxylate metabolism were enhanced by TBA inoculation, which can help microorganisms to better adapt to high temperature environment and release more energy to facilitate the water evaporation. This study offers a fresh approach to improve the water removal efficiency in biodrying process.


Asunto(s)
Biodegradación Ambiental , Redes y Vías Metabólicas , Microbiota , Bacillus/metabolismo , Bacillus/fisiología , Bacterias/metabolismo , Geobacillus/metabolismo , Geobacillus/fisiología , Eliminación de Residuos Líquidos/métodos , Acinetobacter/metabolismo , Acinetobacter/fisiología
3.
Environ Sci Pollut Res Int ; 31(32): 45441-45451, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951392

RESUMEN

Bisphenol A diglycidyl ether (BADGE), a derivative of the well-known endocrine disruptor Bisphenol A (BPA), is a potential threat to long-term environmental health due to its prevalence as a micropollutant. This study addresses the previously unexplored area of BADGE toxicity and removal. We investigated, for the first time, the biodegradation potential of laccase isolated from Geobacillus thermophilic bacteria against BADGE. The laccase-mediated degradation process was optimized using a combination of response surface methodology (RSM) and machine learning models. Degradation of BADGE was analyzed by various techniques, including UV-Vis spectrophotometry, high-performance liquid chromatography (HPLC), Fourier transform infrared (FTIR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). Laccase from Geobacillus stearothermophilus strain MB600 achieved a degradation rate of 93.28% within 30 min, while laccase from Geobacillus thermoparafinivorans strain MB606 reached 94% degradation within 90 min. RSM analysis predicted the optimal degradation conditions to be 60 min reaction time, 80°C temperature, and pH 4.5. Furthermore, CB-Dock simulations revealed good binding interactions between laccase enzymes and BADGE, with an initial binding mode selected for a cavity size of 263 and a Vina score of -5.5, which confirmed the observed biodegradation potential of laccase. These findings highlight the biocatalytic potential of laccases derived from thermophilic Geobacillus strains, notably MB600, for enzymatic decontamination of BADGE-contaminated environments.


Asunto(s)
Compuestos de Bencidrilo , Biodegradación Ambiental , Geobacillus stearothermophilus , Geobacillus , Lacasa , Lacasa/metabolismo , Geobacillus stearothermophilus/enzimología , Geobacillus/enzimología , Compuestos de Bencidrilo/metabolismo , Fenoles/metabolismo , Compuestos Epoxi/metabolismo
4.
Appl Environ Microbiol ; 90(7): e0028124, 2024 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-38975762

RESUMEN

Mesophilic enzymes, which are active at moderate temperatures, may dominate enzymatic reactions even in the presence of thermophilic crude enzymes. This study was conducted to investigate this hypothesis with mesophilic inositol dehydrogenases (IolG and IolX) produced in Geobacillus kaustophilus HTA426. To ensure the efficient production of mesophilic enzymes, we first screened for promoters induced at moderate temperatures using transcriptome analysis and identified four genes highly expressed at 30°C in the thermophile. We further characterized these promoters using fluorescent reporter assays to determine that the mti3 promoter could direct efficient gene expression at 40°C. We cloned the promoter into an Escherichia coli-Geobacillus shuttle plasmid and confirmed that the resulting vector functioned in G. kaustophilus and other thermophiles. We then used this vector for the cooperative expression of the iolG and iolX genes from Bacillus subtilis 168. G. kaustophilus cells carrying the expression vector were incubated at 60°C for cellular propagation and then at 40°C for the production of IolG and IolX. When the cells were permeabilized, IolG and IolX acted as catalysts to convert exogenous myo-inositol into scyllo-inositol at 30°C. In a scaled-up reaction, 10 g of myo-inositol was converted to 1.8 g of scyllo-inositol, which was further purified to yield 970 mg of pure powder. Notably, myo-inositol was degraded by intrinsic enzymes of G. kaustophilus at 60°C but not at 30°C, supporting our initial hypothesis. We indicate that this approach is useful for preparing enzyme cocktails without the need for purification. IMPORTANCE: Enzyme cocktails are commonly employed for cell-free chemical synthesis; however, their preparation involves cumbersome processes. This study affirms that mesophilic enzymes in thermophilic crude extracts can function as specific catalysts at moderate temperatures, akin to enzyme cocktails. The catalyst was prepared by permeabilizing cells without the need for concentration, extraction, or purification processes; hence, its preparation was considerably simpler compared with conventional methods for enzyme cocktails. This approach was employed to produce pure scyllo-inositol from an economical substrate. Notably, this marks the first large-scale preparation of pure scyllo-inositol, holding potential pharmaceutical significance as scyllo-inositol serves as a promising agent for certain diseases but is currently expensive. Moreover, this approach holds promise for application in pathway engineering within living cells. The envisioned pathway is designed without chromosomal modification and is simply regulated by switching culture temperatures. Consequently, this study introduces a novel platform for both whole-cell and cell-free synthetic systems.


Asunto(s)
Proteínas Bacterianas , Geobacillus , Inositol , Inositol/metabolismo , Geobacillus/genética , Geobacillus/enzimología , Geobacillus/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/enzimología , Bacillus subtilis/metabolismo , Deshidrogenasas del Alcohol de Azúcar/genética , Deshidrogenasas del Alcohol de Azúcar/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regiones Promotoras Genéticas
5.
Int J Biol Macromol ; 275(Pt 2): 133721, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986972

RESUMEN

Flavin reductases play a vital role in catalyzing the reduction of flavin through NADH or NADPH oxidation. The gene encoding flavin reductase from the thermophilic bacterium Geobacillus mahadii Geo-05 (GMHpaC) was cloned, overexpressed in Escherichia coli BL21 (DE3) pLysS, and purified to homogeneity. The purified recombinant GMHpaC (Class II) contains chromogenic cofactors, evidenced by maximal absorbance peaks at 370 nm and 460 nm. GMHpaC stands out as the most thermostable and pH-tolerant flavin reductase reported to date, retaining up to 95 % catalytic activity after incubation at 70 °C for 30 min and maintaining over 80 % activity within a pH range of 2-12 for 30 min. Furthermore, GMHpaC's catalytic activity increases by 52 % with FMN as a co-factor compared to FAD and riboflavin. GMHpaC, coupled with 4-hydroxyphenylacetate-3-monooxygenase (GMHpaB) from G. mahadii Geo-05, enhances the hydroxylation of 4-hydroxyphenylacetate (HPA) by 85 %. The modeled structure of GMHpaC reveals relatively conserved flavin and NADH binding sites. Modeling and docking studies shed light on structural features and amino acid substitutions that determine GMHpaC's co-factor specificity. The remarkable thermostability, high catalytic activity, and general stability exhibited by GMHpaC position it as a promising enzyme candidate for various industrial applications.


Asunto(s)
Estabilidad de Enzimas , FMN Reductasa , Geobacillus , Geobacillus/enzimología , Geobacillus/genética , FMN Reductasa/genética , FMN Reductasa/metabolismo , FMN Reductasa/química , Clonación Molecular , Concentración de Iones de Hidrógeno , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Secuencia de Aminoácidos , Cinética , Simulación del Acoplamiento Molecular , Temperatura , Mononucleótido de Flavina/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Modelos Moleculares , Sitios de Unión , Escherichia coli/genética , Oxigenasas de Función Mixta
6.
Int J Mol Sci ; 25(14)2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39063171

RESUMEN

Lipases are enzymes that hydrolyze long-chain carboxylic esters, and in the presence of organic solvents, they catalyze organic synthesis reactions. However, the use of solvents in these processes often results in enzyme denaturation, leading to a reduction in enzymatic activity. Consequently, there is significant interest in identifying new lipases that are resistant to denaturing conditions, with extremozymes emerging as promising candidates for this purpose. Lip7, a lipase from Geobacillus sp. ID17, a thermophilic microorganism isolated from Deception Island, Antarctica, was recombinantly expressed in E. coli C41 (DE3) in functional soluble form. Its purification was achieved with 96% purity and 23% yield. Enzymatic characterization revealed Lip7 to be a thermo-alkaline enzyme, reaching a maximum rate of 3350 U mg-1 at 50 °C and pH 11.0, using p-nitrophenyl laurate substrate. Notably, its kinetics displayed a sigmoidal behavior, with a higher kinetic efficiency (kcat/Km) for substrates of 12-carbon atom chain. In terms of thermal stability, Lip7 demonstrates stability up to 60 °C at pH 8.0 and up to 50 °C at pH 11.0. Remarkably, it showed high stability in the presence of organic solvents, and under certain conditions even exhibited enzymatic activation, reaching up to 2.5-fold and 1.35-fold after incubation in 50% v/v ethanol and 70% v/v isopropanol, respectively. Lip7 represents one of the first lipases from the bacterial subfamily I.5 and genus Geobacillus with activity and stability at pH 11.0. Its compatibility with organic solvents makes it a compelling candidate for future research in biocatalysis and various biotechnological applications.


Asunto(s)
Estabilidad de Enzimas , Geobacillus , Lipasa , Proteínas Recombinantes , Solventes , Geobacillus/enzimología , Geobacillus/genética , Lipasa/genética , Lipasa/química , Lipasa/metabolismo , Lipasa/aislamiento & purificación , Solventes/química , Regiones Antárticas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/genética , Concentración de Iones de Hidrógeno , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Cinética , Especificidad por Sustrato , Temperatura , Escherichia coli/genética , Escherichia coli/metabolismo
7.
Curr Microbiol ; 81(9): 287, 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39075266

RESUMEN

Microbial xylanases are enzymes of great importance due to their wide industrial applications, especially in the degradation of lignocellulosic biomass into fermentable sugars. This study aimed to describe the production optimization and partial characterization of an ultra-thermostable, acidophilic, cellulase-free xylanase from an obligate thermophilic eubacterium Geobacillus thermoleovorans strain-AKNT10 (Ac.No. LT158229) isolated from a hot-spring of Puga Valley located at an altitude of 4419 m in Ladakh, India. The optimization of cultural conditions improved enzyme yield by 10.49-fold under submerged fermentation. The addition of 1% (w/v) xylose induced the enzyme synthesis by ~ 165 and 371% when supplemented in the fermentation medium containing wheat bran (WB) 1 and 3%, respectively. The supplementation of sucrose reduced the xylanase production by ~ 25%. Results of partial characterization exhibited that xylanase was optimally active at pH 6.0 and 100 °C. Enzyme retained > 75%, > 83%, and > 84% of activity at 4 °C for 28 days, 100 °C for 60 min, and pHs 3-8 for 60 min, respectively. An outstanding property of AKNT10-xylanase, was the retention of > 71% residual activity at extreme conditions (121 °C and 15 psi pressure) for 15 min. Enzymatic saccharification showed that enzyme was also capable to liberate maximum reducing sugars within 4-8 h under optimized conditions thus it could be a potential candidate for the bioconversion of lignocellulosic biomass as well as other industrial purposes. To the best of our knowledge, this is the first report on such an ultra-thermo-pressure-tolerant xylanase optimally active at pH 6 and 100 °C from the genus Geobacillus.


Asunto(s)
Fibras de la Dieta , Endo-1,4-beta Xilanasas , Estabilidad de Enzimas , Fermentación , Geobacillus , Geobacillus/enzimología , Geobacillus/genética , Fibras de la Dieta/metabolismo , Concentración de Iones de Hidrógeno , Endo-1,4-beta Xilanasas/metabolismo , Endo-1,4-beta Xilanasas/química , Manantiales de Aguas Termales/microbiología , Temperatura , India , Xilosa/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Medios de Cultivo/química
8.
ACS Appl Bio Mater ; 7(7): 4760-4771, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38916249

RESUMEN

Laccase is an oxidase of great industrial interest due to its ability to catalyze oxidation processes of phenols and persistent organic pollutants. However, it is susceptible to denaturation at high temperatures, sensitive to pH, and unstable in the presence of high concentrations of solvents, which is a issue for industrial use. To solve this problem, this work develops the synthesis in an aqueous medium of a new Mn metalloenzyme with laccase oxidase mimetic catalytic activity. Geobacillus thermocatenulatus lipase (GTL) was used as a scaffold enzyme, mixed with a manganese salt at 50 °C in an aqueous medium. This leads to the in situ formation of manganese(IV) oxide nanowires that interact with the enzyme, yielding a GTL-Mn bionanohybrid. On the other hand, its oxidative activity was evaluated using the ABTS assay, obtaining a catalytic efficiency 300 times higher than that of Trametes versicolor laccase. This new Mn metalloenzyme was 2 times more stable at 40 °C, 3 times more stable in the presence of 10% acetonitrile, and 10 times more stable in 20% acetonitrile than Novozym 51003 laccase. Furthermore, the site-selective immobilized GTL-Mn showed a much higher stability than the soluble form. The oxidase-like activity of this Mn metalloenzyme was successfully demonstrated against other substrates, such as l-DOPA or phloridzin, in oligomerization reactions.


Asunto(s)
Lacasa , Manganeso , Lacasa/metabolismo , Lacasa/química , Manganeso/química , Ensayo de Materiales , Geobacillus/enzimología , Tamaño de la Partícula , Materiales Biocompatibles/química , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/metabolismo , Lipasa/metabolismo , Lipasa/química
9.
Extremophiles ; 28(2): 27, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38861190

RESUMEN

In this study, EPS production conditions of Geobacillus thermodenitrificans HBB 111, a thermophilic microorganism, were optimized and the amount of produced EPS (EPS 111) was found to be 44.0 mg/L. EPS 111 was purified using ion exchange chromatography and gel filtration chromatography, and a single type of exopolysaccharide was obtained. The structure of the purified EPS 111 was evaluated by TLC, FTIR, NMR, and GC-MS, and it was observed that it contained hexose (glucose, fructose, galactose and mannose) and pentose sugars. From the SEM photographs, it was understood that EPS 111 had an amorphous, rough, and layered structure. It was found that purified EPS 111 had low cytotoxicity (2.3%) and exhibited high antioxidant activity and remarkable antidiabetic, prebiotic and fibrinolytic activities. It is very valuable that the purified EPS 111 in this study offers multiple biological activities compared to the thermophilic EPSs reported in the literature and has a high potential for use in biotechnological and biomedical fields.


Asunto(s)
Geobacillus , Polisacáridos Bacterianos , Geobacillus/metabolismo , Polisacáridos Bacterianos/farmacología , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/aislamiento & purificación , Antioxidantes/química , Antioxidantes/farmacología
10.
Int J Biol Macromol ; 269(Pt 1): 132021, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38697441

RESUMEN

Challenges in enzyme and product recovery are currently intriguing in modern biotechnology. Coping enzyme stability, shelf life and efficiency, nanomaterials-based immobilization were epitomized of industrial practice. Herein, a α-amylase from Geobacillus thermoleovorans was purified and bound effectively on to a modified 3-Aminopropyltriethoxysilane (APTES)-Fe3O4 nanoparticle. It was revealed that the carrier-bound enzyme catalysis (pH 8 and 60 °C) was significant in contrast to the free enzyme (pH 7.5 and 55 °C). Furthermore, Zn2+ and Cu2+ were shown to cause inhibitory effects in both enzyme states. Unlike chloroform, toluene, benzene, and butanol, minimal effects were observed with ethanol, acetone, and hexane. The bound enzyme retained 27.4 % of its initial activity after being stored for 36 days. In addition, the reusability of the bound enzyme showed a gradual decline in activity after the first cycle; however, after 13 cycles, its residual activity at 53 % was observed. These data proved significant enough to use this enzyme for industrial starch and analogous substrate bio-processing.


Asunto(s)
Estabilidad de Enzimas , Enzimas Inmovilizadas , Propilaminas , alfa-Amilasas , Enzimas Inmovilizadas/química , Enzimas Inmovilizadas/metabolismo , alfa-Amilasas/química , alfa-Amilasas/metabolismo , Propilaminas/química , Silanos/química , Geobacillus/enzimología , Temperatura , Concentración de Iones de Hidrógeno , Biocatálisis , Catálisis , Nanopartículas de Magnetita/química , Almidón/química
11.
Int J Biol Macromol ; 269(Pt 2): 132183, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38723826

RESUMEN

The current research in the food industry regarding enzymatic modification to enhance the freeze-thaw (FT) stability of starch is limited. The present study aimed to investigate the FT stability of normal corn starch (NCS) modified using 1,4-α-glucan branching enzyme (GBE) derived from Geobacillus thermoglucosidans STB02. Comprehensive analyses, including syneresis, scanning electron microscopy, and low-field nuclear magnetic resonance, collectively demonstrated the enhanced FT stability of GBE-modified corn starch (GT-NCS-30) in comparison to its native form. Its syneresis was 66.4 % lower than that of NCS after three FT cycles. Notably, GBE treatment induced changes in the pasting properties and thermal resistance of corn starch, while simultaneously enhancing the mechanical strength of the starch gel. Moreover, X-ray diffractograms and microstructural assessments of freeze-thawed gels indicated that GBE treatment effectively hindered the association of corn starch molecules, particularly amylose retrogradation. The enhanced FT stability of GBE-modified starch can be attributed to alterations in the starch structure induced by GBE. This investigation establishes a foundation for further exploration into the influence of GBE treatment on the FT stability of starch and provides a theoretical basis for further research in this area.


Asunto(s)
Enzima Ramificadora de 1,4-alfa-Glucano , Congelación , Geles , Almidón , Zea mays , Almidón/química , Enzima Ramificadora de 1,4-alfa-Glucano/química , Enzima Ramificadora de 1,4-alfa-Glucano/metabolismo , Zea mays/química , Geles/química , Geobacillus/enzimología , Amilosa/química
12.
Biotechnol Lett ; 46(3): 443-458, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38523202

RESUMEN

OBJECTIVES: Although Geobacillus are significant thermophilic bacteria source, there are no reports of thermostable esterase gene in Geobacillus jurassicus or rational design strategies to increase the thermal stability of esterases. RESULTS: Gene gju768 showed a highest similarity of 15.20% to esterases from Geobacillus sp. with detail enzymatic properties. Using a combination of Gibbs Unfolding Free Energy (∆∆G) calculator and the distance from the mutation site to the catalytic site (DsCα-Cα) to screen suitable mutation sites with elimination of negative surface charge, the mutants (D24N, E221Q, and E253Q) displayed stable mutants with higher thermal stability than the wild-type (WT). Mutant E253Q exhibited the best thermal stability, with a half-life (T1/2) at 65 °C of 32.4 min, which was 1.8-fold of the WT (17.9 min). CONCLUSION: Cloning of gene gju768 and rational design based on surface charge engineering contributed to the identification of thermostable esterase from Geobacillus sp. and the exploration of evolutionary strategies for thermal stability.


Asunto(s)
Estabilidad de Enzimas , Esterasas , Geobacillus , Geobacillus/enzimología , Geobacillus/genética , Esterasas/genética , Esterasas/química , Esterasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Diseño Asistido por Computadora , Clonación Molecular
13.
Int J Biol Macromol ; 263(Pt 2): 130438, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38408579

RESUMEN

Genome sequence of Geobacillus thermopakistaniensis contains an open reading frame annotated as a type II L-asparaginase (ASNaseGt). Critical structural analysis disclosed that ASNaseGt might be a type I L-asparaginase. In order to determine whether it is a type I or type II L-asparaginase, we have performed the structural-functional characterization of the recombinant protein as well as analyzed the localization of ASNaseGt in G. thermopakistaniensis. ASNaseGt exhibited optimal activity at 52 °C and pH 9.5. There was a > 3-fold increase in activity in the presence of ß-mercaptoethanol. Apparent Vmax and Km values were 2735 U/mg and 0.35 mM, respectively. ASNaseGt displayed high thermostability with >80 % residual activity even after 6 h of incubation at 55 °C. Recombinant ASNaseGt existed in oligomeric form. Addition of ß-mercaptoethanol lowered the degree of oligomerization and displayed that tetrameric form was the most active, with a specific activity of 4300 U/mg. Under physiological conditions, ASNaseGt displayed >50 % of the optimal activity. Localization studies in G. thermopakistaniensis revealed that ASNaseGt is a cytosolic protein. Structural and functional characterization, and localization in G. thermopakistaniensis displayed that ASNaseGt is not a type II but a type I L-asparaginase.


Asunto(s)
Asparaginasa , Geobacillus , Asparaginasa/química , Geobacillus/genética , Geobacillus/metabolismo , Mercaptoetanol , Proteínas Recombinantes/genética , Estabilidad de Enzimas
14.
J Environ Manage ; 354: 120416, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38408391

RESUMEN

Hydrogen sulfide (H2S) is a toxic gas massively released during chicken manure composting. Diminishing its release requires efficient and low cost methods. In recent years, heterotrophic bacteria capable of rapid H2S oxidation have been discovered but their applications in environmental improvement are rarely reported. Herein, we investigated H2S oxidation activity of a heterotrophic thermophilic bacterium Geobacillus thermodenitrificans DSM465, which contains a H2S oxidation pathway composed by sulfide:quinone oxidoreductase (SQR) and persulfide dioxygenase (PDO). This strain rapidly oxidized H2S to sulfane sulfur and thiosulfate. The oxidation rate reached 5.73 µmol min-1·g-1 of cell dry weight. We used G. thermodenitrificans DSM465 to restrict H2S release during chicken manure composting. The H2S emission during composting process reduced by 27.5% and sulfate content in the final compost increased by 34.4%. In addition, this strain prolonged the high temperature phase by 7 days. Thus, using G. thermodenitrificans DSM465 to control H2S release was an efficient and economic method. This study provided a new strategy for making waste composting environmental friendly and shed light on perspective applications of heterotrophic H2S oxidation bacteria in environmental improvements.


Asunto(s)
Compostaje , Geobacillus , Sulfuro de Hidrógeno , Animales , Pollos , Estiércol , Proteínas Bacterianas/metabolismo , Sulfuros/metabolismo , Geobacillus/metabolismo , Oxidación-Reducción
15.
Extremophiles ; 28(1): 18, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38353731

RESUMEN

We have accidentally found that a thermophilic Geobacillus kaustophilus HTA426 is capable of degrading alkanes although it has no alkane oxygenating enzyme genes. Our experimental results revealed that a putative ribonucleotide reductase small subunit GkR2loxI (GK2771) gene encodes a novel heterodinuclear Mn-Fe alkane monooxygenase/hydroxylase. GkR2loxI protein can perform two-electron oxidations similar to homonuclear diiron bacterial multicomponent soluble methane monooxygenases. This finding not only answers a long-standing question about the substrate of the R2lox protein clade, but also expands our understanding of the vast diversity and new evolutionary lineage of the bacterial alkane monooxygenase/hydroxylase family.


Asunto(s)
Geobacillus , Ribonucleótido Reductasas , Ribonucleótido Reductasas/genética , Oxigenasas de Función Mixta/genética , Geobacillus/genética , Alcanos
16.
J Basic Microbiol ; 64(4): e2300653, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38212247

RESUMEN

Geobacillus kaustophilus TSCCA02, a newly isolated strain from cassava (Manihot esculenta L.) rhizosphere soil in Thailand, showed maximum raw starch degrading enzyme (RSDE) activity at 252.3 ± 9.32 U/mL with cassava starch and peptone at 5.0 and 3.0 g/L, respectively. 16 S ribosomal RNA (rRNA) sequencing and phylogenetic tree analyses indicated that the TSCCA02 strain was closely related to G. kaustophilus. The crude RSDE had optimal activity at 60°C and pH 9.0. This enzyme degraded various kinds of starch including potato starch, cassava starch, rice flour, corn starch, glutinous rice flour, and wheat flour to produce sugar syrup at 60°C, as confirmed by scanning electron microscopy (SEM), thin-layer chromatography (TLC), and Fourier-transform infrared spectroscopy (FTIR). The major end products of starch hydrolysis were maltose and maltotriose with a small amount of glucose, confirming this enzyme as an α-amylase. The enzyme improved the washing efficiency of cotton fabric with commercial detergent. Results indicated the potential of alkaline α-amylase produced from a new isolate of G. kaustophilus TSCCA02 for application as a detergent additive on an industrial scale.


Asunto(s)
Detergentes , Geobacillus , alfa-Amilasas , alfa-Amilasas/genética , alfa-Amilasas/química , Almidón/metabolismo , Harina , Filogenia , Triticum/metabolismo , Hidrólisis , Concentración de Iones de Hidrógeno
17.
Int J Biol Macromol ; 257(Pt 2): 128679, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38072346

RESUMEN

The glycoside hydrolase family 39 (GH39) proteins are renowned for their extremophilic and multifunctional enzymatic properties, yet the molecular mechanisms underpinning these unique characteristics continue to be an active subject of research. In this study, we introduce WsuXyn, a GH39 protein with a molecular weight of 58 kDa, originating from the thermophilic Geobacillus sp. WSUCF1. Previously reported for its exceptional thermostable ß-xylosidase activity, WsuXyn has recently demonstrated a significant endoxylanase activity (3752 U·mg-1) against beechwood xylan, indicating towards its bifunctional nature. Physicochemical characterization revealed that WsuXyn exhibits optimal endoxylanase activity at 70 °C and pH 7.0. Thermal stability assessments revealed that the enzyme is resilient to elevated temperatures, with a half-life of 168 h. Key kinetic parameters highlight the exceptional catalytic efficiency and strong affinity of the protein for xylan substrate. Moreover, WsuXyn-mediated hydrolysis of beechwood xylan has achieved 77 % xylan conversion, with xylose as the primary product. Structural analysis, amalgamated with docking simulations, has revealed strong binding forces between xylotetraose and the protein, with key amino acid residues, including Glu278, Tyr230, Glu160, Gly202, Cys201, Glu324, and Tyr283, playing pivotal roles in these interactions. Therefore, WsuXyn holds a strong promise for biodegradation and value-added product generation through lignocellulosic biomass conversion.


Asunto(s)
Geobacillus , Xilosidasas , Endo-1,4-beta Xilanasas/genética , Endo-1,4-beta Xilanasas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Xilosidasas/química , Xilanos/metabolismo , Especificidad por Sustrato
18.
Int J Biol Macromol ; 256(Pt 1): 128331, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38013084

RESUMEN

Lipolytic enzymes are important contributors in industrial processes from lipid hydrolysis to biofuel production or even polyester biodegradation. While these enzymes can be used in numerous applications, the genotype-phenotype space of certain promising enzymes is still poorly explored. This limits the effective application of such biocatalysts. In this work the genotype space of a 55 kDa carboxylesterase GDEst-95 from Geobacillus sp. 95 was explored using site-directed mutagenesis and directed evolution methods. In this study four site-directed mutants (Gly108Arg, Ala410Arg, Leu226Arg, Leu411Ala) were created based on previous analysis of GDEst-95 carboxylesterase. Error-prone PCR resulted three mutants: two of them with distal mutations: GDEst-RM1 (Arg75Gln), GDEst-RM2 (Gly20Ser Arg75Gln) and the third, GDEst-RM3, with a distal (Ser210Gly) and Tyr317Ala (amino acid position near to the active site) mutation. Mutants with Ala substitution displayed approximately twofold higher specific activity. Arg mutations lead a reduced specific activity, retaining 2.86 % (Gly108Arg), 10.95 % (Ala410Arg), and 44.23 % (Leu226Arg) of lipolytic activity. All three random mutants displayed increased specific activity as well as improved catalytic properties. This research provides the first deeper insights into the functionality of understudied Geobacillus spp. carboxylesterases with 55 kDa in size.


Asunto(s)
Carboxilesterasa , Geobacillus , Carboxilesterasa/química , Mutagénesis , Hidrolasas de Éster Carboxílico/química , Mutagénesis Sitio-Dirigida
19.
Biotechnol Appl Biochem ; 71(1): 162-175, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37908087

RESUMEN

Microbial lipases are utilized in various biotechnological areas, including pharmaceuticals, food, biodiesel, and detergents. In this study, we cloned and sequenced Lip21 and Lip33 genes from Geobacillus sp. GS21 and Geobacillus sp. GS33, then we in silico and experimentally analyzed the encoded lipases. For this purpose, Lip21 and Lip33 were cloned, sequenced, and their amino acid sequences were investigated for determination of biophysicochemical characteristics, evolutionary relationships, and sequence similarities. 3D models were built and computationally affirmed by various bioinformatics tools, and enzyme-ligand interactions were investigated by docking analysis using six ligands. Biophysicochemical property of Lip21 and Lip33 was also determined experimentally and the results demonstrated that they had similar isoelectric point (pI) (6.21) and Tm (75.5°C) values as Tm was revealed by denatured protein analysis of the circular dichroism spectrum and pI was obtained by isoelectric focusing. Phylogeny analysis indicated that Lip21 and Lip33 were the closest to lipases from Geobacillus sp. SBS-4S and Geobacillus thermoleovorans, respectively. Alignment analysis demonstrated that S144-D348-H389 was catalytic triad residues in Lip21 and Lip33, and enzymes possessed a conserved Gly-X-Ser-X-Gly motif containing catalytic serine. 3D structure analysis indicated that Lip21 and Lip33 highly resembled each other and they were α/ß hydrolase-fold enzymes with large lid domains. BANΔIT analysis results showed that Lip21 and Lip33 had higher thermal stability, compared to other thermostable Geobacillus lipases. Docking results revealed that Lip21- and Lip33-docked complexes possessed common residues (H112, K115, Q162, E163, and S141) that interacted with the substrates, except paranitrophenyl (pNP)-C10 and pNP-C12, indicating that these residues might have a significant action on medium and short-chain fatty acid esters. Thus, Lip21 and Lip33 can be potential candidates for different industrial applications.


Asunto(s)
Geobacillus , Geobacillus/genética , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Estabilidad de Enzimas
20.
Rev Argent Microbiol ; 56(1): 102-111, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37704517

RESUMEN

The genus Geobacillus is composed of thermophilic bacteria that exhibit diverse biotechnological potentialities. Specifically, Geobacillus stearothermophilus is included as a test bacterium in commercial microbiological inhibition methods, although it exhibits limited sensitivity to aminoglycosides, macrolides, and quinolones. Therefore, this article evaluates the antibiotic susceptibility profiles of five test bacteria (G. stearothermophilus subsp. calidolactis C953, Geobacillus thermocatenulatus LMG 19007, Geobacillus thermoleovorans LMG 9823, Geobacillus kaustophilus DSM 7263 and Geobacillus vulcani 13174). For that purpose, the minimum inhibitory concentrations (MICs) of 21 antibiotics were determined in milk samples for five test bacteria using the radial diffusion microbiological inhibition method. Subsequently, the similarities between bacteria and antibiotics were analyzed using cluster analysis. The dendrogram of this multivariate analysis shows an association between a group formed by G. thermocatenulatus and G. stearothermophilus and another by G. thermoleovorans, G. kaustophilus and G. vulcani. Finally, future microbiological methods could be developed in microtiter plates using G. thermocatenulatus as test bacterium, as it exhibits similar sensitivities to G. stearothermophilus. Conversely, G. vulcani, G. thermoleovorans and G. kaustophilus show higher MICs than G. thermocatenulatus.


Asunto(s)
Antiinfecciosos , Geobacillus , Animales , ADN Ribosómico/análisis , Leche/química , ARN Ribosómico 16S , Geobacillus/genética , Antibacterianos/farmacología , Antibacterianos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA