Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.843
Filtrar
Más filtros

Intervalo de año de publicación
1.
Food Res Int ; 192: 114822, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147514

RESUMEN

In food systems, proteins and polyphenols typically coexist in a non-covalent manner. However, the inherent rigid structure of proteins may hinder the binding sites of polyphenols, thereby limiting the strength of their interaction. In the study, magnetic field (MF) treatment was used to enhance non-covalent interactions between coconut globulin (CG) and tannic acid (TA) to improve protein flexibility, enhancing their functional properties without causing oxidation of polyphenols. Based on protein structure results, the interaction between CG and TA caused protein structure to unfold, exposing hydrophobic groups. Treatment with a MF, particularly at 3 mT, further promoted protein unfolding, as evidenced by a decrease in α-helix structure and an increase in coil random. These structural transformations led to the exposure of the internal binding site bound to TA and strengthening the CG-TA interaction (polyphenol binding degree increased from 62.3 to 68.2%). The characterization of molecular forces indicated that MF treatment strengthened hydrogen bonding-dominated non-covalent interactions between CG and TA, leading to improved molecular flexibility of the protein. Specifically, at a MF treatment at 3 mT, CG-TA colloidal particles with small size and high surface hydrophobicity exhibited optimal interfacial activity and wettability (as evidenced by a three-phase contact angle of 89.0°). Consequently, CG-TA-stabilized high internal phase Pickering emulsions (HIPPEs) with uniform droplets and dense gel networks at 3 mT. Furthermore, the utilization of HIPPEs in 3D printing resulted in consistent geometric shapes, uniform surface textures, and distinct printed layers, demonstrating superior printing stability. As a result, MF treatment at 3 mT was identified as the most favorable. This research provides novel insights into how proteins and polyphenols interact, thereby enabling natural proteins to be utilized in a variety of food applications.


Asunto(s)
Emulsiones , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Campos Magnéticos , Polifenoles , Taninos , Polifenoles/química , Taninos/química , Emulsiones/química , Globulinas/química , Proteínas de Plantas/química , Emulsionantes/química
2.
Clin Chim Acta ; 562: 119851, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38977172

RESUMEN

BACKGROUND: Observable quantitative variations exist between plasma and serum in routine protein measurements, often not reflected in standard reference intervals. In this study, we describe an indirect approach for estimating a combined reference interval (RI) (i.e., serum and plasma), for commonly ordered protein measurands: total protein, albumin, and globulin. METHODS: We applied an indirect reference interval estimation for protein measurements in serum and plasma using data from July 2018 to February 2024. The data were divided into three Epochs based on a period of plasma separator tube shortage during the COVID-19 pandemic. Bootstrap resampling was used to calculate RIs and corresponding 95% confidence intervals for each month. RESULTS: Our results demonstrate notable changes in RI limits for total protein, albumin, and globulin between Epochs, reflecting the influence of changing sample matrix. A combined RI was identified for all components and verified using plasma and serum samples from 20 healthy individuals and retrospective analysis of flagging rates on our outpatient population using new and historical RIs. CONCLUSION: The study demonstrates notable differences in the RIs for total protein, albumin, and globulin when container type changes. In addition, the results demonstrate the effectiveness of big data analytics in deriving RIs and highlights the necessity of continuous RI assessment and adjustment based on the patient population and acceptable specimen types.


Asunto(s)
Globulinas , Albúmina Sérica , Humanos , Valores de Referencia , Globulinas/análisis , Albúmina Sérica/análisis , COVID-19/sangre , Estudios Retrospectivos , Proteínas Sanguíneas/análisis , Masculino , Plasma/química , Femenino , Adulto , Persona de Mediana Edad , Suero/química , SARS-CoV-2 , Seroglobulinas/análisis , Análisis Químico de la Sangre/normas , Análisis Químico de la Sangre/métodos
3.
Food Chem ; 458: 140176, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-38959801

RESUMEN

Faba bean ingredients are rich in proteins and good sources of calcium (Ca), although containing phytic acid (PA) molecules. PA, a polyphosphate compound, can affect the bioavailability of minerals/proteins through complex formation. This study evaluates the impact of two extraction processes, Alkaline Extraction-IsoElectric Precipitation (AE-IEP) and Sequential Extraction (SE), on the ability of faba bean globulin systems to bind added calcium ions. Increasing concentrations of CaCl2 were introduced into 2.5% (w/v) protein dispersions at pHs 4.5, 5.5, 6.5, and 7.5, and free Ca monitored. Near the isoelectric point of globulin (pH âˆ¼ 4-5), Ca binding capacity was found to be low. At higher pHs, significant Ca chelation occurred, initially attributed to free PA binding sites, resulting in the formation of insoluble complexes and subsequent protein precipitation. The AE-IEP globulin fraction exhibited a higher Ca binding capacity than the SE globulin, attributed to its higher PA and lower initial Ca concentrations.


Asunto(s)
Calcio , Globulinas , Proteínas de Plantas , Vicia faba , Calcio/química , Calcio/metabolismo , Vicia faba/química , Vicia faba/metabolismo , Concentración de Iones de Hidrógeno , Globulinas/química , Globulinas/metabolismo , Globulinas/aislamiento & purificación , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Proteínas de Plantas/aislamiento & purificación , Unión Proteica , Fraccionamiento Químico/métodos
4.
Food Chem ; 456: 139984, 2024 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-38876063

RESUMEN

To improve the stability of anthocyanins and techno-functionality of purple and blue wheat, the selectively hydrolyzed soy protein (reduced glycinin, RG) and ß-conglycinin (7S) were prepared and their enhanced effects were comparatively investigated. The anthocyanins in purple wheat showed higher stability compared to that of the blue wheat during breadmaking. The cyanidin-3-O-glucoside and cyanidin-3-O-rutincoside in purple wheat and delphinidin-3-O-rutinoside and delphinidin-3-O-glucoside in blue wheat were better preserved by RG. Addition of RG and 7S enhanced the quality of steamed bread made from colored and common wheat, with RG exhibited a more prominent effect. RG and 7S suppressed the gelatinization of starch and improved the thermal stability. Both RG and 7S promoted the unfolding process of gluten proteins and facilitated the subsequent crosslinking of glutenins and gliadins by disulfide bonds. Polymerization of α- and γ-gliadin into glutenin were more evidently promoted by RG, which contributed to the improved steamed bread quality.


Asunto(s)
Antocianinas , Pan , Proteínas de Soja , Triticum , Triticum/química , Pan/análisis , Antocianinas/química , Proteínas de Soja/química , Hidrólisis , Manipulación de Alimentos , Color , Globulinas/química , Vapor , Harina/análisis , Culinaria , Glútenes/química , Calor
5.
Food Chem ; 457: 140129, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38908242

RESUMEN

In this study, chlorogenic acid (CA), piceatannol (PIC), epigallocatechin-3-gallate (EGCG) and ferulic acid (FA) was selected to explore the influence of polyphenol on the structural properties of wheat germ albumin (WGA) and wheat germ globulin (WGG). The emulsifying properties of the emulsions prepared by WGA-EGCG complex were also evaluated. The results indicated that all polyphenols could significantly enhance the antioxidant capacity of WGA and WGG. In particular, EGCG increased the ratio of random coil in WGA and WGG, resulting in protein unfolding and shifting from an order to disorder structure. In addition, lipid oxidation and protein oxidation of the soybean oil emulsion was significantly slowed down by WGA-EGCG. The stability of the emulsions under various environmental stress and the storage time was significantly improved by WGA-EGCG. These findings can provide a reference for expanding the application of wheat germ protein in food industry.


Asunto(s)
Emulsiones , Globulinas , Polifenoles , Triticum , Triticum/química , Polifenoles/química , Polifenoles/farmacología , Globulinas/química , Emulsiones/química , Albúminas/química , Conformación Proteica , Proteínas de Plantas/química , Antioxidantes/química , Antioxidantes/farmacología
6.
Food Chem ; 457: 140141, 2024 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-38917564

RESUMEN

Glycinin basic peptide (GBP) is the basic polypeptide of soybean glycinin that is isolated using cheap and readily available raw materials (soybean meals). GBP can bear high-temperature processing and has good functional properties, such as emulsification and adhesion properties et al. GBP exhibits broad-spectrum antimicrobial activities against Gram-positive and Gram-negative bacteria as well as fungi. Beyond that, GBP shows enormous application potential to improve the quality and extend the shelf life of food products. This review will systematically provide information on the purification, physicochemical and functional properties of GBP. Moreover, the antimicrobial activities and multi-target antimicrobial mechanism of GBP as well as the applications of GBP in different food products are also reviewed and discussed in detail. This review aims to offer valuable insights for the applications of GBP in the food industry as a promising natural food additive and preservative.


Asunto(s)
Aditivos Alimentarios , Conservantes de Alimentos , Globulinas , Glycine max , Proteínas de Soja , Proteínas de Soja/química , Proteínas de Soja/farmacología , Globulinas/química , Globulinas/farmacología , Glycine max/química , Conservantes de Alimentos/farmacología , Conservantes de Alimentos/química , Aditivos Alimentarios/farmacología , Aditivos Alimentarios/química , Hongos/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Conservación de Alimentos/métodos , Bacterias/efectos de los fármacos
7.
J Agric Food Chem ; 72(26): 15013-15026, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38907729

RESUMEN

Soybean ß-conglycinin is a major allergen that adversely affects the nutritional properties of soybean. Soybean deficient in ß-conglycinin is associated with low allergenicity and high nutritional value. Long intergenic noncoding RNAs (lincRNAs) regulate gene expression and are considered important regulators of essential biological processes. Despite increasing knowledge of the functions of lincRNAs, relatively little is known about the effects of lincRNAs on the accumulation of soybean ß-conglycinin. The current study presents the identification of a lincRNA lincCG1 that was mapped to the intergenic noncoding region of the ß-conglycinin α-subunit locus. The full-length lincCG1 sequence was cloned and found to regulate the expression of soybean seed storage protein (SSP) genes via both cis- and trans-acting regulatory mechanisms. Loss-of-function lincCG1 mutations generated using the clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system led to the deficiency of the allergenic α'-, α-, and ß-subunits of soybean ß-conglycinin as well as higher content of proteins, sulfur-containing amino acids, and free arginine. The dominant null allele LincCG1, and consequently, the ß-conglycinin-deficient phenotype associated with the lincCG1-gene-edited line was stably inherited by the progenies in a Mendelian fashion. The dominant null allele LincCG1 may therefore be exploited for engineering/developing novel hypoallergenic soybean varieties. Furthermore, Cas9-free and ß-conglycinin-deficient homozygous mutant lines were obtained in the T1 generation. This study is the first to employ the CRISPR/Cas9 technology for editing a lincRNA gene associated with the soybean allergenic protein ß-conglycinin. Moreover, this study reveals that lincCG1 plays a crucial role in regulating the expression of the ß-conglycinin subunit gene cluster, besides highlighting the efficiency of employing the CRISPR/Cas9 system for modulating lincRNAs, and thereby regulating soybean seed components.


Asunto(s)
Antígenos de Plantas , Sistemas CRISPR-Cas , Edición Génica , Globulinas , Glycine max , ARN Largo no Codificante , Proteínas de Almacenamiento de Semillas , Proteínas de Soja , Proteínas de Almacenamiento de Semillas/genética , Proteínas de Almacenamiento de Semillas/química , Globulinas/genética , Globulinas/metabolismo , Globulinas/química , Glycine max/genética , Glycine max/metabolismo , Antígenos de Plantas/genética , Antígenos de Plantas/química , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Proteínas de Soja/química , ARN Largo no Codificante/genética , Regulación de la Expresión Génica de las Plantas , Semillas/genética , Semillas/metabolismo , Semillas/química
8.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928351

RESUMEN

Understanding the transport mechanism is crucial for developing inhibitors that block allergen absorption and transport and prevent allergic reactions. However, the process of how beta-conglycinin, the primary allergen in soybeans, crosses the intestinal mucosal barrier remains unclear. The present study indicated that the transport of beta-conglycinin hydrolysates by IPEC-J2 monolayers occurred in a time- and quantity-dependent manner. The beta-conglycinin hydrolysates were absorbed into the cytoplasm of IPEC-J2 monolayers, while none were detected in the intercellular spaces. Furthermore, inhibitors such as methyl-beta-cyclodextrin (MßCD) and chlorpromazine (CPZ) significantly suppressed the absorption and transport of beta-conglycinin hydrolysates. Of particular interest, sodium cromoglycate (SCG) exhibited a quantity-dependent nonlinear suppression model on the absorption and transport of beta-conglycinin hydrolysates. In conclusion, beta-conglycinin crossed the IPEC-J2 monolayers through a transcellular pathway, involving both clathrin-mediated and caveolae-dependent endocytosis mechanisms. SCG suppressed the absorption and transport of beta-conglycinin hydrolysates by the IPEC-J2 monolayers by a quantity-dependent nonlinear model via clathrin-mediated and caveolae-dependent endocytosis. These findings provide promising targets for both the prevention and treatment of soybean allergies.


Asunto(s)
Antígenos de Plantas , Clorpromazina , Cromolin Sódico , Globulinas , Proteínas de Almacenamiento de Semillas , Proteínas de Soja , Globulinas/metabolismo , Globulinas/farmacología , Globulinas/química , Proteínas de Almacenamiento de Semillas/metabolismo , Proteínas de Almacenamiento de Semillas/farmacología , Proteínas de Almacenamiento de Semillas/química , Antígenos de Plantas/metabolismo , Proteínas de Soja/metabolismo , Proteínas de Soja/química , Animales , Cromolin Sódico/farmacología , Clorpromazina/farmacología , Endocitosis/efectos de los fármacos , beta-Ciclodextrinas/farmacología , beta-Ciclodextrinas/química , Línea Celular , Transporte Biológico/efectos de los fármacos , Glycine max/metabolismo , Glycine max/química , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efectos de los fármacos , Porcinos
9.
J Agric Food Chem ; 72(20): 11694-11705, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38723176

RESUMEN

The most significant and sensitive antigen protein that causes diarrhea in weaned pigs is soybean 7S globulin. Therefore, identifying the primary target for minimizing intestinal damage brought on by soybean 7S globulin is crucial. MicroRNA (miRNA) is closely related to intestinal epithelium's homeostasis and integrity. However, the change of miRNAs' expression and the function of miRNAs in Soybean 7S globulin injured-IPEC-J2 cells are still unclear. In this study, the miRNAs' expression profile in soybean 7S globulin-treated IPEC-J2 cells was investigated. Fifteen miRNAs were expressed differently. The differentially expressed miRNA target genes are mainly concentrated in signal release, cell connectivity, transcriptional inhibition, and Hedgehog signaling pathway. Notably, we noticed that the most significantly decreased miRNA was ssc-miR-221-5p after soybean 7S globulin treatment. Therefore, we conducted a preliminary study on the mechanisms of ssc-miR-221-5p in soybean 7S globulin-injured IPEC-J2 cells. Our research indicated that ssc-miR-221-5p may inhibit ROS production to alleviate soybean 7S globulin-induced apoptosis and inflammation in IPEC-J2 cells, thus protecting the cellular mechanical barrier, increasing cell proliferation, and improving cell viability. This study provides a theoretical basis for the prevention and control of diarrhea of weaned piglets.


Asunto(s)
Apoptosis , Globulinas , Glycine max , Mucosa Intestinal , MicroARNs , Proteínas de Soja , Animales , MicroARNs/genética , MicroARNs/metabolismo , Porcinos , Línea Celular , Glycine max/genética , Glycine max/química , Glycine max/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Soja/genética , Proteínas de Soja/metabolismo , Globulinas/genética , Globulinas/metabolismo , Proteínas de Almacenamiento de Semillas/genética , Células Epiteliales/metabolismo , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Antígenos de Plantas
10.
Food Chem ; 453: 139654, 2024 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-38781899

RESUMEN

As a natural low-calorie sweetener, Mogroside V (Mog-V) has gradually become one of the alternatives to sucrose with superior health attributes. However, Mog-V will bring unpleasant aftertastes when exceeding a threshold concentration. To investigate the possibility of soy protein isolates (SPIs), namely ß-conglycinin (7S), and glycinin (11S) as flavor-improving agents of Mog-V, the binding mechanism between Mog-V and SPIs was explored through multi-spectroscopy, particle size, zeta potential, and computational simulation. The results of the multi-spectroscopic experiments indicated that Mog-V enhanced the fluorescence of 7S/11S protein in a static mode. The binding affinity of 7S-Mog-V was greater compared with 11S-Mog-V. Particle size and zeta potential analysis revealed that the interaction could promote aggregation of 7S/11S protein with different stability. Furthermore, computational simulations further confirmed that Mog-V could interact with the 7S/11S protein in different ways. This research provides a theoretical foundation for the development and application of SPI to improve the flavor of Mog-V, opening a new avenue for further expanding the market demand for Mog-V.


Asunto(s)
Proteínas de Soja , Edulcorantes , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Edulcorantes/química , Edulcorantes/metabolismo , Globulinas/química , Globulinas/metabolismo , Unión Proteica , Antígenos de Plantas/química , Antígenos de Plantas/metabolismo , Simulación por Computador , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/metabolismo , Simulación del Acoplamiento Molecular , Triterpenos
11.
J Sci Food Agric ; 104(11): 6778-6786, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38567792

RESUMEN

BACKGROUND: This study explored the denaturation of 11S globulin, a protein known for its diverse functional properties in soy protein applications, at pH 3.0 and pH 10.0, followed by a gradual return to pH 7.0 to facilitate renaturation. It investigated the structural and functional changes during renaturation induced by a change in pH, revealing the stabilization mechanism of 11S globulin. RESULTS: The findings revealed that during pH adjustment to neutral, the denatured soybean 11S globulin - resulting from alkaline (pH 10.0) or acidic (pH 3.0) treatments - experienced a refolding of its extended tertiary structure to varying extents. The particle size and the proportions of α-helix and ß-sheet in the secondary structure aligned progressively with those of the natural-state protein. However, for the alkali-denatured 11S, the ß-sheet content decreased upon adjustment to neutral, whereas an increase was observed for the acid-denatured 11S. In terms of functional properties, after alkaline denaturation, the foaming capacity (FC) and emulsifying activity index (EAI) of 11S increased by 1.4 and 1.2 times, respectively, in comparison with its native state. The solubility, foamability, and emulsifiability of the alkali-denatured 11S gradually diminished during renaturation but remained superior to those of the native state. Conversely, these properties showed an initial decline, followed by an increase during renaturation triggered by pH neutralization. CONCLUSIONS: This research contributes to the enhancement of protein functionality, offering a theoretical foundation for the development of functional soy protein products and expanding their potential applications. © 2024 Society of Chemical Industry.


Asunto(s)
Globulinas , Glycine max , Desnaturalización Proteica , Proteínas de Soja , Concentración de Iones de Hidrógeno , Globulinas/química , Glycine max/química , Proteínas de Soja/química , Solubilidad , Estructura Secundaria de Proteína
12.
Plant Physiol Biochem ; 210: 108653, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670029

RESUMEN

Edible plant seeds provide a relatively inexpensive source of protein and make up a large part of nutrients for humans. Plant seeds accumulate storage proteins during seed development. Seed storage proteins act as a reserve of nutrition for seed germination and seedling growth. However, seed storage proteins may be allergenic, and the prevalence of food allergy has increased rapidly in recent years. The 11S globulins account for a significant number of known major food allergens. They are of interest to the public and the agricultural industry because of food safety concerns and the need for crop enhancement. We sought to determine the crystal structure of Cor a 9, the 11 S storage protein of hazelnut and a food allergen. The structure was refined to 1.92 Å, and the R and Rfree for the refined structure are 17.6% and 22.5%, respectively. The structure of Cor a 9 showed a hetero hexamer of an 11S seed storage protein for the first time. The hexamer was two trimers associated back-to-back. Two long alpha helixes at the C-terminal end of the acidic domain of one of the Cor a 9 isoforms lay at the trimer-trimer interface's groove. These data provided much-needed information about the allergenicity of the 11S seed proteins. The information may also facilitate a better understanding of the folding and transportation of 11S seed storage proteins.


Asunto(s)
Corylus , Proteínas de Almacenamiento de Semillas , Corylus/química , Corylus/metabolismo , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/metabolismo , Cristalografía por Rayos X , Semillas/metabolismo , Semillas/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Globulinas/química , Globulinas/metabolismo , Secuencia de Aminoácidos , Multimerización de Proteína , Modelos Moleculares
13.
J Agric Food Chem ; 72(18): 10627-10639, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38664940

RESUMEN

Effective reduction of the allergenicity of instant soy milk powder (ISMP) is practically valuable for expanding its applications. This study optimized the enzymolysis technology of ISMP using single-factor experiments and response surface methodology, combined serological analysis, cellular immunological models, bioinformatics tools, and multiple spectroscopy techniques to investigate the effects of alcalase hydrolysis on allergenicity, spatial conformation, and linear epitopes of ISMP. Under the optimal process, special IgE and IgG1 binding abilities and allergenic activity to induce cell degranulation of alcalase-hydrolyzed ISMP were reduced by (64.72 ± 1.76)%, (56.79 ± 3.72)%, and (73.3 ± 1.19)%, respectively (P < 0.05). Moreover, the spatial conformation of instant soy milk powder hydrolysates (ISMPH) changed, including decreased surface hydrophobicity, a weaker peak of amide II band, lower contents of α-helix and ß-sheet, and an enhanced content of random coil. Furthermore, the linear epitopes of major soy allergens, 9 from glycinin and 13 from ß-conglycinin, could be directionally disrupted by alcalase hydrolysis. Overall, the structure-activity mechanism of alcalase hydrolysis to reduce ISMP allergenicity in vitro was preliminarily clarified. It provided a new research direction for the breakthrough in the desensitization of ISMP and a theoretical basis for revealing the potential mechanism of alcalase enzymolysis to reduce the allergenicity of ISMP.


Asunto(s)
Alérgenos , Leche de Soja , Subtilisinas , Humanos , Alérgenos/química , Alérgenos/inmunología , Alérgenos/metabolismo , Hipersensibilidad a los Alimentos/prevención & control , Hipersensibilidad a los Alimentos/inmunología , Globulinas/química , Globulinas/inmunología , Hidrólisis , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Polvos/química , Leche de Soja/química , Proteínas de Soja/química , Proteínas de Soja/inmunología , Proteínas de Soja/metabolismo , Relación Estructura-Actividad , Subtilisinas/metabolismo
14.
Int J Biol Macromol ; 269(Pt 1): 131900, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677675

RESUMEN

Liposomes were modified with different proportions of ß-conglycinin (7S) and glycinin (11S) to form Lip-7S and Lip-11S. The morphology, interaction and in vitro simulated digestion of liposomes were studied. The particle size of Lip-7S was smaller than that of Lip-11S. When the values of Lip-7S and Lip-11S were 1:1 and 1:0.75, respectively, the ζ-potential had the maximum absolute value and the dispersion of the system was good. The results of multispectral analysis showed that hydrogen-bond and hydrophobic interaction dominated protein-modified liposomes, the protein structure adsorbed on the surface of liposomes changed, the content of α-helix decreased, and the structure of protein-modified liposomes became denser. The surface hydrophobicity and micropolarity of liposomes decreased with the increase of protein ratio, and tended to be stable after Lip-7S (1:1) and Lip-11S (1:0.75). Differential scanning calorimetry showed that Lip-7S had higher phase transition temperature (≥170.5 °C) and better rigid structure. During simulated digestion, Lip-7S (22.5 %) released less Morin than Lip (40.6 %) and Lip-11S (26.2 %), and effectively delayed the release of FFAs. The environmental stability of liposomes was effectively improved by protein modification, and 7S had better modification effect than 11S. This provides a theoretical basis for 7S and 11S modified liposomes, and also provides a data reference for searching for new materials for stabilization of liposomes.


Asunto(s)
Antígenos de Plantas , Globulinas , Liposomas , Proteínas de Almacenamiento de Semillas , Proteínas de Soja , Globulinas/química , Proteínas de Almacenamiento de Semillas/química , Proteínas de Soja/química , Liposomas/química , Antígenos de Plantas/química , Interacciones Hidrofóbicas e Hidrofílicas , Digestión , Tamaño de la Partícula , Enlace de Hidrógeno
15.
J Agric Food Chem ; 72(17): 9947-9954, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38647139

RESUMEN

Glycinin is an important allergenic protein. A1a is the acidic chain of the G1 subunit in glycinin (G1A1a), and it has strong allergenicity. In this study, we used phage display technology to express the protein of G1A1a and its overlapping fragments and an indirect enzyme-linked immunosorbent assay (iELISA) to determine the antigenicity and allergenicity of the expressed protein. After three rounds of screening, it was determined that fragment A1a-2-B-I (151SLENQLDQMPRRFYLAGNQEQEFLKYQQEQG181) is the allergenic domain of G1A1a destroyed by thermal processing. In addition, three overlapping peptides were synthesized from fragments A1a-2-B-I, and a linear epitope was found in this domain through methods including dot blot and iELISA. Peptide 2 (157DQMPRRFYLANGNQE170) showed allergenicity, and after replacing it with alanine, it was found that amino acids D157, Q158, M159, and Y164 were the key amino acids that affected its antigenicity, while Q158, M159, R162, and N168 affected allergenicity.


Asunto(s)
Alérgenos , Globulinas , Calor , Proteínas de Soja , Alérgenos/inmunología , Alérgenos/química , Humanos , Globulinas/química , Globulinas/inmunología , Proteínas de Soja/química , Proteínas de Soja/inmunología , Secuencia de Aminoácidos , Hipersensibilidad a los Alimentos/inmunología , Epítopos/química , Epítopos/inmunología , Dominios Proteicos , Antígenos de Plantas/inmunología , Antígenos de Plantas/química , Antígenos de Plantas/genética , Glycine max/química , Glycine max/inmunología , Ensayo de Inmunoadsorción Enzimática
16.
J Agric Food Chem ; 72(15): 8742-8748, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38564658

RESUMEN

Tyrosinase is capable of oxidizing tyrosine residues in proteins, leading to intermolecular protein cross-linking, which could modify the protein network of food and improve the texture of food. To obtain the recombinant tyrosinase with microbial cell factory instead of isolation tyrosinase from the mushroom Agaricus bisporus, a TYR expression cassette was constructed in this study. The expression cassette was electroporated into Trichoderma reesei Rut-C30 and integrated into its genome, resulting in a recombinant strain C30-TYR. After induction with microcrystalline cellulose for 7 days, recombinant tyrosinase could be successfully expressed and secreted by C30-TYR, corresponding to approximately 2.16 g/L tyrosinase in shake-flask cultures. The recombinant TYR was purified by ammonium sulfate precipitation and gel filtration, and the biological activity of purified TYR was 45.6 U/mL. The purified TYR could catalyze the cross-linking of glycinin, and the emulsion stability index of TYR-treated glycinin emulsion was increased by 30.6% compared with the untreated one. The cross-linking of soy glycinin by TYR resulted in altered properties of oil-in-water emulsions compared to emulsions stabilized by native glycinin. Therefore, cross-linking with this recombinant tyrosinase is a feasible approach to improve the properties of protein-stabilized emulsions and gels.


Asunto(s)
Reactivos de Enlaces Cruzados , Expresión Génica , Globulinas , Hypocreales , Monofenol Monooxigenasa , Proteínas Recombinantes , Proteínas de Soja , Monofenol Monooxigenasa/biosíntesis , Monofenol Monooxigenasa/genética , Monofenol Monooxigenasa/aislamiento & purificación , Monofenol Monooxigenasa/metabolismo , Reactivos de Enlaces Cruzados/aislamiento & purificación , Reactivos de Enlaces Cruzados/metabolismo , Hypocreales/clasificación , Hypocreales/genética , Hypocreales/crecimiento & desarrollo , Hypocreales/metabolismo , Globulinas/química , Globulinas/metabolismo , Proteínas de Soja/química , Proteínas de Soja/metabolismo , Electroporación , Celulosa , Sulfato de Amonio , Cromatografía en Gel , Precipitación Fraccionada , Emulsiones/química , Emulsiones/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Estabilidad Proteica , Retículo Endoplásmico/metabolismo , Señales de Clasificación de Proteína , Aceites/química , Agua/química
17.
J Sci Food Agric ; 104(11): 6531-6540, 2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-38517196

RESUMEN

BACKGROUND: With the increasing popularity of plant protein-based diets, soy proteins are favored as the most important source of plant protein worldwide. However, potential food allergy risks limit their use in the food industry. This work aims to reveal the mechanism of ß-conglycinin-induced food allergy, and to explore the regulatory mechanism of heat treatment and high hydrostatic pressure (HHP) treatment in a BALB/c mouse model. RESULTS: Our results showed that oral administration of ß-conglycinin induced severe allergic symptoms in BALB/c mice, but these symptoms were effectively alleviated through heat treatment and HHP treatment. Moreover, ß-conglycinin stimulated lymphocyte proliferation and differentiation; a large number of cytokines interleukin (IL)-4, IL-5, IL-10, IL-12 and IL-13 were released and interferon γ secretion was inhibited, which disrupted the Th1/Th2 immune balance and promoted the differentiation and proliferation of naive T cells into Th2-type cells. CONCLUSION: Heat/non-heat treatment altered the conformation of soybean protein, which significantly reduced allergic reactions in mice. This regulatory mechanism may be associated with Th1/Th2 immune balance. Our results provide data support for understanding the changes in allergenicity of soybean protein within the food industry. © 2024 Society of Chemical Industry.


Asunto(s)
Antígenos de Plantas , Modelos Animales de Enfermedad , Hipersensibilidad a los Alimentos , Globulinas , Calor , Ratones Endogámicos BALB C , Proteínas de Almacenamiento de Semillas , Proteínas de Soja , Células TH1 , Células Th2 , Animales , Hipersensibilidad a los Alimentos/inmunología , Globulinas/química , Globulinas/inmunología , Globulinas/administración & dosificación , Proteínas de Soja/química , Proteínas de Soja/inmunología , Proteínas de Almacenamiento de Semillas/química , Proteínas de Almacenamiento de Semillas/inmunología , Proteínas de Almacenamiento de Semillas/administración & dosificación , Ratones , Antígenos de Plantas/inmunología , Antígenos de Plantas/química , Células TH1/inmunología , Células TH1/efectos de los fármacos , Células Th2/inmunología , Femenino , Humanos , Balance Th1 - Th2/efectos de los fármacos , Citocinas/inmunología , Citocinas/metabolismo , Glycine max/química
18.
Int J Med Sci ; 21(4): 742-754, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38464832

RESUMEN

Purpose: We aimed to investigate the impact of Omicron variant infection on the perioperative organ function in patients undergoing elective surgery. Methods: A total of 5029 patients who underwent elective surgery between October 2022 and January 2023 at our hospital were enrolled. Among them, the patients who underwent elective surgery between October 2022 and November 2022 composed Group 1 (not infected with the Omicron variant) the control group; those who underwent elective surgery between December 2022 and January 2023 composed Group 2 (one month after Omicron variant infection) the experimental group. We further divided the patients into two subgroups for analysis: the tumor subgroup and the nontumor subgroup. Data on organ system function indicators, including coagulation parameters, liver function, complete blood count (CBC), and kidney function, were collected before and after surgery. Differences between the two groups were subsequently analyzed via binary logistic regression analysis. Results: Compared with those in the uninfected patient group, the following changes were observed in patients with Omicron variant infection who underwent elective surgery one month after infection: prothrombin activity (PTa), prothrombin time (PT), fibrinogen, albumin/globulin, alanine aminotransferase (ALT), mean corpuscular hemoglobin concentration (MCHC), platelet (PLT), and anemia were increased AST/ALT, indirect bilirubin (IBILI), eosinophils, and uric acid were decreased before surgery; and lung infection/pneumonia and fibrinogen were increased, while AST/ALT, globulin, total bilirubin (TBIL), white blood cell count (WBC), and uric acid were decreased after surgery. There was no significant difference in the mortality rate or length of hospital stay (LOS) between the two groups. Subgroup analysis revealed elevated monocyte, PLT, and fibrinogen classification, levels and decreased globulin, prealbumin (PBA), eosinophil, and uric acid levels in the tumor subgroup of patients who underwent elective surgery one month after Omicron infection compared with those in the uninfected patients. Compared with the nontumor subgroup, fibrinogen levels, lung infection/pneumonia, TBIL, and PLT count were increased in the uninfected patients, while the globulin and eosinophil levels were decreased. Conclusion: Compared with uninfected patients, patients who underwent elective surgery one month after Omicron variant infection exhibited minimal changes in perioperative coagulation parameters, liver function, CBC counts, and kidney function. Additionally, no significant differences in postoperative mortality or LOS were observed between the two groups.


Asunto(s)
Globulinas , Neoplasias , Neumonía , Humanos , Estudios Retrospectivos , Estudios de Casos y Controles , Ácido Úrico , Hígado/cirugía , Hígado/patología , Riñón/cirugía , Fibrinógeno , Bilirrubina , Neoplasias/patología
19.
J Agric Food Chem ; 72(14): 8103-8113, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38530645

RESUMEN

The effect of genotype and environment on oat protein composition was analyzed through size exclusion-high-performance liquid chromatography (SE-HPLC) and liquid chromatography-mass spectrometry (LC-MS) to characterize oat protein isolate (OPI) extracted from three genotypes grown at three locations in the Canadian Prairies. SE-HPLC identified four fractions in OPI, including polymeric globulins, avenins, glutelins, and albumins, and smaller proteins. The protein composition was dependent on the environment, rather than the genotype. The proteins identified through LC-MS were grouped into eight categories, including globulins, prolamins/avenins, glutelins, enzymes/albumins, enzyme inhibitors, heat shock proteins, grain softness proteins, and allergenic proteins. Three main globulin protein types were also identified, including the P14812|SSG2-12S seed storage globulin, the Q6UJY8_TRITU-globulin, and the M7ZQM3_TRIUA-Globulin-1 S. Principal component analysis indicated that samples from Manitoba showed a positive association with the M7ZQM3_TRIUA-Globulin-1 S allele and Q6UJY8_TRITU-globulin, while samples from Alberta and Saskatchewan had a negative association with them. The results show that the influence of G × E on oat protein fractions and their relative composition is crucial to understanding genotypes' behavior in response to different environments.


Asunto(s)
Globulinas , Proteínas de Plantas , Proteínas de Plantas/metabolismo , Avena/genética , Avena/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía Líquida con Espectrometría de Masas , Cromatografía Liquida , Espectrometría de Masas en Tándem , Canadá , Glútenes/genética , Prolaminas/metabolismo , Globulinas/metabolismo , Albúminas
20.
BMC Vet Res ; 20(1): 79, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38443906

RESUMEN

BACKGROUND: Inflammatory myopathy and perivasculitis have been recently described in horses with chronic equine piroplasmosis (EP). These alterations may be linked to poor performances. The aims of this study were to evaluate the prevalence for EP in clinically healthy Italian Standardbred (IS) racehorses and to compare laboratory parameters and performance metrics between positive and negative horses. Real-time PCR was applied for the detection of T. equi and B. caballi positivity. Haematology parameters, blood chemistry results, subjective muscle mass scores, and performance metrics were compared between PCR-positive and -negative horses. RESULTS: This cross-sectional study included 120 well-trained IS racehorses and was performed over a two-years period. The prevalence of T. equi was 36.3%, whereas all samples were negative for B. caballi. Red blood cells count, haemoglobin concentration, aspartate aminotransferase, alkaline phosphatase, and gamma-glutamyl transferase activities were significantly higher in PCR-positive horses, whereas blood urea nitrogen, globulin concentration and globulin-to-albumin ratio were significantly lower in PCR-positive horses compared to PCR-negative ones. Nonetheless, all values fell within the physiological range. The best racing time, which was selected as the most representative of the performance metrics at the principal component analysis, was not affected by PCR positivity, the muscle mass score or the training yard. The best racing time was significantly better in horses with a mild or no signs of muscular atrophy, within the PCR-positive group. The muscle mass score was associated with the training yard in PCR-negative horses. CONCLUSIONS: Prevalence of T. equi was high in IS racehorses in southern Italy. The absence of obvious changes in haematological and biochemical parameters, as well as performance metrics in positive horses, highlights the need for specific diagnostic tests to identify chronically infected horses.


Asunto(s)
Globulinas , Theileria , Animales , Caballos , Estudios Transversales , Theileria/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Italia/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA