Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26.363
Filtrar
Más filtros

Intervalo de año de publicación
1.
Biotechnol J ; 19(7): e2300577, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38987216

RESUMEN

Microbial strain improvement through adaptive laboratory evolution (ALE) has been a key strategy in biotechnology for enhancing desired phenotypic traits. In this Biotech Method paper, we present an accelerated ALE (aALE) workflow and its successful implementation in evolving Cupriavidus necator H16 for enhanced tolerance toward elevated glycerol concentrations. The method involves the deliberate induction of genetic diversity through controlled exposure to divalent metal cations, enabling the rapid identification of improved variants. Through this approach, we observed the emergence of robust variants capable of growing in high glycerol concentration environments, demonstrating the efficacy of our aALE workflow. When cultivated in 10% v/v glycerol, the adapted variant Mn-C2-B11, selected through aALE, achieved a final OD600 value of 56.0 and a dry cell weight of 15.2 g L-1, compared to the wild type (WT) strain's final OD600 of 39.1 and dry cell weight of 8.4 g L-1. At an even higher glycerol concentration of 15% v/v, Mn-C2-B11 reached a final OD600 of 48.9 and a dry cell weight of 12.7 g L-1, in contrast to the WT strain's final OD600 of 9.0 and dry cell weight of 3.1 g L-1. Higher glycerol consumption by Mn-C2-B11 was also confirmed by high-performance liquid chromatography (HPLC) analysis. This adapted variant consumed 34.5 times more glycerol compared to the WT strain at 10% v/v glycerol. Our method offers several advantages over other reported ALE approaches, including its independence from genetically modified strains, specialized genetic tools, and potentially carcinogenic DNA-modifying agents. By utilizing divalent metal cations as mutagens, we offer a safer, more efficient, and cost-effective alternative for expansion of genetic diversity. With its ability to foster rapid microbial evolution, aALE serves as a valuable addition to the ALE toolbox, holding significant promise for the advancement of microbial strain engineering and bioprocess optimization.


Asunto(s)
Cupriavidus necator , Glicerol , Cupriavidus necator/genética , Cupriavidus necator/metabolismo , Glicerol/metabolismo , Glicerol/química , Cationes Bivalentes , Evolución Molecular Dirigida/métodos
2.
Sci Rep ; 14(1): 15788, 2024 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-38982099

RESUMEN

Cryopreservation of human corneal stroma-derived mesenchymal stromal cells (hCS-MSCs) with dimethylsulfoxide (DMSO) as a cryoprotective agent (CPA) has not been previously compared to that with glycerol under standard conditions. The hCS-MSCs were hereby cryopreserved with both compounds using a freezing rate of 1 °C/minute. The CPAs were tested by different concentrations in complete Minimum Essential Medium (MEM) approved for good manufacturing practice, and a medium frequently used in cell laboratory culturing-Dulbecco's modified eagle serum. The hCS-MSCs were isolated from cadaveric human corneas obtained from the Norwegian Eye Bank, and immunophenotypically characterized by flow cytometry before and after cryopreservation. The survival rate, the cellular adhesion, proliferation and cell surface coverage after cryopreservation of hCS-MSCs has been studied. The hCS-MSCs were immunofluorescent stained and examined for their morphology microscopically. The results showed that cryopreservation of hCS-MSCs in MEM with 10% glycerol gives a higher proliferation rate compared to other cryopreserving media tested. Based on the results, hCS-MSCs can safely be cryopreserved using glycerol instead of the traditional use of DMSO.


Asunto(s)
Proliferación Celular , Supervivencia Celular , Sustancia Propia , Criopreservación , Crioprotectores , Células Madre Mesenquimatosas , Humanos , Crioprotectores/farmacología , Células Madre Mesenquimatosas/citología , Criopreservación/métodos , Sustancia Propia/citología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Glicerol/farmacología , Dimetilsulfóxido/farmacología , Células Cultivadas , Adhesión Celular/efectos de los fármacos
3.
Appl Microbiol Biotechnol ; 108(1): 419, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39012392

RESUMEN

Waste glycerol is produced in excess by several industries, such as during biodiesel production. In this work, the metabolic versatility of anaerobic sludge was explored towards waste glycerol valorization. By applying different environmental (methanogenic and sulfate-reducing) conditions, three distinct microbial cultures were obtained from the same inoculum (anaerobic granular sludge), with high microbial specialization, within three different phyla (Thermodesulfobacteriota, Euryarchaeota and Pseudomonadota). The cultures are capable of glycerol conversion through different pathways: (i) glycerol conversion to methane by a bacterium closely related to Solidesulfovibrio alcoholivorans (99.8% 16S rRNA gene identity), in syntrophic relationship with Methanofollis liminatans (98.8% identity), (ii) fermentation to propionate by Propionivibrio pelophilus strain asp66 (98.6% identity), with a propionate yield of 0.88 mmol mmol-1 (0.71 mg mg-1) and a propionate purity of 80-97% and (iii) acetate production coupled to sulfate reduction by Desulfolutivibrio sulfoxidireducens (98.3% identity). In conclusion, starting from the same inoculum, we could drive the metabolic and functional potential of the microbiota towards the formation of several valuable products that can be used in industrial applications or as energy carriers. KEY POINTS: Versatility of anaerobic cultures was explored for waste glycerol valorization Different environmental conditions lead to metabolic specialization Biocommodities such as propionate, acetate and methane were produced.


Asunto(s)
Fermentación , Glicerol , Metano , ARN Ribosómico 16S , Aguas del Alcantarillado , Glicerol/metabolismo , Aguas del Alcantarillado/microbiología , Anaerobiosis , ARN Ribosómico 16S/genética , Metano/metabolismo , Filogenia , Sulfatos/metabolismo , Propionatos/metabolismo , Biocombustibles , Acetatos/metabolismo , Bacterias/metabolismo , Bacterias/clasificación , Bacterias/genética
4.
Carbohydr Polym ; 339: 122292, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38823937

RESUMEN

Through adaptive laboratory evolution (ALE) of Sphingomonas sp. ATCC 31555, fermentation for production of low-molecular-weight welan gum (LMW-WG) was performed using glycerol as sole carbon source. During ALE, GPC-MALS analysis revealed a gradual decrease in WG molecular weight with the increase of adaptation cycles, accompanied by changes in solution conformation. LMW-WG was purified and structurally analyzed using GPC-MALS, monosaccharide composition analysis, infrared spectroscopy, NMR analysis, atomic force microscopy, and scanning electron microscopy. Subsequently, LMW-WG obtains hydration, transparency, antioxidant activity, and rheological properties. Finally, an in vitro simulation colon reactor was used to evaluate potential prebiotic properties of LMW-WG as dietary fiber. Compared with WG produced using sucrose as substrate, LMW-WG exhibited a fourfold reduction in molecular weight while maintaining moderate viscosity. Structurally, L-Rha nearly completely replaced L-Man. Furthermore, LMW-WG demonstrated excellent hydration, antioxidant activity, and high transparency. It also exhibited resistance to saliva and gastrointestinal digestion, showcasing a favorable colonization effect on Bifidobacterium, making it a promising symbiotic agent.


Asunto(s)
Antioxidantes , Fermentación , Glicerol , Peso Molecular , Sphingomonas , Glicerol/química , Glicerol/metabolismo , Antioxidantes/química , Antioxidantes/farmacología , Sphingomonas/metabolismo , Polisacáridos Bacterianos/química , Polisacáridos Bacterianos/farmacología , Viscosidad , Prebióticos , Bifidobacterium/metabolismo
5.
Molecules ; 29(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38930996

RESUMEN

The strain Gluconobacter oxydans LMG 1385 was used for the bioconversion of crude glycerol to dihydroxyacetone. The suitability of fed-batch cultures for the production of dihydroxyacetone was determined, and the influence of the pH of the culture medium and the initial concentration of glycerol on maximizing the concentration of dihydroxyacetone and on the yield and speed of obtaining dihydroxyacetone by bioconversion was examined. The feeding strategy of the substrate (crude glycerol) during the process was based on measuring the dissolved oxygen tension of the culture medium. The highest concentration of dihydroxyacetone PK = 175.8 g·L-1 and the highest yield YP/Sw = 94.3% were obtained when the initial concentration of crude glycerol was S0 = 70.0 g·L-1 and the pH of the substrate was maintained during the process at level 5.0.


Asunto(s)
Técnicas de Cultivo Celular por Lotes , Medios de Cultivo , Dihidroxiacetona , Gluconobacter oxydans , Glicerol , Gluconobacter oxydans/metabolismo , Dihidroxiacetona/metabolismo , Dihidroxiacetona/biosíntesis , Glicerol/metabolismo , Técnicas de Cultivo Celular por Lotes/métodos , Medios de Cultivo/química , Concentración de Iones de Hidrógeno , Fermentación
6.
PeerJ ; 12: e17467, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38827301

RESUMEN

Dye-decolorizing peroxidases (DyPs) (E.C. 1.11.1.19) are heme peroxidases that catalyze oxygen transfer reactions similarly to oxygenases. DyPs utilize hydrogen peroxide (H2O2) both as an electron acceptor co-substrate and as an electron donor when oxidized to their respective radicals. The production of both DyPs and lignin-modifying enzymes (LMEs) is regulated by the carbon source, although less readily metabolizable carbon sources do improve LME production. The present study analyzed the effect of glycerol on Pleurotus ostreatus growth, total DyP activity, and the expression of three Pleos-dyp genes (Pleos-dyp1, Pleos-dyp2 and Pleos-dyp4), via real-time RT-qPCR, monitoring the time course of P. ostreatus cultures supplemented with either glycerol or glucose and Acetyl Yellow G (AYG) dye. The results obtained indicate that glycerol negatively affects P. ostreatus growth, giving a biomass production of 5.31 and 5.62 g/L with respective growth rates (micra; m) of 0.027 and 0.023 h-1 for fermentations in the absence and presence of AYG dye. In contrast, respective biomass production levels of 7.09 and 7.20 g/L and growth rates (µ) of 0.033 and 0.047 h-1 were observed in equivalent control fermentations conducted with glucose in the absence and presence of AYG dye. Higher DyP activity levels, 4,043 and 4,902 IU/L, were obtained for fermentations conducted on glycerol, equivalent to 2.6-fold and 3.16-fold higher than the activity observed when glucose is used as the carbon source. The differential regulation of the DyP-encoding genes in P. ostreatus were explored, evaluating the carbon source, the growth phase, and the influence of the dye. The global analysis of the expression patterns throughout the fermentation showed the up- and down- regulation of the three Pleos-dyp genes evaluated. The highest induction observed for the control media was that found for the Pleos-dyp1 gene, which is equivalent to an 11.1-fold increase in relative expression (log2) during the stationary phase of the culture (360 h), and for the glucose/AYG media was Pleos-dyp-4 with 8.28-fold increase after 168 h. In addition, glycerol preferentially induced the Pleos-dyp1 and Pleos-dyp2 genes, leading to respective 11.61 and 4.28-fold increases after 144 h. After 360 and 504 h of culture, 12.86 and 4.02-fold increases were observed in the induction levels presented by Pleos-dyp1 and Pleos-dyp2, respectively, in the presence of AYG. When transcription levels were referred to those found in the control media, adding AYG led to up-regulation of the three dyp genes throughout the fermentation. Contrary to the fermentation with glycerol, where up- and down-regulation was observed. The present study is the first report describing the effect of a less-metabolizable carbon source, such as glycerol, on the differential expression of DyP-encoding genes and their corresponding activity.


Asunto(s)
Colorantes , Glicerol , Pleurotus , Glicerol/metabolismo , Glicerol/farmacología , Pleurotus/genética , Pleurotus/enzimología , Pleurotus/crecimiento & desarrollo , Pleurotus/metabolismo , Colorantes/metabolismo , Carbono/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Peroxidasas/genética , Peroxidasas/metabolismo , Glucosa/metabolismo
7.
Sci Rep ; 14(1): 12869, 2024 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834614

RESUMEN

In this work, the effect of moderate electromagnetic fields (2.5, 10, and 15 mT) was studied using an immersed coil inserted directly into a bioreactor on batch cultivation of yeast under both aerobic and anaerobic conditions. Throughout the cultivation, parameters, including CO2 levels, O2 saturation, nitrogen consumption, glucose uptake, ethanol production, and yeast growth (using OD 600 measurements at 1-h intervals), were analysed. The results showed that 10 and 15 mT magnetic fields not only statistically significantly boosted and sped up biomass production (by 38-70%), but also accelerated overall metabolism, accelerating glucose, oxygen, and nitrogen consumption, by 1-2 h. The carbon balance analysis revealed an acceleration in ethanol and glycerol production, albeit with final concentrations by 22-28% lower, with a more pronounced effect in aerobic cultivation. These findings suggest that magnetic fields shift the metabolic balance toward biomass formation rather than ethanol production, showcasing their potential to modulate yeast metabolism. Considering coil heating, opting for the 10 mT magnetic field is preferable due to its lower heat generation. In these terms, we propose that magnetic field can be used as novel tool to increase biomass yield and accelerate yeast metabolism.


Asunto(s)
Biomasa , Etanol , Fermentación , Campos Magnéticos , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Aerobiosis , Anaerobiosis , Etanol/metabolismo , Glucosa/metabolismo , Reactores Biológicos/microbiología , Glicerol/metabolismo , Oxígeno/metabolismo , Nitrógeno/metabolismo
8.
Environ Sci Pollut Res Int ; 31(27): 39760-39773, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38833053

RESUMEN

The hydrothermal liquefaction (HTL) of composite household waste (CHW) was investigated at different temperatures in the range of 240-360 °C, residence times in the range of 30-90 min, and co-solvent ratios of 2-8 ml/g, by utilising ethanol, glycerol, and produced aqueous phase as liquefaction solvents. Maximum biocrude yield of 46.19% was obtained at 340 °C and 75 min, with aqueous phase recirculation ratio (RR) of 5 ml/g. The chemical solvents such as glycerol and ethanol yielded a biocrude percentage of 45.18% and 42.16% at a ratio of 6 ml/g and 8 ml/g, respectively, for 340 °C and 75 min. The usage of co-solvents as hydrothermal medium increased the biocrude yield by 35.30% and decreased the formation of solid residue and gaseous products by 19.82% and 18.74% respectively. Also, the solid residue and biocrude obtained from co-solvent HTL possessed higher carbon and hydrogen content, thus having a H/C ratio and HHV that is 1.01 and 1.23 times higher than that of water as hydrothermal medium. Among the co-solvents, HTL with aqueous phase recirculation resulted in higher carbon and energy recovery percentages of 9.36% and 9.78% for solid residue and 52.09% and 56.75% for biocrude respectively. Further qualitatively, co-solvent HTL in the presence of obtained aqueous phase yielded 33.43% higher fraction of hydrocarbons than the pure water HTL and 7.70-17.01% higher hydrocarbons when compared with ethanol and glycerol HTL respectively. Nitrogen containing compounds, such as phenols and furfurals, for biocrudes obtained from all HTL processes, were found to be present in the range of 8.30-14.40%.


Asunto(s)
Solventes , Solventes/química , Glicerol/química
9.
Langmuir ; 40(24): 12381-12393, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38836557

RESUMEN

A gel that exhibits intrinsically multiple-responsive behavior was prepared from an oligopeptide and studied. ACP(65-74) is an active decapeptide fragment of acyl carrier protein. We investigated 3% w/v ACP(65-74)-NH2 self-healing physical gels in water, glycerol carbonate (GC), and their mixtures. The morphology was investigated by optical, birefringence, and confocal laser scanning microscopy, circular dichroism, Fourier transform infrared, and fluorescence spectroscopy experiments. We found that all samples possess pH responsiveness with fully reversible sol-to-gel transitions. The rheological properties depend on the temperature and solvent composition. The temperature dependence of the gels in water shows a peculiar behavior that is similar to that of thermoresponsive polymer solutions. The results reveal the presence of several ß-sheet structures and amyloid aggregates, offering valuable insights into the fibrillation mechanism of amyloids in different solvent media.


Asunto(s)
Proteína Transportadora de Acilo , Proteína Transportadora de Acilo/química , Concentración de Iones de Hidrógeno , Temperatura , Geles/química , Glicerol/química , Agua/química
10.
Int J Biol Macromol ; 271(Pt 1): 132789, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38845258

RESUMEN

Eutectogels based on natural polymers have attracted significant attention as an alternative to easily dehydrated hydrogels and expensive ionogels in the development of flexible strain sensors. The feasibility of employing eutectogels derived from pure natural polymers could be greatly enhanced if their mechanical properties satisfy the requirements of applications. Herein, alginate eutectogels (AEs) with high mechanical properties (tensile strain 217 % and strength 2.26 MPa at fracture), and excellent transparency (over 90 %) are acquired via CaCl2 inducing ionic crosslinking and subsequent deep eutectic solvents (DESs, composed of glycerol and choline chloride) initiating physical crosslinking with a universal solvent- replacement strategy. Among them, sodium alginate, a natural polysaccharide polymer, is selected as representative supporting scaffolds and forms water-insoluble alginate hydrogels (AHs) in CaCl2 coagulation bath. The exchange of DESs with water of AHs not only restrengthens the polymer network by physical crosslinking, but also endows the obtained AEs with long-term solvent retention and high temperature resistance. In addition, the AEs not only have high reliability but also exhibit better linear sensitivity in a wide strain range (0-200 %). In particular, the AEs display multiple sensitivity to stretching, bending, and human motions, demonstrating feasibility as sensitive strain sensors.


Asunto(s)
Alginatos , Hidrogeles , Solventes , Alginatos/química , Hidrogeles/química , Solventes/química , Glicerol/química , Cloruro de Calcio/química , Humanos , Resistencia a la Tracción , Colina/química , Temperatura
11.
Nat Commun ; 15(1): 5256, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898040

RESUMEN

Archaea possess characteristic membrane-spanning lipids that are thought to contribute to the adaptation to extreme environments. However, the biosynthesis of these lipids is poorly understood. Here, we identify a radical S-adenosyl-L-methionine (SAM) enzyme that synthesizes glycerol monoalkyl glycerol tetraethers (GMGTs). The enzyme, which we name GMGT synthase (Gms), catalyzes the formation of a C(sp3)-C(sp3) linkage between the two isoprenoid chains of glycerol dialkyl glycerol tetraethers (GDGTs). This conclusion is supported by heterologous expression of gene gms from a GMGT-producing species in a methanogen, as well as demonstration of in vitro activity using purified Gms enzyme. Additionally, we show that genes encoding putative Gms homologs are present in obligate anaerobic archaea and in metagenomes obtained from oxygen-deficient environments, and appear to be absent in metagenomes from oxic settings.


Asunto(s)
Archaea , Oxígeno , S-Adenosilmetionina , S-Adenosilmetionina/metabolismo , Archaea/genética , Archaea/metabolismo , Archaea/enzimología , Oxígeno/metabolismo , Anaerobiosis , Proteínas Arqueales/metabolismo , Proteínas Arqueales/genética , Glicerol/metabolismo , Metagenoma , Filogenia
12.
Biomolecules ; 14(6)2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38927107

RESUMEN

Alterations in mitochondrial function have been linked to a variety of cellular and organismal stress responses including apoptosis, aging, neurodegeneration and tumorigenesis. However, adaptation to mitochondrial dysfunction can occur through the activation of survival pathways, whose mechanisms are still poorly understood. The yeast Saccharomyces cerevisiae is an invaluable model organism for studying how mitochondrial dysfunction can affect stress response and adaptation processes. In this study, we analyzed and compared in the absence and in the presence of osmostress wild-type cells with two models of cells lacking mitochondrial DNA: ethidium bromide-treated cells (ρ0) and cells lacking the mitochondrial pyrimidine nucleotide transporter RIM2 (ΔRIM2). Our results revealed that the lack of mitochondrial DNA provides an advantage in the kinetics of stress response. Additionally, wild-type cells exhibited higher osmosensitivity in the presence of respiratory metabolism. Mitochondrial mutants showed increased glycerol levels, required in the short-term response of yeast osmoadaptation, and prolonged oxidative stress. The involvement of the mitochondrial retrograde signaling in osmoadaptation has been previously demonstrated. The expression of CIT2, encoding the peroxisomal isoform of citrate synthase and whose up-regulation is prototypical of RTG pathway activation, appeared to be increased in the mutants. Interestingly, selected TCA cycle genes, CIT1 and ACO1, whose expression depends on RTG signaling upon stress, showed a different regulation in ρ0 and ΔRIM2 cells. These data suggest that osmoadaptation can occur through different mechanisms in the presence of mitochondrial defects and will allow us to gain insight into the relationships among metabolism, mitochondria-mediated stress response, and cell adaptation.


Asunto(s)
ADN Mitocondrial , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Mitocondrias/metabolismo , Mitocondrias/genética , Adaptación Fisiológica/genética , Estrés Oxidativo/genética , Glicerol/metabolismo , Etidio/metabolismo
13.
Eur J Pharm Biopharm ; 201: 114381, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38917948

RESUMEN

The solidification of deep eutectic solvent (DES) through wet impregnation techniques on inert solid carriers is an interesting approach that offers better processing attributes and excellent stability. Herein, DES of Fimasartan (FS) was developed to improve its solubility and bioavailability. The selected DES-FS was solidified by wet impregnation method employing Nesulin US2 and Aerosil 200. The SeDeM-SLA (solid-liquid adsorption) system was employed to investigate flow attributes of solidified DES-FS. Further, the selected solidified DES-FS (A) was characterized by Fourier transforms infrared spectroscopy (FTIR), Powder X-ray diffraction (PXRD), Differential scanning calorimetry (DSC), Scanning electron microscopy (SEM). The DES comprising Choline Chloride (ChCl): Glycerol (Gly) (1:3) revealed maximum drug solubility (35.6 ± 2.2 mg/mL) and thus opted for solidification. Solidification through wet impregnation was employed using 1:0.5 ratios (DES-FS to carriers). The Index of Good Flow (IGF) value was calculated from the SeDeM-SLA expert system, which indicates the better flow characteristics of solidified DES-FS, particularly with Neusilin US2 [SDES-FS (A)]. The solid-state evaluation data of SDS-FS (A) suggested a transition of FS to an amorphous form, resulting in an increment in solubility and dissolution. A similar trend was reported in the in vivo pharmacokinetic study, which indicated a 2.9 folds increment in the oral bioavailability of FS. Furthermore, excellent stability, i.e., a shelf life of 28.44 months, reported by SDES-FS (A) in accelerated stability studies, suggests better formulation perspectives. In a nutshell, the present study evokes the potentiality of performing solidification through wet impregnation and successful implementation of the SeDeM-SLA expert model, which could find wide applications in pharmaceutical science.


Asunto(s)
Disponibilidad Biológica , Pirimidinas , Solubilidad , Solventes , Tetrazoles , Solventes/química , Animales , Tetrazoles/química , Tetrazoles/administración & dosificación , Tetrazoles/farmacocinética , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/administración & dosificación , Rastreo Diferencial de Calorimetría/métodos , Ratas , Masculino , Compuestos de Bifenilo/química , Química Farmacéutica/métodos , Difracción de Rayos X/métodos , Composición de Medicamentos/métodos , Glicerol/química , Portadores de Fármacos/química , Colina/química , Espectroscopía Infrarroja por Transformada de Fourier/métodos , Estabilidad de Medicamentos , Microscopía Electrónica de Rastreo/métodos
14.
Biomacromolecules ; 25(7): 4440-4448, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38907698

RESUMEN

Supramolecular delivery systems with the prolonged circulation, the potential for diverse functionalization, and few toxin-related limitations have been extensively studied. For the present study, we constructed a linear polyglycerol-shelled polymersome attached with the anti-HER-2-antibody trastuzumab. We then covalently loaded the anticancer drug DM1 in the polymersome via dynamic disulfide bonding. The resulted trastuzumab-polymersome-DM1 (Tra-PS-DM1) exhibits a mean size of 95.3 nm and remarkable drug loading efficiency % of 99.3%. In addition to its superior stability, we observed the rapid release of DM1 in a controlled manner under reductive conditions. Compared to the native polymersomes, Tra-PS-DM1 has shown greatly improved cellular uptake and significantly reduced IC50 up to 17-fold among HER-2-positive cancer cells. Moreover, Tra-PS-DM1 demonstrated superb growth inhibition of HER-2-positive tumoroids; specifically, BT474 tumoroids shrunk up to 62% after 12 h treatment. With exceptional stability and targetability, the PG-shelled Tra-PS-DM1 appears as an attractive approach for HER-2-positive tumor treatment.


Asunto(s)
Neoplasias de la Mama , Glicerol , Polímeros , Receptor ErbB-2 , Trastuzumab , Humanos , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Glicerol/química , Femenino , Polímeros/química , Trastuzumab/farmacología , Trastuzumab/química , Trastuzumab/administración & dosificación , Receptor ErbB-2/metabolismo , Línea Celular Tumoral , Sistemas de Liberación de Medicamentos/métodos , Ado-Trastuzumab Emtansina/farmacología
15.
J Oleo Sci ; 73(7): 1027-1033, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38945921

RESUMEN

This paper reports a novel α-gel formulation technology referred to as polymer complexed lamella (PCL) that uses hydroxypropyl methyl cellulose (HPMC) and glycerol. The PCL method suppressed lipid crystallization even after drying. This effect was maximized by the addition of HPMC and glycerol at high temperature. HPMC and lipids coexisted when mixed at high temperature, which decreased the mobility of HPMC, an effect that was enhanced by the strong interaction of glycerol with HPMC. These results indicate that mixing of HPMC with glycerol directly regulates the lipid structure and suppresses crystallization. PCL also maintained the effect of occlusion related to the moisturization of skin, even if the membrane was repeatedly bent such as in facial expressions.


Asunto(s)
Cristalización , Geles , Glicerol , Derivados de la Hipromelosa , Derivados de la Hipromelosa/química , Glicerol/química , Geles/química , Desecación/métodos , Calor , Lípidos/química , Polímeros/química
16.
Phys Chem Chem Phys ; 26(26): 18244-18255, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38904333

RESUMEN

Natural deep eutectic solvents (NADESs) comprised of osmolytes are of interest as potential biomolecular (cryo)protectants. However, the way these solvents influence the structure and dynamics of biomolecules as well as the role of water remains poorly understood. We carried out principal component analysis of various secondary structure elements of ubiquitin in water and a betaine : glycerol : water (1 : 2 : ζ; ζ = 0, 1, 2, 5, 10, 20, 45) NADES, from molecular dynamics trajectories, to gain insight into the protein dynamics as it undergoes a transition from a highly viscous anhydrous to an aqueous environment. A crossover of the protein's essential dynamics at ζ ∼ 5, induced by solvent-shell coupled fluctuations, is observed, indicating that ubiquitin might (re)fold in the NADES upon water addition at ζ > ∼5. Further, in contrast to water, the anhydrous NADES preserves ubiquitin's essential modes at high temperatures explaining the protein's seemingly enhanced thermal stability.


Asunto(s)
Simulación de Dinámica Molecular , Solventes , Ubiquitina , Agua , Ubiquitina/química , Agua/química , Solventes/química , Glicerol/química , Betaína/química , Análisis de Componente Principal , Estructura Secundaria de Proteína
17.
Int J Biol Macromol ; 273(Pt 1): 132836, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38834127

RESUMEN

The polyurethane (PU) foams can be functionally tailored by modifying the formulation with different additives. One such additive is melamine (MA) formaldehyde resin for improving their flame-retardant properties. In this work, the glycerol-modified (GMF), sodium alginate (SGMF)- and lignosulfonate-modified melamine formaldehyde (LGMF) were prepared and used as flame retardants reacting with isocyanate to prepare the corresponding rigid polyurethane foams (GMF-PU, SGMF-PU and LGMF-PU). The thermomechanical properties and flame-retardant properties of the foams were characterized. The results showed that the specific compression strength of GMF-PU, SGMF-PU and LGMF-PU increased substantially compared to the foams from physical addition of MA, sodium alginate and lignosulfonate, all of which were greater than that of the foam without any flame retardant (PPU). Meanwhile, the cell wall of the foam pores became thicker and the closed pore ratio increased. The sodium alginate and lignosulfonate played a key role in enhancing foam thermal stability. The limiting oxygen index values and cone calorimetry results indicated the flame-retardant efficiency of GMF-PU, SGMF-PU and LGMF-PU was significantly enhanced relative to PPU. Meanwhile, the heat and smoke release results indicated sodium alginate and lignosulfonate could reduce the amount of smoke generation to different degrees during the combustion of the foam.


Asunto(s)
Alginatos , Retardadores de Llama , Lignina , Poliuretanos , Triazinas , Triazinas/química , Poliuretanos/química , Retardadores de Llama/análisis , Lignina/química , Lignina/análogos & derivados , Alginatos/química , Resinas Sintéticas/química , Glicerol/química , Temperatura , Formaldehído/química , Formaldehído/análisis
18.
Int J Biol Macromol ; 273(Pt 2): 132956, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848838

RESUMEN

Free-standing films have been obtained by drop-casting cellulose-glycerol mixtures (up to 50 wt% glycerol) dissolved in trifluoroacetic acid and trifluoroacetic anhydride (TFA:TFAA, 2:1, v:v). A comprehensive examination of the optical, structural, mechanical, thermal, hydrodynamic, barrier, migration, greaseproof, and biodegradation characteristics of the films was conducted. The resulting cellulose-glycerol blends exhibited an amorphous molecular structure and a reinforced H-bond network, as evidenced by X-ray diffraction analysis and infrared spectroscopy, respectively. The inclusion of glycerol exerted a plasticizing influence on the mechanical properties of the films, while keeping their transparency. Hydrodynamic and barrier properties were assessed through water uptake and water vapor/oxygen transmission rates, respectively, and obtained values were consistent with those of other cellulose-based materials. Furthermore, overall migration levels were below European regulation limits, as stated by using Tenax® as a dry food simulant. In addition, these bioplastics demonstrated good greaseproof performance, particularly at high glycerol content, and potential as packaging materials for bakery products. Biodegradability assessments were carried out by measuring the biological oxygen demand in seawater and high biodegradation rates induced by glycerol were observed.


Asunto(s)
Celulosa , Embalaje de Alimentos , Glicerol , Embalaje de Alimentos/métodos , Glicerol/química , Celulosa/química , Plásticos/química , Plastificantes/química , Vapor , Agua/química , Biodegradación Ambiental , Plásticos Biodegradables/química
19.
Int J Biol Macromol ; 273(Pt 1): 132952, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38848830

RESUMEN

This work focuses on the potential of agar from the seaweed Gracilaria fisheri to modify the properties of starch foam. The effects of different ratios of glycerol and agar on the properties of starch foams were investigated. All formulations used in this study produced easy-to-handle, smooth, single-use foam trays with no visible cracks. The addition of agar slightly affected the off-white color of the foam but red and yellow color values significantly decreased with increments of agar content. As the agar content was increased, the foam became less dense. A foam produced at a glycerol:agar ratio of 3:7 exhibited the highest values of flexural stress at maximum load (3.23 MPa), modulus (194.46 MPa) and hardness (97.50), and the highest temperature at maximum weight loss (Tmax) (337 °C). Therefore, starch foam modified with agar from Gracilaria fisheri showed suitable physical, mechanical and thermal properties for food packaging, and could possibly be used in the place of expanded polystyrene (EPS) foam.


Asunto(s)
Agar , Gracilaria , Almidón , Agar/química , Almidón/química , Gracilaria/química , Algas Marinas/química , Temperatura , Glicerol/química , Glicerol/farmacología , Embalaje de Alimentos/métodos
20.
Sensors (Basel) ; 24(11)2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38894053

RESUMEN

The advancement of flexible electrodes triggered research on wearables and health monitoring applications. Metal-based bioelectrodes encounter low mechanical strength and skin discomfort at the electrode-skin interface. Thus, recent research has focused on the development of flexible surface electrodes with low electrochemical resistance and high conductivity. This study investigated the development of a novel, flexible, surface electrode based on a MXene/polydimethylsiloxane (PDMS)/glycerol composite. MXenes offer the benefit of featuring highly conductive transition metals with metallic properties, including a group of carbides, nitrides, and carbonitrides, while PDMS exhibits inherent biostability, flexibility, and biocompatibility. Among the various MXene-based electrode compositions prepared in this work, those composed of 15% and 20% MXene content were further evaluated for their potential in electrophysiological sensing applications. The samples underwent a range of characterization techniques, including electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV), as well as mechanical and bio-signal sensing from the skin. The experimental findings indicated that the compositions demonstrated favorable bulk impedances of 280 and 111 Ω, along with conductivities of 0.462 and 1.533 mS/cm, respectively. Additionally, they displayed promising electrochemical stability, featuring charge storage densities of 0.665 mC/cm2 and 1.99 mC/cm2, respectively. By conducting mechanical tests, Young's moduli were determined to be 2.61 MPa and 2.18 MPa, respectively. The composite samples exhibited elongation of 139% and 144%, respectively. Thus, MXene-based bioelectrodes show promising potential for flexible and wearable electronics and bio-signal sensing applications.


Asunto(s)
Electrodos , Dispositivos Electrónicos Vestibles , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Humanos , Dimetilpolisiloxanos/química , Espectroscopía Dieléctrica , Conductividad Eléctrica , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Impedancia Eléctrica , Glicerol/química , Fenómenos Electrofisiológicos , Monitoreo Fisiológico/instrumentación , Monitoreo Fisiológico/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA