Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
J Invest Dermatol ; 134(12): 2957-2966, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24999589

RESUMEN

Dysplastic nevi are melanocytic lesions that represent an intermediate stage between common nevus and melanoma. Histopathological distinction of dysplastic nevus from melanoma can be challenging and there is a requirement for molecular diagnostic markers. In this study, we examined promoter CpG island methylation of a selected panel of genes, identified in a genome-wide methylation screen, across a spectrum of 405 melanocytic neoplasms. Promoter methylation analysis in common nevi, dysplastic nevi, primary melanomas, and metastatic melanomas demonstrated progressive epigenetic deregulation. Dysplastic nevi were affected by promoter methylation of genes that are frequently methylated in melanoma but not in common nevi. We assessed the diagnostic value of the methylation status of five genes in distinguishing primary melanoma from dysplastic nevus. In particular, CLDN11 promoter methylation was specific for melanoma, as it occurred in 50% of primary melanomas but in only 3% of dysplastic nevi. A diagnostic algorithm that incorporates methylation of the CLDN11, CDH11, PPP1R3C, MAPK13, and GNMT genes was validated in an independent sample set and helped distinguish melanoma from dysplastic nevus (area under the curve 0.81). Melanoma-specific methylation of these genes supports the utility as epigenetic biomarkers and could point to their significance in melanoma development.


Asunto(s)
Biomarcadores de Tumor/genética , Claudinas/genética , Islas de CpG/genética , Metilación de ADN/genética , ADN de Neoplasias/genética , Síndrome del Nevo Displásico/genética , Melanoma/genética , Neoplasias Cutáneas/genética , Algoritmos , Biomarcadores de Tumor/fisiología , Cadherinas/genética , Cadherinas/fisiología , Carcinogénesis/genética , Proteínas Portadoras/genética , Proteínas Portadoras/fisiología , Claudinas/fisiología , Metilación de ADN/fisiología , Síndrome del Nevo Displásico/fisiopatología , Epigenómica , Glicina N-Metiltransferasa/genética , Glicina N-Metiltransferasa/fisiología , Humanos , Péptidos y Proteínas de Señalización Intracelular , Melanoma/fisiopatología , Fosfoproteínas Fosfatasas/genética , Fosfoproteínas Fosfatasas/fisiología , Regiones Promotoras Genéticas/genética , Sensibilidad y Especificidad , Neoplasias Cutáneas/fisiopatología
2.
Hippocampus ; 24(7): 840-52, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24687756

RESUMEN

The hippocampus is a brain area characterized by its high plasticity, observed at all levels of organization: molecular, synaptic, and cellular, the latter referring to the capacity of neural precursors within the hippocampus to give rise to new neurons throughout life. Recent findings suggest that promoter methylation is a plastic process subjected to regulation, and this plasticity seems to be particularly important for hippocampal neurogenesis. We have detected the enzyme GNMT (a liver metabolic enzyme) in the hippocampus. GNMT regulates intracellular levels of SAMe, which is a universal methyl donor implied in almost all methylation reactions and, thus, of prime importance for DNA methylation. In addition, we show that deficiency of this enzyme in mice (Gnmt-/-) results in high SAMe levels within the hippocampus, reduced neurogenic capacity, and spatial learning and memory impairment. In vitro, SAMe inhibited neural precursor cell division in a concentration-dependent manner, but only when proliferation signals were triggered by bFGF. Indeed, SAMe inhibited the bFGF-stimulated MAP kinase signaling cascade, resulting in decreased cyclin E expression. These results suggest that alterations in the concentration of SAMe impair neurogenesis and contribute to cognitive decline.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/psicología , Cognición/fisiología , Glicina N-Metiltransferasa/deficiencia , Hipocampo/enzimología , Proteínas del Tejido Nervioso/fisiología , Neurogénesis/fisiología , S-Adenosilmetionina/fisiología , Animales , Ciclina E/biosíntesis , Ciclina E/genética , Factor 2 de Crecimiento de Fibroblastos/antagonistas & inhibidores , Factor 2 de Crecimiento de Fibroblastos/farmacología , Regulación de la Expresión Génica , Glicina N-Metiltransferasa/genética , Glicina N-Metiltransferasa/fisiología , Hipocampo/fisiopatología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Trastornos de la Memoria/enzimología , Trastornos de la Memoria/etiología , Metionina/metabolismo , Metionina Adenosiltransferasa/deficiencia , Metionina Adenosiltransferasa/genética , Metilación , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/deficiencia , Proteínas del Tejido Nervioso/genética , Plasticidad Neuronal , Prueba de Desempeño de Rotación con Aceleración Constante , S-Adenosilmetionina/biosíntesis
3.
J Gastroenterol Hepatol ; 29(3): 494-501, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24219143

RESUMEN

BACKGROUND AND AIM: Inflammatory bowel diseases (IBDs) are chronic inflammatory disorders with unclear etiology and mechanism(s). Glycine N-methyltransferase (GNMT) plays a central role in inflammatory diseases such as hepatitis and atherosclerosis. However, little is known about the impact of GNMT and the involved mechanism in the pathogenesis of IBD. In the current study, we investigated the role of GNMT in the mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS: Protein expression was determined by Western blotting or immunohistochemistry. Histopathology was examined by hematoxylin and eosin staining. Levels of pro-inflammatory cytokines were evaluated by ELISA kits. RESULTS: GNMT was expressed in the epithelium of the colon under normal conditions, and with DSS treatment, its expression was predominant in infiltrated leukocytes of lesions. Mice with genetic deletion of GNMT (GNMT(-/-) ) showed increased susceptibility to DSS induction of colitis, as revealed by the progression of colitis. Additionally, severe colonic inflammation, including increased crypt loss, leukocyte infiltration, and hemorrhage, was greater with DSS treatment in GNMT(-/-) than wild-type mice. Furthermore, the expression of adhesion molecule and inflammatory mediators in the colon was significantly higher with DSS treatment in GNMT(-/-) than wild-type mice. Moreover, loss of GNMT decreased cell apoptosis in colitis lesions with DSS treatment. CONCLUSIONS: Collectively, our findings suggest that GNMT may be a crucial molecule in the pathogenesis of DSS-induced colitis. This finding may provide new information for a potential therapeutic target in treating IBD.


Asunto(s)
Colitis Ulcerosa/genética , Glicina N-Metiltransferasa/genética , Glicina N-Metiltransferasa/fisiología , Animales , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/patología , Sulfato de Dextran , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Expresión Génica , Glicina N-Metiltransferasa/metabolismo , Mediadores de Inflamación/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Terapia Molecular Dirigida
4.
Int J Cancer ; 134(4): 799-810, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-23922098

RESUMEN

Glycine N-methyltransferase (GNMT) is a folate binding protein commonly diminished in human hepatoma yet its role in tumor development remains to be established. GNMT binds to methylfolate but is also inhibited by it; how such interactions affect human carcinogenesis is unclear. We postulated that GNMT plays a role in folate-dependent methyl group homeostasis and helps maintain genome integrity by promoting nucleotide biosynthesis and DNA repair. To test the hypothesis, GNMT was over-expressed in GNMT-null cell lines cultured in conditions of folate abundance or restriction. The partitioning of folate dependent 1-carbon groups was investigated using stable isotopic tracers and GC/MS. DNA damage was assessed as uracil content in cell models, as well as in Gnmt wildtype (Gnmt(+/+)), heterozygote (Gnmt(+/-)) and knockout (Gnmt(-/-)) mice under folate deplete, replete, or supplementation conditions. Our study demonstrated that GMMT 1) supports methylene-folate dependent pyrimidine synthesis; 2) supports formylfolate dependent purine syntheses; 3) minimizes uracil incorporation into DNA when cells and animals were exposed to folate depletion; 4) translocates into nuclei during prolonged folate depletion. In conclusion, loss of GNMT impairs nucleotide biosynthesis. Over-expression of GNMT enhances nucleotide biosynthesis and improves DNA integrity by reducing uracil misincorporation in DNA both in vitro and in vivo. To our best knowledge, the role of GNMT in folate dependent 1-carbon transfer in nucleotide biosynthesis has never been investigated. The present study gives new insights into the underlying mechanism by which GNMT can participate in tumor prevention/suppression in humans.


Asunto(s)
Carcinoma Hepatocelular/patología , Daño del ADN , Ácido Fólico/farmacología , Glicina N-Metiltransferasa/fisiología , Hepatocitos/patología , Neoplasias Hepáticas/patología , Hígado/patología , Adenosina/metabolismo , Animales , Radioisótopos de Carbono , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , Cromatografía Líquida de Alta Presión , Metilación de ADN , Suplementos Dietéticos , Femenino , Técnica del Anticuerpo Fluorescente Indirecta , Hepatocitos/metabolismo , Homocisteína/metabolismo , Humanos , Hígado/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Masculino , Metilenotetrahidrofolato Deshidrogenasa (NADP)/metabolismo , Ratones , Ratones Noqueados , Antígenos de Histocompatibilidad Menor , Transporte de Proteínas , Purinas/metabolismo , Pirimidinas/metabolismo , S-Adenosilhomocisteína/metabolismo , S-Adenosilmetionina/metabolismo , Tetrahidrofolatos , Uracilo/metabolismo
5.
Toxicol Appl Pharmacol ; 266(1): 67-75, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23147572

RESUMEN

Although glycine N-methyltransferase (GNMT) has been discovered for five decades, its function was not elucidated until recently. In this review, we discuss the multiple roles of GNMT in toxicology and cancer. Besides catalyzing the production of methylglycine (sarcosine) in one carbon metabolism pathway, GNMT was found to be able to bind a number of polycyclic aromatic hydrocarbons and inhibit DNA adducts formation. Moreover, GNMT exerts protective effects against the cytotoxicity and carcinogenicity of benzo(a)pyrene and aflatoxin B(1) in vitro and in vivo. Occupational study showed that workers who had genotypes with higher GNMT promoter activity may have lower content of oxidative damaged DNA products in their urine. In terms of cancer, recent studies using GNMT knockout mouse models demonstrated that GNMT deficiency has high penetrance in inducing the development of steatohepatitis and hepatocellular carcinoma. In terms of the mechanism, besides dysregulation of epigenetic modification, insights have been provided by recent identification of two novel proteins interacting with GNMT-DEPTOR and NPC2. These studies suggest that GNMT not only is involved in mTOR signaling pathway, but also plays an important role in the intracellular trafficking of cholesterol. The implication of these findings to the preventive medicine and translational research will be discussed.


Asunto(s)
Citotoxinas/toxicidad , Glicina N-Metiltransferasa/fisiología , Neoplasias/enzimología , Animales , Citotoxinas/metabolismo , Humanos , Neoplasias/inducido químicamente , Serina-Treonina Quinasas TOR/metabolismo
8.
Toxicol Appl Pharmacol ; 235(3): 296-304, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19146867

RESUMEN

Previously, we reported that glycine N-methyltransferase (GNMT) knockout mice develop chronic hepatitis and hepatocellular carcinoma (HCC) spontaneously. For this study we used a phosphoenolpyruvate carboxykinase promoter to establish a GNMT transgenic (TG) mouse model. Animals were intraperitoneally inoculated with aflatoxin B(1) (AFB(1)) and monitored for 11 months, during which neither male nor female GNMT-TG mice developed HCC. In contrast, 4 of 6 (67%) male wild-type mice developed HCC. Immunofluorescent antibody test showed that GNMT was translocated into nuclei after AFB(1) treatment. Competitive enzyme immunoassays indicated that after AFB(1) treatment, the AFB(1)-DNA adducts formed in stable clones expressing GNMT reduced 51.4% compared to the vector control clones. Experiments using recombinant adenoviruses carrying GNMT cDNA (Ad-GNMT) further demonstrated that the GNMT-related inhibition of AFB(1)-DNA adducts formation is dose-dependent. HPLC analysis of the metabolites of AFB(1) in the cultural supernatants of cells exposed to AFB(1) showed that the AFM(1) level in the GNMT group was significantly higher than the control group, indicating the presence of GNMT can enhance the detoxification pathway of AFB(1). Cytotoxicity assay showed that the GNMT group had higher survival rate than the control group after they were treated with AFB(1). Automated docking experiments showed that AFB(1) binds to the S-adenosylmethionine binding domain of GNMT. Affinity sensor assay demonstrated that the dissociation constant for GNMT-AFB(1) interaction is 44.9 microM. Therefore, GNMT is a tumor suppressor for HCC and it exerts protective effects in hepatocytes via direct interaction with AFB(1), resulting in reduced AFB(1)-DNA adducts formation and cell death.


Asunto(s)
Aflatoxina B1/antagonistas & inhibidores , Aflatoxina B1/metabolismo , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/prevención & control , Glicina N-Metiltransferasa/fisiología , Neoplasias Hepáticas Experimentales/enzimología , Neoplasias Hepáticas Experimentales/prevención & control , Aflatoxina B1/toxicidad , Animales , Carcinoma Hepatocelular/inducido químicamente , Línea Celular Tumoral , Aductos de ADN/antagonistas & inhibidores , Aductos de ADN/biosíntesis , Femenino , Glicina N-Metiltransferasa/administración & dosificación , Glicina N-Metiltransferasa/biosíntesis , Glicina N-Metiltransferasa/genética , Humanos , Neoplasias Hepáticas Experimentales/inducido químicamente , Masculino , Ratones , Ratones Transgénicos
9.
J Phys Chem B ; 109(16): 8216-9, 2005 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-16851960

RESUMEN

Density functional theory calculations using the hybrid functional B3LYP have been performed to study the methyl transfer step in glycine N-methyltransferase (GNMT). This enzyme catalyzes the S-adenosyl-L-methionine (SAM)-dependent methylation of glycine to form sarcosine. The starting point for the calculations is the recent X-ray crystal structure of GNMT complexed with SAM and acetate. Several quantum chemical models with different sizes, employing up to 98 atoms, were used. The calculations demonstrate that the suggested mechanism, where the methyl group is transferred in a single S(N)2 step, is thermodynamically plausible. By adding or eliminating various groups at the active site, it was furthermore demonstrated that hydrogen bonds to the amino group of the glycine substrate lower the reaction barrier, while hydrogen bonds to the carboxylate group raise the barrier.


Asunto(s)
Simulación por Computador , Glicina N-Metiltransferasa/fisiología , Modelos Químicos , Cristalografía por Rayos X , Metilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA