Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Intervalo de año de publicación
1.
Commun Biol ; 7(1): 984, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138305

RESUMEN

Heme trafficking is essential for cellular function, yet mechanisms of transport and/or heme interaction are not well defined. The System I and System II bacterial cytochrome c biogenesis pathways are developing into model systems for heme trafficking due to their functions in heme transport, heme stereospecific positioning, and mediation of heme attachment to apocytochrome c. Here we focus on the System II pathway, CcsBA, that is proposed to be a bi-functional heme transporter and holocytochrome c synthase. An extensive structure-function analysis of recombinantly expressed Helicobacter pylori and Campylobacter jejuni CcsBAs revealed key residues required for heme interaction and holocytochrome c synthase activity. Homologous residues were previously identified to be required for heme interaction in Helicobacter hepaticus CcsBA. This study provides direct, biochemical evidence that mechanisms of heme interaction are conserved, leading to the proposal that the CcsBA WWD heme-handling domain represents a novel target for therapeutics.


Asunto(s)
Proteínas Bacterianas , Campylobacter jejuni , Helicobacter pylori , Hemo , Hemo/metabolismo , Helicobacter pylori/enzimología , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Campylobacter jejuni/enzimología , Campylobacter jejuni/genética , Campylobacter jejuni/metabolismo , Relación Estructura-Actividad , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Unión Proteica , Modelos Moleculares , Liasas
2.
Int J Biol Sci ; 20(10): 4007-4028, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39113698

RESUMEN

Cholesterol and Helicobacter pylori (H. pylori) are both risk factors for gastric cancer (GC). However, the relationship between cholesterol and H. pylori and their function in the progression of GC are controversial. In this study, we addressed that H. pylori could induce mitochondrial cholesterol accumulation and promote GC proliferation and protect GC cells against apoptosis via cholesterol. Metabolomic and transcriptomic sequencing were used to identify CYP11A1 responsible for H. pylori-induced cholesterol accumulation. In vitro and in vivo function experiments revealed that cholesterol could promote the proliferation of GC and inhibit apoptosis. Mechanically, the interaction of Cytotoxin-associated gene A (CagA) and CYP11A1 redistributed mitochondrial CYP11A1 outside the mitochondria and subsequently caused mitochondrial cholesterol accumulation. The CYP11A1-knockdown upregulated cholesterol accumulation and reproduced the effect of cholesterol on GC in a cholesterol-dependent manner. Moreover, CYP11A1-knockdown or H. pylori infection inhibited mitophagy and maintained the mitochondria homeostasis. H. pylori could contribute to the progression of GC through the CagA/CYP11A1-mitoCHO axis. This study demonstrates that H. pylori can contribute to the progression of GC via cholesterol, and eradicating H. pylori is still prognostically beneficial to GC patients.


Asunto(s)
Colesterol , Helicobacter pylori , Mitocondrias , Neoplasias Gástricas , Helicobacter pylori/metabolismo , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patología , Colesterol/metabolismo , Humanos , Mitocondrias/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/genética , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/microbiología , Animales , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Línea Celular Tumoral , Ratones , Apoptosis , Masculino , Proliferación Celular
3.
Infect Immun ; 92(8): e0022424, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-38975764

RESUMEN

Colonization of the human stomach with Helicobacter pylori strains producing active forms of the secreted toxin VacA is associated with an increased risk of peptic ulcer disease and gastric cancer, compared with colonization with strains producing hypoactive forms of VacA. Previous studies have shown that active s1m1 forms of VacA cause cell vacuolation and mitochondrial dysfunction. In this study, we sought to define the cellular metabolic consequences of VacA intoxication. Untargeted metabolomic analyses revealed that several hundred metabolites were significantly altered in VacA-treated gastroduodenal cells (AGS and AZ-521) compared with control cells. Pathway analysis suggested that VacA caused alterations in taurine and hypotaurine metabolism. Treatment of cells with the purified active s1m1 form of VacA, but not hypoactive s2m1 or Δ6-27 VacA-mutant proteins (defective in membrane channel formation), caused reductions in intracellular taurine and hypotaurine concentrations. Supplementation of the tissue culture medium with taurine or hypotaurine protected AZ-521 cells against VacA-induced cell death. Untargeted global metabolomics of VacA-treated AZ-521 cells or AGS cells in the presence or absence of extracellular taurine showed that taurine was the main intracellular metabolite significantly altered by extracellular taurine supplementation. These results indicate that VacA causes alterations in cellular taurine metabolism and that repletion of taurine is sufficient to attenuate VacA-induced cell death. We discuss these results in the context of previous literature showing the important role of taurine in cell physiology and the pathophysiology or treatment of multiple pathologic conditions, including gastric ulcers, cardiovascular disease, malignancy, inflammatory diseases, and other aging-related disorders.


Asunto(s)
Proteínas Bacterianas , Helicobacter pylori , Taurina , Taurina/metabolismo , Taurina/análogos & derivados , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Helicobacter pylori/metabolismo , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/metabolismo , Línea Celular , Interacciones Huésped-Patógeno , Metabolómica
4.
Gut Microbes ; 16(1): 2379439, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39052777

RESUMEN

Efflux pumps play a crucial role in the development of antibiotic resistance. The aim of this study was to investigate the relationship between efflux pump gene expression and resistance gene mutations in Helicobacter pylori. Twenty-six clinical strains with varying resistance characteristics were selected for further experiment. Seven susceptible strains were induced to become resistant, and the expression of efflux pump genes and point mutations were recorded. Four susceptible strains were selected to undergo candidate mutation construction, and changes in efflux pump gene expression were detected. Efflux pump knockout strains were constructed, and their effects on preventing and reversing antibiotic resistance gene mutations were assessed. Results showed that the expression of efflux pump genes hefA and hefD was significantly higher in the multidrug-resistant group compared to other groups. During the process of antibiotic-induced resistance, efflux pump gene expression did not exhibit a steady increase or decrease. Strains with the A2143G or A2142G point mutations in 23S rRNA exhibited lower hefA gene expression. Strains with mutations at 87K/91N, 87N/91 G, 87K/91D, or 87N/91Y in gyrA and the 194insertA mutation in rdxA showed higher hefA gene expression compared to the wild-type strain. During the process of antibiotic-induced resistance, the strain with the knockout of the efflux pump gene hefA developed mutations in the 23S rRNA, gyrA, or rdxA genes later compared to the wild-type strain. Knockout of the efflux pump gene could reverse the phenotypic resistance to clarithromycin or metronidazole in some strains but had no effect on reverse resistance gene mutation. This study suggested that different resistance gene point mutations may have varying effects on efflux pump gene expression. Knockout of the efflux pump gene can delay or prevent antibiotic resistance gene mutations to some extent and can reverse phenotypic resistance to clarithromycin and metronidazole in certain strains.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Infecciones por Helicobacter , Helicobacter pylori , Proteínas de Transporte de Membrana , Helicobacter pylori/genética , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/metabolismo , Antibacterianos/farmacología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Infecciones por Helicobacter/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Farmacorresistencia Bacteriana/genética , Mutación Puntual , Mutación , Pruebas de Sensibilidad Microbiana , Regulación Bacteriana de la Expresión Génica , Farmacorresistencia Bacteriana Múltiple/genética , ARN Ribosómico 23S/genética , Girasa de ADN/genética , Girasa de ADN/metabolismo
5.
Gut Microbes ; 16(1): 2382766, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39068523

RESUMEN

CagA, a virulence factor of Helicobacter pylori (H. pylori), is known to drive inflammation in gastric epithelial cells and is typically degraded through autophagy. However, the molecular mechanism by which CagA evades autophagy-mediated degradation remains elusive. This study found that H. pylori inhibits autophagic flux by upregulating the expression of AU-rich element RNA-binding factor 1 (AUF1). We confirmed that AUF1 does not affect autophagy initiation but instead hampers lysosomal clearance, as evidenced by treatments with 3-MA, CQ and BafA1. Upregulated AUF1 stabilizes CagA protein levels by inhibiting the autolysosomal degradation of intracellular CagA in H. pylori-infected gastric epithelial cells. Knocking down AUF1 promotes CagA degradation, an effect that can be reversed by the lysosome inhibitor BafA1 and CQ. Transcriptome analysis of AUF1-knockdown gastric epithelial cells infected with H. pylori indicated that AUF1 regulates the expression of lysosomal-associated hydrolase genes, specifically CTSD, to inhibit autolysosomal degradation. Moreover, we observed that knockdown of AUF1 enhanced the stability of CTSD mRNA and identified AUF1 binding to the 3'UTR region of CTSD mRNA. AUF1-mediated downregulation of CTSD expression contributes to CagA stability, and AUF1 overexpression leads to an increase in CagA levels in exosomes, thus promoting extracellular inflammation. In clinical gastric mucosa, the expression of AUF1 and its cytoplasmic translocation are associated with H. pylori-associated gastritis, with CagA being necessary for the translocation of AUF1 into the cytoplasm. Our findings suggest that AUF1 is a novel host-positive regulator of CagA, and dysregulation of AUF1 expression increases the risk of H. pylori-associated gastritis.


Asunto(s)
Antígenos Bacterianos , Autofagia , Proteínas Bacterianas , Células Epiteliales , Mucosa Gástrica , Infecciones por Helicobacter , Helicobacter pylori , Ribonucleoproteína Nuclear Heterogénea D0 , Ribonucleoproteína Heterogénea-Nuclear Grupo D , Lisosomas , Antígenos Bacterianos/metabolismo , Antígenos Bacterianos/genética , Ribonucleoproteína Nuclear Heterogénea D0/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Lisosomas/metabolismo , Lisosomas/microbiología , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/metabolismo , Infecciones por Helicobacter/patología , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo D/genética , Células Epiteliales/microbiología , Células Epiteliales/metabolismo , Mucosa Gástrica/microbiología , Mucosa Gástrica/metabolismo , Inflamación/metabolismo , Inflamación/microbiología , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Línea Celular
6.
Adv Sci (Weinh) ; 11(30): e2309712, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38887155

RESUMEN

Helicobacter pylori (H. pylori) infection is the primary risk factor for the pathogenesis of gastric cancer (GC). N6-methyladenosine (m6A) plays pivotal roles in mRNA metabolism and hnRNPA2B1 as an m6A reader is shown to exert m6A-dependent mRNA stabilization in cancer. This study aims to explore the role of hnRNPA2B1 in H. pylori-associated GC and its novel molecular mechanism. Multiple datasets and tissue microarray are utilized for assessing hnRNPA2B1 expression in response to H. pylori infection and its clinical prognosis in patients with GC. The roles of hnRNPA2B1 are investigated through a variety of techniques including glucose metabolism analysis, m6A-epitranscriptomic microarray, Ribo-seq, polysome profiling, RIP-seq. In addition, hnRNPA2B1 interaction with poly(A) binding protein cytoplasmic 1 (PABPC1) is validated using mass spectrometry and co-IP. These results show that hnRNPA2B1 is upregulated in GC and correlated with poor prognosis. H. pylori infection induces hnRNPA2B1 upregulation through recruiting NF-κB to its promoter. Intriguingly, cytoplasm-anchored hnRNPA2B1 coordinated PABPC1 to stabilize its relationship with cap-binding eIF4F complex, which facilitated the translation of CIP2A, DLAT and GPX1 independent of m6A modification. In summary, hnRNPA2B1 facilitates the non-m6A translation of epigenetic mRNAs in GC progression by interacting with PABPC1-eIF4F complex and predicts poor prognosis for patients with GC.


Asunto(s)
Progresión de la Enfermedad , Infecciones por Helicobacter , Helicobacter pylori , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B , Proteína I de Unión a Poli(A) , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología , Humanos , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo A-B/genética , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Proteína I de Unión a Poli(A)/genética , Ratones , Animales , Pronóstico , Modelos Animales de Enfermedad , Masculino , Adenosina/análogos & derivados , Adenosina/metabolismo , Adenosina/genética
7.
Nucleic Acids Res ; 52(12): 7321-7336, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38842933

RESUMEN

The ParABS system, composed of ParA (an ATPase), ParB (a DNA binding protein), and parS (a centromere-like DNA), regulates bacterial chromosome partition. The ParB-parS partition complex interacts with the nucleoid-bound ParA to form the nucleoid-adaptor complex (NAC). In Helicobacter pylori, ParA and ParB homologs are encoded as HpSoj and HpSpo0J (HpParA and HpParB), respectively. We determined the crystal structures of the ATP hydrolysis deficient mutant, HpParAD41A, and the HpParAD41A-DNA complex. We assayed the CTPase activity of HpParB and identified two potential DNA binding modes of HpParB regulated by CTP, one is the specific DNA binding by the DNA binding domain and the other is the non-specific DNA binding through the C-terminal domain under the regulation of CTP. We observed an interaction between HpParAD41A and the N-terminus fragment of HpParB (residue 1-10, HpParBN10) and determined the crystal structure of the ternary complex, HpParAD41A-DNA-HpParBN10 complex which mimics the NAC formation. HpParBN10 binds near the HpParAD41A dimer interface and is clamped by flexible loops, L23 and L34, through a specific cation-π interaction between Arg9 of HpParBN10 and Phe52 of HpParAD41A. We propose a molecular mechanism model of the ParABS system providing insight into chromosome partition in bacteria.


Asunto(s)
Proteínas Bacterianas , Cromosomas Bacterianos , Proteínas de Unión al ADN , Helicobacter pylori , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Cromosomas Bacterianos/metabolismo , Cromosomas Bacterianos/química , Cromosomas Bacterianos/genética , Modelos Moleculares , Cristalografía por Rayos X , Unión Proteica , ADN Bacteriano/metabolismo , ADN Bacteriano/química , ADN Bacteriano/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/genética , Segregación Cromosómica , Adenosina Trifosfato/metabolismo , Sitios de Unión
8.
BMC Genomics ; 25(1): 466, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38741045

RESUMEN

BACKGROUND: Protein-protein interactions (PPIs) hold significant importance in biology, with precise PPI prediction as a pivotal factor in comprehending cellular processes and facilitating drug design. However, experimental determination of PPIs is laborious, time-consuming, and often constrained by technical limitations. METHODS: We introduce a new node representation method based on initial information fusion, called FFANE, which amalgamates PPI networks and protein sequence data to enhance the precision of PPIs' prediction. A Gaussian kernel similarity matrix is initially established by leveraging protein structural resemblances. Concurrently, protein sequence similarities are gauged using the Levenshtein distance, enabling the capture of diverse protein attributes. Subsequently, to construct an initial information matrix, these two feature matrices are merged by employing weighted fusion to achieve an organic amalgamation of structural and sequence details. To gain a more profound understanding of the amalgamated features, a Stacked Autoencoder (SAE) is employed for encoding learning, thereby yielding more representative feature representations. Ultimately, classification models are trained to predict PPIs by using the well-learned fusion feature. RESULTS: When employing 5-fold cross-validation experiments on SVM, our proposed method achieved average accuracies of 94.28%, 97.69%, and 84.05% in terms of Saccharomyces cerevisiae, Homo sapiens, and Helicobacter pylori datasets, respectively. CONCLUSION: Experimental findings across various authentic datasets validate the efficacy and superiority of this fusion feature representation approach, underscoring its potential value in bioinformatics.


Asunto(s)
Biología Computacional , Mapeo de Interacción de Proteínas , Mapeo de Interacción de Proteínas/métodos , Biología Computacional/métodos , Algoritmos , Helicobacter pylori/metabolismo , Helicobacter pylori/genética , Máquina de Vectores de Soporte , Proteínas/metabolismo , Proteínas/química , Humanos , Mapas de Interacción de Proteínas , Bases de Datos de Proteínas
9.
J Cell Mol Med ; 28(9): e18358, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38693868

RESUMEN

Gastric cancer is considered a class 1 carcinogen that is closely linked to infection with Helicobacter pylori (H. pylori), which affects over 1 million people each year. However, the major challenge to fight against H. pylori and its associated gastric cancer due to drug resistance. This research gap had led our research team to investigate a potential drug candidate targeting the Helicobacter pylori-carcinogenic TNF-alpha-inducing protein. In this study, a total of 45 daidzein derivatives were investigated and the best 10 molecules were comprehensively investigated using in silico approaches for drug development, namely pass prediction, quantum calculations, molecular docking, molecular dynamics simulations, Lipinski rule evaluation, and prediction of pharmacokinetics. The molecular docking study was performed to evaluate the binding affinity between the target protein and the ligands. In addition, the stability of ligand-protein complexes was investigated by molecular dynamics simulations. Various parameters were analysed, including root-mean-square deviation (RMSD), root-mean-square fluctuation (RMSF), radius of gyration (Rg), hydrogen bond analysis, principal component analysis (PCA) and dynamic cross-correlation matrix (DCCM). The results has confirmed that the ligand-protein complex CID: 129661094 (07) and 129664277 (08) formed stable interactions with the target protein. It was also found that CID: 129661094 (07) has greater hydrogen bond occupancy and stability, while the ligand-protein complex CID 129664277 (08) has greater conformational flexibility. Principal component analysis revealed that the ligand-protein complex CID: 129661094 (07) is more compact and stable. Hydrogen bond analysis revealed favourable interactions with the reported amino acid residues. Overall, this study suggests that daidzein derivatives in particular show promise as potential inhibitors of H. pylori.


Asunto(s)
Helicobacter pylori , Isoflavonas , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Helicobacter pylori/efectos de los fármacos , Helicobacter pylori/metabolismo , Isoflavonas/farmacología , Isoflavonas/química , Isoflavonas/metabolismo , Humanos , Enlace de Hidrógeno , Ligandos , Unión Proteica , Análisis de Componente Principal , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/tratamiento farmacológico , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/antagonistas & inhibidores , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/tratamiento farmacológico
10.
Sci Rep ; 14(1): 7683, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561502

RESUMEN

Helicobacter pylori (H. pylori), known for causing gastric inflammation, gastritis and gastric cancer, prompted our study to investigate the differential expression of cytokines in gastric tissues, which is crucial for understanding H. pylori infection and its potential progression to gastric cancer. Focusing on Il-1ß, IL-6, IL-8, IL-12, IL-18, and TNF-α, we analysed gene and protein levels to differentiate between H. pylori-infected and non-infected gastritis. We utilised real-time quantitative polymerase chain reaction (RT-qPCR) for gene quantification, immunohistochemical staining, and ELISA for protein measurement. Gastric samples from patients with gastritis were divided into three groups: (1) non-gastritis (N-group) group, (2) gastritis without H. pylori infection (G-group), and (3) gastritis with H. pylori infection (GH-group), each consisting of 8 samples. Our findings revealed a statistically significant variation in cytokine expression. Generally, cytokine levels were higher in gastritis, but in H. pylori-infected gastritis, IL-1ß, IL-6, and IL-8 levels were lower compared to H. pylori-independent gastritis, while IL-12, IL-18, and TNF-α levels were higher. This distinct cytokine expression pattern in H. pylori-infected gastritis underscores a unique inflammatory response, providing deeper insights into its pathogenesis.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Helicobacter , Neoplasias Gástricas , Humanos , Citocinas/metabolismo , Helicobacter pylori/metabolismo , Interleucina-18/genética , Interleucina-18/metabolismo , Helicobacter/metabolismo , Interleucina-8/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Interleucina-6/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Gastritis/patología , Interleucina-12/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/metabolismo , Mucosa Gástrica/metabolismo
11.
J Biomed Sci ; 31(1): 44, 2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38685037

RESUMEN

BACKGROUND: Helicobacter pylori, the main cause of various gastric diseases, infects approximately half of the human population. This pathogen is auxotrophic for cholesterol which it converts to various cholesteryl α-glucoside derivatives, including cholesteryl 6'-acyl α-glucoside (CAG). Since the related biosynthetic enzymes can be translocated to the host cells, the acyl chain of CAG likely comes from its precursor phosphatidylethanolamine (PE) in the host membranes. This work aims at examining how the acyl chain of CAG and PE inhibits the membrane functions, especially bacterial adhesion. METHODS: Eleven CAGs that differ in acyl chains were used to study the membrane properties of human gastric adenocarcinoma cells (AGS cells), including lipid rafts clustering (monitored by immunofluorescence with confocal microscopy) and lateral membrane fluidity (by the fluorescence recovery after photobleaching). Cell-based and mouse models were employed to study the degree of bacterial adhesion, the analyses of which were conducted by using flow cytometry and immunofluorescence staining, respectively. The lipidomes of H. pylori, AGS cells and H. pylori-AGS co-cultures were analyzed by Ultraperformance Liquid Chromatography-Tandem Mass Spectroscopy (UPLC-MS/MS) to examine the effect of PE(10:0)2, PE(18:0)2, PE(18:3)2, or PE(22:6)2 treatments. RESULTS: CAG10:0, CAG18:3 and CAG22:6 were found to cause the most adverse effect on the bacterial adhesion. Further LC-MS analysis indicated that the treatment of PE(10:0)2 resulted in dual effects to inhibit the bacterial adhesion, including the generation of CAG10:0 and significant changes in the membrane compositions. The initial (1 h) lipidome changes involved in the incorporation of 10:0 acyl chains into dihydro- and phytosphingosine derivatives and ceramides. In contrast, after 16 h, glycerophospholipids displayed obvious increase in their very long chain fatty acids, monounsaturated and polyunsaturated fatty acids that are considered to enhance membrane fluidity. CONCLUSIONS: The PE(10:0)2 treatment significantly reduced bacterial adhesion in both AGS cells and mouse models. Our approach of membrane remodeling has thus shown great promise as a new anti-H. pylori therapy.


Asunto(s)
Colesterol/análogos & derivados , Helicobacter pylori , Helicobacter pylori/metabolismo , Helicobacter pylori/fisiología , Ratones , Animales , Humanos , Lípidos de la Membrana/metabolismo , Línea Celular Tumoral , Infecciones por Helicobacter/tratamiento farmacológico , Infecciones por Helicobacter/microbiología , Infecciones por Helicobacter/metabolismo , Ésteres del Colesterol/metabolismo
12.
J Agric Food Chem ; 72(18): 10469-10476, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38659344

RESUMEN

Lacto-N-difucohexaose II (LNDFH II) is a typical fucosylated human milk oligosaccharide and can be enzymatically produced from lacto-N-tetraose (LNT) by a specific α1,3/4-fucosyltransferase from Helicobacter pylori DMS 6709, referred to as FucT14. Previously, we constructed an engineered Escherichia coli BL21(DE3) with a single plasmid for highly efficient biosynthesis of LNT. In this study, two additional plasmids harboring the de novo GDP-L-fucose pathway module and FucT14, respectively, were further introduced to construct the strain for successful biosynthesis of LNDFH II. FucT14 was actively expressed, and the engineered strain produced LNDFH II as the major product, lacto-N-fucopentaose (LNFP) V as the minor product, and a trace amount of LNFP II and 3-fucosyllactose as very minor products. Additional expression of the α1,3-fucosyltransferase FutM1 from a Bacteroidaceae bacterium from the gut metagenome could obviously enhance the LNDFH II biosynthesis. After optimization of induction conditions, the maximum titer reached 3.011 g/L by shake-flask cultivation. During the fed-batch cultivation, LNDFH II was highly efficiently produced with the highest titer of 18.062 g/L and the productivity yield of 0.301 g/L·h.


Asunto(s)
Proteínas Bacterianas , Escherichia coli , Fucosiltransferasas , Guanosina Difosfato Fucosa , Ingeniería Metabólica , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Vías Biosintéticas , Escherichia coli/genética , Escherichia coli/metabolismo , Fucosiltransferasas/genética , Fucosiltransferasas/metabolismo , Guanosina Difosfato Fucosa/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Helicobacter pylori/enzimología , Oligosacáridos/metabolismo , Oligosacáridos/biosíntesis
13.
J Biophotonics ; 17(6): e202400074, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38566476

RESUMEN

Helicobacter pylori (H. pylori) is a type of bacteria that infects the stomach. The detection of H. pylori is an essential part of current clinical practices because this disease can cause peptic ulcers, chronic inflammation of the stomach lining but also stomach cancer. Helicobacter pylori has a naturally occurring enzyme that hydrolyzes urea into ammonium carbonate called urease. Many methods exist for the detection of H. pylori infection, but an innovative approach is to detect the ammonia in the breath (ABT, Ammonia Breath Test). In this research study, using photoacoustic spectroscopy method, the ammonia concentration in the breathing zone of people with H. pylori were measured and were compared with ammonia concentration from the respiration of healthy people. From the ABT determinations of this study, the ammonia was established to be increased with 498 ppb at people with H. pylori when we compare with ABT of healthy people.


Asunto(s)
Amoníaco , Pruebas Respiratorias , Infecciones por Helicobacter , Helicobacter pylori , Técnicas Fotoacústicas , Humanos , Helicobacter pylori/metabolismo , Pruebas Respiratorias/métodos , Amoníaco/metabolismo , Infecciones por Helicobacter/microbiología , Masculino , Adulto , Femenino
14.
J Mol Biol ; 436(10): 168573, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38626867

RESUMEN

Iron homeostasis is a critical process for living organisms because this metal is an essential co-factor for fundamental biochemical activities, like energy production and detoxification, albeit its excess quickly leads to cell intoxication. The protein Fur (ferric uptake regulator) controls iron homeostasis in bacteria by switching from its apo- to holo-form as a function of the cytoplasmic level of ferrous ions, thereby modulating gene expression. The Helicobacter pylori HpFur protein has the rare ability to operate as a transcriptional commutator; apo- and holo-HpFur function as two different repressors with distinct DNA binding recognition properties for specific sets of target genes. Although the regulation of apo- and holo-HpFur in this bacterium has been extensively investigated, we propose a genome-wide redefinition of holo-HpFur direct regulon in H. pylori by integration of RNA-seq and ChIP-seq data, and a large extension of the apo-HpFur direct regulon. We show that in response to iron availability, new coding sequences, non-coding RNAs, toxin-antitoxin systems, and transcripts within open reading frames are directly regulated by apo- or holo-HpFur. These new targets and the more thorough validation and deeper characterization of those already known provide a complete and updated picture of the direct regulons of this two-faced transcriptional regulator.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Helicobacter pylori , Hierro , Regulón , Proteínas Represoras , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Hierro/metabolismo , Regulón/genética , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
15.
Helicobacter ; 29(2): e13069, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38516860

RESUMEN

Helicobacter pylori (H. pylori) seems to play causative roles in gastric cancers. H. pylori has also been detected in established gastric cancers. How the presence of H. pylori modulates immune response to the cancer is unclear. The cytotoxicity of natural killer (NK) cells, toward infected or malignant cells, is controlled by the repertoire of activating and inhibitory receptors expressed on their surface. Here, we studied H. pylori-induced changes in the expression of ligands, of activating and inhibitory receptors of NK cells, in the gastric adenocarcinoma AGS cells, and their impacts on NK cell responses. AGS cells lacked or had low surface expression of the class I major histocompatibility complex (MHC-I) molecules HLA-E and HLA-C-ligands of the major NK cell inhibitory receptors NKG2A and killer-cell Ig-like receptor (KIR), respectively. However, AGS cells had high surface expression of ligands of activating receptors DNAM-1 and CD2, and of the adhesion molecules LFA-1. Consistently, AGS cells were sensitive to killing by NK cells despite the expression of inhibitory KIR on NK cells. Furthermore, H. pylori enhanced HLA-C surface expression on AGS cells. H. pylori infection enhanced HLA-C protein synthesis, which could explain H. pylori-induced HLA-C surface expression. H. pylori infection enhanced HLA-C surface expression also in the hepatoma Huh7 and HepG2 cells. Furthermore, H. pylori-induced HLA-C surface expression on AGS cells promoted inhibition of NK cells by KIR, and thereby protected AGS cells from NK cell cytotoxicity. These results suggest that H. pylori enhances HLA-C expression in host cells and protects them from the cytotoxic attack of NK cells expressing HLA-C-specific inhibitory receptors.


Asunto(s)
Adenocarcinoma , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Humanos , Adenocarcinoma/genética , Adenocarcinoma/microbiología , Adenocarcinoma/patología , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/patología , Helicobacter pylori/metabolismo , Antígenos de Histocompatibilidad Clase I/metabolismo , Antígenos HLA-C/genética , Antígenos HLA-C/metabolismo , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Receptores Inmunológicos/metabolismo , Receptores KIR/metabolismo , Neoplasias Gástricas/genética , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología
16.
Microbiol Spectr ; 12(5): e0047024, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38501821

RESUMEN

Bacterial lipoproteins are post-translationally modified by the addition of acyl chains that anchor the protein to bacterial membranes. This modification includes two ester-linked and one amide-linked acyl chain on lipoproteins from Gram-negative bacteria. Helicobacter pylori lipoproteins have important functions in pathogenesis (including delivering the CagA oncoprotein to mammalian cells) and are recognized by host innate and adaptive immune systems. The number and variety of acyl chains on lipoproteins impact the innate immune response through Toll-like receptor 2. The acyl chains added to lipoproteins are derived from membrane phospholipids. H. pylori membrane phospholipids have previously been shown to consist primarily of C14:0 and C19:0 cyclopropane-containing acyl chains. However, the acyl composition of H. pylori lipoproteins has not been determined. In this study, we characterized the acyl composition of two representative H. pylori lipoproteins, Lpp20 and CagT. Fatty acid methyl esters were prepared from both purified lipoproteins and analyzed by gas chromatography-mass spectrometry. For comparison, we also analyzed H. pylori phospholipids. Consistent with previous studies, we observed that the H. pylori phospholipids contain primarily C14:0 and C19:0 cyclopropane-containing fatty acids. In contrast, both the ester-linked and amide-linked fatty acids found in H. pylori lipoproteins were observed to be almost exclusively C16:0 and C18:0. A discrepancy between the acyl composition of membrane phospholipids and lipoproteins as reported here for H. pylori has been previously reported in other bacteria including Borrelia and Brucella. We discuss possible mechanisms.IMPORTANCEColonization of the stomach by Helicobacter pylori is an important risk factor in the development of gastric cancer, the third leading cause of cancer-related death worldwide. H. pylori persists in the stomach despite an immune response against the bacteria. Recognition of lipoproteins by TLR2 contributes to the innate immune response to H. pylori. However, the role of H. pylori lipoproteins in bacterial persistence is poorly understood. As the host response to lipoproteins depends on the acyl chain content, defining the acyl composition of H. pylori lipoproteins is an important step in characterizing how lipoproteins contribute to persistence.


Asunto(s)
Proteínas Bacterianas , Ácidos Grasos , Helicobacter pylori , Lipoproteínas , Helicobacter pylori/inmunología , Helicobacter pylori/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Ácidos Grasos/metabolismo , Ácidos Grasos/química , Lipoproteínas/metabolismo , Lipoproteínas/química , Fosfolípidos/metabolismo , Fosfolípidos/química , Humanos , Infecciones por Helicobacter/microbiología , Inmunidad Innata , Cromatografía de Gases y Espectrometría de Masas
17.
J Investig Med High Impact Case Rep ; 12: 23247096241240176, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38504422

RESUMEN

Gastric cancer ranks as the fifth leading cause of global cancer incidences, exhibiting varied prevalence influenced by geographical, ethnic, and lifestyle factors, as well as Helicobacter pylori infection. The ATM gene on chromosome 11q22 is vital for genomic stability as an initiator of the DNA damage response, and mutations in this gene have been associated with various cancers. Poly ADP-ribose polymerase (PARP) inhibitors, such as olaparib, have shown efficacy in cancers with homologous recombination repair deficiencies, notably in those with ATM mutations. Here, we present a case of a 66-year-old patient with germline ATM-mutated metastatic gastric cancer with very high CA 19-9 (48 000 units/mL) who demonstrated an exceptional response to the addition of olaparib to chemo-immunotherapy and subsequent olaparib maintenance monotherapy for 12 months. CA 19-9 was maintained at low level for 18 months. Despite the failure of a phase II clinical trial on olaparib in gastric cancer (NCT01063517) to meet its primary endpoint, intriguing findings emerged in the subset of ATM-mutated patients, who exhibited notable improvements in overall survival. Our case underscores the potential clinical utility of olaparib in germline ATM-mutated gastric cancer and emphasizes the need for further exploration through larger clinical trials. Ongoing research and clinical trials are essential for optimizing the use of PARP inhibitors, identifying biomarkers, and advancing personalized treatment strategies for gastric cancer.


Asunto(s)
Infecciones por Helicobacter , Helicobacter pylori , Ftalazinas , Piperazinas , Neoplasias Gástricas , Humanos , Anciano , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/patología , Helicobacter pylori/metabolismo , Células Germinativas/metabolismo , Células Germinativas/patología , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo
18.
Nucleic Acids Res ; 52(10): 5572-5595, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38499492

RESUMEN

Adaptation to variations in pH is crucial for the ability of Helicobacter pylori to persist in the human stomach. The acid responsive two-component system ArsRS, constitutes the global regulon that responds to acidic conditions, but molecular details of how transcription is affected by the ArsR response regulator remains poorly understood. Using a combination of DNA-binding studies, in vitro transcription assays, and H. pylori mutants, we demonstrate that phosphorylated ArsR (ArsR-P) forms an active protein complex that binds DNA with high specificity in order to affect transcription. Our data showed that DNA topology is key for DNA binding. We found that AT-rich DNA sequences direct ArsR-P to specific sites and that DNA-bending proteins are important for the effect of ArsR-P on transcription regulation. The repression of sabA transcription is mediated by ArsR-P with the support of Hup and is affected by simple sequence repeats located upstream of the sabA promoter. Here stochastic events clearly contribute to the fine-tuning of pH-dependent gene regulation. Our results reveal important molecular aspects for how ArsR-P acts to repress transcription in response to acidic conditions. Such transcriptional control likely mediates shifts in bacterial positioning in the gastric mucus layer.


Asunto(s)
Adhesinas Bacterianas , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Helicobacter pylori , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , ADN Bacteriano/metabolismo , ADN Bacteriano/genética , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Concentración de Iones de Hidrógeno , Fosforilación , Regiones Promotoras Genéticas , Unión Proteica , Transcripción Genética/genética , Mutación
19.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396647

RESUMEN

Helicobacter pylori (Hp) infections pose a global health challenge demanding innovative therapeutic strategies by which to eradicate them. Urease, a key Hp virulence factor hydrolyzes urea, facilitating bacterial survival in the acidic gastric environment. In this study, a multi-methodological approach combining pharmacophore- and structure-based virtual screening, molecular dynamics simulations, and MM-GBSA calculations was employed to identify novel inhibitors for Hp urease (HpU). A refined dataset of 8,271,505 small molecules from the ZINC15 database underwent pharmacokinetic and physicochemical filtering, resulting in 16% of compounds for pharmacophore-based virtual screening. Molecular docking simulations were performed in successive stages, utilizing HTVS, SP, and XP algorithms. Subsequent energetic re-scoring with MM-GBSA identified promising candidates interacting with distinct urease variants. Lys219, a residue critical for urea catalysis at the urease binding site, can manifest in two forms, neutral (LYN) or carbamylated (KCX). Notably, the evaluated molecules demonstrated different interaction and energetic patterns in both protein variants. Further evaluation through ADMET predictions highlighted compounds with favorable pharmacological profiles, leading to the identification of 15 candidates. Molecular dynamics simulations revealed comparable structural stability to the control DJM, with candidates 5, 8 and 12 (CA5, CA8, and CA12, respectively) exhibiting the lowest binding free energies. These inhibitors suggest a chelating capacity that is crucial for urease inhibition. The analysis underscores the potential of CA5, CA8, and CA12 as novel HpU inhibitors. Finally, we compare our candidates with the chemical space of urease inhibitors finding physicochemical similarities with potent agents such as thiourea.


Asunto(s)
Helicobacter pylori , Helicobacter pylori/metabolismo , Ureasa/metabolismo , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Urea/farmacología
20.
Biophys Chem ; 307: 107193, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38320409

RESUMEN

Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is a moonlighting enzyme. Apart from its primary role in the glycolytic pathway, in many bacterial species it is found in the extracellular milieu and also on the bacterial surface. Positioning on the bacterial surface allows the GAPDH molecule to interact with many host molecules such as plasminogen, fibrinogen, fibronectin, laminin and mucin etc. This facilitates the bacterial colonization of the host. Helicobacter pylori is a major human pathogen that causes a number of gastrointestinal infections and is the main cause of gastric cancer. The binding analysis of H. pylori GAPDH (HpGAPDH) with host molecules has not been carried out. Hence, we studied the interaction of HpGAPDH with holo-transferrin, lactoferrin, haemoglobin, fibrinogen, fibronectin, catalase, plasminogen and mucin using biolayer interferometry. Highest and lowest binding affinity was observed with lactoferrin (4.83 ± 0.70 × 10-9 M) and holo-transferrin (4.27 ± 2.39 × 10-5 M). Previous studies established GAPDH as a heme chaperone involved in intracellular heme trafficking and delivery to downstream target proteins. Therefore, to get insights into heme binding, the interaction between HpGAPDH and hemin was analyzed. Hemin binds to HpGAPDH with an affinity of 2.10 µM while the hemin bound HpGAPDH does not exhibit activity. This suggests that hemin most likely binds at the active site of HpGAPDH, prohibiting substrate binding. Blind docking of hemin with HpGAPDH also supports positioning of hemin at the active site. Metal ions were found to inhibit the activity of HpGAPDH, suggesting that it also possibly occupies the substrate binding site. Furthermore, with metal-bound HpGAPDH, hemin binding was not observed, suggesting metal ions act as an inhibitor of hemin binding. Since GAPDH has been identified as a heme chaperone, it will be interesting to analyse the biological consequences of inhibition of heme binding to GAPDH by metal ions.


Asunto(s)
Helicobacter pylori , Hemina , Humanos , Hemina/metabolismo , Helicobacter pylori/metabolismo , Fibronectinas/metabolismo , Lactoferrina/metabolismo , Unión Proteica , Gliceraldehído-3-Fosfato Deshidrogenasas/metabolismo , Hemo/metabolismo , Fibrinógeno , Plasminógeno/metabolismo , Iones/metabolismo , Mucinas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA