Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.730
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8350, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333469

RESUMEN

A key question in regulatory genomics is whether cis-regulatory elements (CREs) are modular elements that can function anywhere in the genome, or whether they are adapted to certain genomic locations. To distinguish between these possibilities we develop MPIRE (Massively Parallel Integrated Regulatory Elements), a technology for recurrently assaying CREs at thousands of defined locations across the genome in parallel. MPIRE allows us to separate the intrinsic activity of CREs from the effects of their genomic environments. We apply MPIRE to assay three insulator sequences at thousands of genomic locations and find that each insulator functions in locations with distinguishable properties. All three insulators can block enhancers, but each insulator blocks specific enhancers at specific locations. However, only ALOXE3 appears to block heterochromatin silencing. We conclude that insulator function is highly context dependent and that MPIRE is a robust method for revealing the context dependencies of CREs.


Asunto(s)
Elementos de Facilitación Genéticos , Elementos Aisladores , Elementos Aisladores/genética , Elementos de Facilitación Genéticos/genética , Animales , Genoma/genética , Heterocromatina/genética , Heterocromatina/metabolismo , Genómica/métodos , Ratones , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
2.
PLoS Pathog ; 20(9): e1012516, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39236084

RESUMEN

ATRX limits the accumulation of human cytomegalovirus (HCMV) Immediate Early (IE) proteins at the start of productive, lytic infections, and thus is a part of the cell-intrinsic defenses against infecting viruses. ATRX is a chromatin remodeler and a component of a histone chaperone complex. Therefore, we hypothesized ATRX would inhibit the transcription of HCMV IE genes by increasing viral genome heterochromatinization and decreasing its accessibility. To test this hypothesis, we quantitated viral transcription and genome structure in cells replete with or depleted of ATRX. We found ATRX did indeed limit viral IE transcription, increase viral genome chromatinization, and decrease viral genome accessibility. The inhibitory effects of ATRX extended to Early (E) and Late (L) viral protein accumulation, viral DNA replication, and progeny virion output. However, we found the negative effects of ATRX on HCMV viral DNA replication were independent of its effects on viral IE and E protein accumulation but correlated with viral genome heterochromatinization. Interestingly, the increased number of viral genomes synthesized in ATRX-depleted cells were not efficiently packaged, indicating the ATRX-mediated restriction to HCMV viral DNA replication may benefit productive infection by increasing viral fitness. Our work mechanistically describes the antiviral function of ATRX and introduces a novel, pro-viral role for this protein, perhaps explaining why, unlike during infections with other herpesviruses, it is not directly targeted by a viral countermeasure in HCMV infected cells.


Asunto(s)
Infecciones por Citomegalovirus , Citomegalovirus , Replicación del ADN , ADN Viral , Genoma Viral , Heterocromatina , Replicación Viral , Proteína Nuclear Ligada al Cromosoma X , Humanos , Citomegalovirus/genética , Citomegalovirus/fisiología , Proteína Nuclear Ligada al Cromosoma X/genética , Proteína Nuclear Ligada al Cromosoma X/metabolismo , Heterocromatina/metabolismo , Heterocromatina/genética , ADN Viral/genética , Infecciones por Citomegalovirus/virología , Infecciones por Citomegalovirus/genética
3.
Commun Biol ; 7(1): 1135, 2024 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-39271748

RESUMEN

Genome differential positioning within interphase nuclei remains poorly explored. We extended and validated Tyramide Signal Amplification (TSA)-seq to map genomic regions near nucleoli and pericentric heterochromatin in four human cell lines. Our study confirmed that smaller chromosomes localize closer to nucleoli but further deconvolved this by revealing a preference for chromosome arms below 36-46 Mbp in length. We identified two lamina associated domain subsets through their differential nuclear lamina versus nucleolar positioning in different cell lines which showed distinctive patterns of DNA replication timing and gene expression across all cell lines. Unexpectedly, active, nuclear speckle-associated genomic regions were found near typically repressive nuclear compartments, which is attributable to the close proximity of nuclear speckles and nucleoli in some cell types, and association of centromeres with nuclear speckles in human embryonic stem cells (hESCs). Our study points to a more complex and variable nuclear genome organization than suggested by current models, as revealed by our TSA-seq methodology.


Asunto(s)
Nucléolo Celular , Centrómero , Heterocromatina , Humanos , Heterocromatina/metabolismo , Heterocromatina/genética , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Centrómero/metabolismo , Centrómero/genética , Línea Celular
4.
Proc Natl Acad Sci U S A ; 121(40): e2321182121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39325426

RESUMEN

Senescence is a cell fate driven by different types of stress that results in exit from the cell cycle and expression of an inflammatory senescence-associated secretory phenotype (SASP). Here, we demonstrate that stable overexpression of miR-96-5p was sufficient to induce cellular senescence in the absence of genotoxic stress, inducing expression of certain markers of early senescence including SASP factors while repressing markers of deep senescence including LINE-1 and type 1 interferons. Stable miR-96-5p overexpression led to genome-wide changes in heterochromatin followed by epigenetic activation of p16Ink4a, p21Cip1, and SASP expression, induction of a marker of DNA damage, and induction of a transcriptional signature similar to other senescent lung and endothelial cell types. Expression of miR-96-5p significantly increased following senescence induction in culture cells and with aging in tissues from naturally aged and Ercc1-/Δ progeroid mice. Mechanistically, miR-96-5p directly suppressed expression of SIN3B and SIN3 corepressor complex constituents KDM5A and MORF4L2, and siRNA-mediated knockdown of these transcriptional regulators recapitulated the senescent phenotype. In addition, pharmacologic inhibition of the SIN3 complex suppressed senescence and SASP markers. These results clearly demonstrate that a single microRNA is sufficient to drive early senescence in the absence of genotoxic stress through targeting epigenetic and transcriptional regulators, identifying novel targets for the development of senotherapeutics.


Asunto(s)
Senescencia Celular , Daño del ADN , MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Animales , Senescencia Celular/genética , Ratones , Humanos , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Fenotipo Secretor Asociado a la Senescencia/genética , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Inhibidor p16 de la Quinasa Dependiente de Ciclina/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Epigénesis Genética , Histona Demetilasas/metabolismo , Histona Demetilasas/genética , Regulación de la Expresión Génica , Endonucleasas
5.
Life Sci Alliance ; 7(12)2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39288993

RESUMEN

The three-dimensional structure of DNA is a biophysical determinant of transcription. The density of chromatin condensation is one determinant of transcriptional output. Chromatin condensation is generally viewed as enforcing transcriptional suppression, and therefore, transcriptional output should be inversely proportional to DNA compaction. We coupled stable isotope tracers with multi-isotope imaging mass spectrometry to quantify and image nanovolumetric relationships between DNA density and newly made RNA within individual nuclei. Proliferative cell lines and cycling cells in the murine small intestine unexpectedly demonstrated no consistent relationship between DNA density and newly made RNA, even though localized examples of this phenomenon were detected at nuclear-cytoplasmic transitions. In contrast, non-dividing hepatocytes demonstrated global reduction in newly made RNA and an inverse relationship between DNA density and transcription, driven by DNA condensates at the nuclear periphery devoid of newly made RNA. Collectively, these data support an evolving model of transcriptional plasticity that extends at least to a subset of chromatin at the extreme of condensation as expected of heterochromatin.


Asunto(s)
ADN , Heterocromatina , ARN , Transcripción Genética , Heterocromatina/metabolismo , Heterocromatina/genética , Animales , ADN/metabolismo , ADN/genética , Ratones , ARN/metabolismo , ARN/genética , Humanos , Hepatocitos/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Cromatina/genética
6.
Mol Cell ; 84(17): 3167-3169, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241749

RESUMEN

In this issue of Molecular Cell, Sahu et al.1 find that shielding heterochromatin from SWI/SNF chromatin remodelers is essential to maintain and epigenetically propagate pre-existing heterochromatin domains, whereas SWI/SNF action protects facultative heterochromatic regions from premature silencing.


Asunto(s)
Ensamble y Desensamble de Cromatina , Proteínas Cromosómicas no Histona , Heterocromatina , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Epigénesis Genética , Silenciador del Gen , Heterocromatina/metabolismo , Heterocromatina/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
7.
Cell ; 187(18): 4824-4826, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39241742

RESUMEN

Epigenetic inheritance of heterochromatin requires transfer of parental H3-H4 tetramers to both daughter duplexes during replication. Three recent papers exploit yeast genetics coupled to inheritance assays and AlphaFold2-multimer predictions coupled to biochemistry to reveal that a replisome component (Mrc1/CLASPIN) is an H3-H4 tetramer chaperone important for parental histone transfer to daughters.


Asunto(s)
Replicación del ADN , Aprendizaje Profundo , Histonas , Saccharomyces cerevisiae , Histonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Heterocromatina/metabolismo , Epigénesis Genética
8.
Nat Commun ; 15(1): 7287, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39179589

RESUMEN

In animals, evolutionarily conserved Polycomb repressive complex 2 (PRC2) catalyzes histone H3 lysine 27 trimethylation (H3K27me3) and PRC1 functions in recruitment and transcriptional repression. However, the mechanisms underlying H3K27me3-mediated stable transcriptional silencing are largely unknown, as PRC1 subunits are poorly characterized in fungi. Here, we report that in the filamentous fungus Magnaporthe oryzae, the N-terminal chromodomain and C-terminal MRG domain of Eaf3 play key roles in facultative heterochromatin formation and transcriptional silencing. Eaf3 physically interacts with Ash1, Eed, and Sin3, encoding an H3K36 methyltransferase, the core subunit of PRC2, and a histone deacetylation co-suppressor, respectively. Eaf3 co-localizes with a set of repressive Ash1-H3K36me2 and H3K27me3 loci and mediates their transcriptional silencing. Furthermore, Eaf3 acts as a histone reader for the repressive H3K36me2 and H3K27me3 marks. Eaf3-occupied regions are associated with increased nucleosome occupancy, contributing to transcriptional silencing in M. oryzae. Together, these findings reveal that Eaf3 is a repressive H3K36me2 reader and plays a vital role in Polycomb gene silencing and the formation of facultative heterochromatin in fungi.


Asunto(s)
Proteínas Fúngicas , Silenciador del Gen , Heterocromatina , Histonas , Histonas/metabolismo , Histonas/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Metilación , Regulación Fúngica de la Expresión Génica , Complejo Represivo Polycomb 2/metabolismo , Complejo Represivo Polycomb 2/genética , Nucleosomas/metabolismo , Proteínas del Grupo Polycomb/metabolismo , Proteínas del Grupo Polycomb/genética , Lisina/metabolismo
9.
Nat Commun ; 15(1): 7078, 2024 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-39152128

RESUMEN

Heterochromatin de-condensation in companion gametic cells is conserved in both plants and animals. In plants, microspore undergoes asymmetric pollen mitosis (PMI) to produce a vegetative cell (VC) and a generative cell (GC). Subsequently, the GC undergoes pollen mitosis (PMII) to produce two sperm cells (SC). Consistent with heterochromatin de-condensation in the VC, H3K9me2, a heterochromatin mark, is barely detected in VC. However, how H3K9me2 is differentially regulated during pollen mitosis remains unclear. Here, we show that H3K9me2 is gradually evicted from the VC since PMI but remain unchanged in the GC and SC. ARID1, a pollen-specific transcription factor that facilitates PMII, promotes H3K9me2 maintenance in the GC/SC but slows down its eviction in the VC. The genomic targets of ARID1 mostly overlaps with H3K9me2 loci, and ARID1 recruits H3K9 methyltransferase SUVH6. Our results uncover that differential pattern of H3K9me2 between two cell types is regulated by ARID1 during pollen mitosis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Histonas , Mitosis , Polen , Factores de Transcripción , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Heterocromatina/metabolismo , Heterocromatina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , N-Metiltransferasa de Histona-Lisina/genética , Histonas/metabolismo , Histonas/genética , Metilación , Polen/metabolismo , Polen/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética
10.
Cell ; 187(18): 5010-5028.e24, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094570

RESUMEN

Faithful transfer of parental histones to newly replicated daughter DNA strands is critical for inheritance of epigenetic states. Although replication proteins that facilitate parental histone transfer have been identified, how intact histone H3-H4 tetramers travel from the front to the back of the replication fork remains unknown. Here, we use AlphaFold-Multimer structural predictions combined with biochemical and genetic approaches to identify the Mrc1/CLASPIN subunit of the replisome as a histone chaperone. Mrc1 contains a conserved histone-binding domain that forms a brace around the H3-H4 tetramer mimicking nucleosomal DNA and H2A-H2B histones, is required for heterochromatin inheritance, and promotes parental histone recycling during replication. We further identify binding sites for the FACT histone chaperone in Swi1/TIMELESS and DNA polymerase α that are required for heterochromatin inheritance. We propose that Mrc1, in concert with FACT acting as a mobile co-chaperone, coordinates the distribution of parental histones to newly replicated DNA.


Asunto(s)
Replicación del ADN , Epigénesis Genética , Heterocromatina , Histonas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Histonas/metabolismo , Heterocromatina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas del Grupo de Alta Movilidad/metabolismo , Proteínas del Grupo de Alta Movilidad/genética , Factores de Elongación Transcripcional/metabolismo , Factores de Elongación Transcripcional/genética , Chaperonas de Histonas/metabolismo , Chaperonas Moleculares/metabolismo , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética
11.
Nucleic Acids Res ; 52(16): 9536-9550, 2024 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-39106166

RESUMEN

Heterochromatin is a key feature of eukaryotic genomes and is crucial for maintaining genomic stability. In fission yeast, heterochromatin nucleation is mainly mediated by DNA-binding proteins or the RNA interference (RNAi) pathway. In the filamentous fungus Neurospora crassa, however, the mechanism that causes the initiation of heterochromatin at the relics of repeat-induced point mutation is unknown and independent of the classical RNAi pathway. Here, we show that casein kinase II (CKII) and its kinase activity are required for heterochromatin formation at the well-defined 5-kb heterochromatin of the 5H-cat-3 region and transcriptional repression of its adjacent cat-3 gene. Similarly, mutation of the histone H3 phosphorylation site T11 also impairs heterochromatin formation at the same locus. The catalytic subunit CKA colocalizes with H3T11 phosphorylation (H3pT11) within the 5H-cat-3 domain and the deletion of cka results in a significant decrease in H3T11 phosphorylation. Furthermore, the loss of kinase activity of CKII results in a significant reduction of H3pT11, H3K9me3 (histone H3 lysine 9 trimethylation) and DNA methylation levels, suggesting that CKII regulates heterochromatin formation by promoting H3T11 phosphorylation. Together, our results establish that histone H3 phosphorylation by CKII is a critical event required for heterochromatin formation.


Asunto(s)
Quinasa de la Caseína II , Heterocromatina , Histonas , Neurospora crassa , Heterocromatina/metabolismo , Heterocromatina/genética , Fosforilación , Histonas/metabolismo , Quinasa de la Caseína II/metabolismo , Quinasa de la Caseína II/genética , Neurospora crassa/genética , Neurospora crassa/metabolismo , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Metilación de ADN , Regulación Fúngica de la Expresión Génica , Mutación
12.
Phys Rev E ; 110(1-1): 014403, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39160964

RESUMEN

The highly and slightly condensed forms of chromatin, heterochromatin and euchromatin, respectively, segregate in the cell nucleus. Heterochromatin is more abundant in the nucleus periphery. Here we study the mechanism of heterochromatin segregation by modeling interphase chromosomes as diblock ring copolymers confined in a rigid spherical shell using molecular dynamics simulations. In our model, heterochromatin and euchromatin are distinguished by their bending stiffnesses only, while an interaction potential between the spherical shell and chromatin is used to model lamin-associated proteins. Our simulations indicate that in the absence of attractive interactions between the nuclear shell and the chromatin, most heterochromatin segregates towards the nuclear interior due to the depletion of less flexible heterochromatin segments from the nuclear periphery. This inverted chromatin distribution,which is opposite to the conventional case with heterochromatin dominating at the periphery, is in accord with experimental observations in rod cells. This "inversion" is also found to be independent of the heterochromatin concentration and chromosome number. The chromatin distribution at the periphery found in vivo can be recovered by further increasing the bending stiffness of heterochromatin segments or by turning on attractive interactions between the nuclear shell and heterochromatin. Our results indicate that the bending stiffness of chromatin could be a contributor to chromosome organization along with differential effects of HP1α-driven phase segregation and of loop extruders and interactions with the nuclear envelope and topological constraints.


Asunto(s)
Núcleo Celular , Cromatina , Heterocromatina , Núcleo Celular/metabolismo , Heterocromatina/metabolismo , Cromatina/metabolismo , Simulación de Dinámica Molecular , Eucromatina/metabolismo
13.
Nat Commun ; 15(1): 6815, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-39122718

RESUMEN

Functional crosstalk between DNA methylation, histone H3 lysine-9 trimethylation (H3K9me3) and heterochromatin protein 1 (HP1) is essential for proper heterochromatin assembly and genome stability. However, how repressive chromatin cues guide DNA methyltransferases for region-specific DNA methylation remains largely unknown. Here, we report structure-function characterizations of DNA methyltransferase Defective-In-Methylation-2 (DIM2) in Neurospora. The DNA methylation activity of DIM2 requires the presence of both H3K9me3 and HP1. Our structural study reveals a bipartite DIM2-HP1 interaction, leading to a disorder-to-order transition of the DIM2 target-recognition domain that is essential for substrate binding. Furthermore, the structure of DIM2-HP1-H3K9me3-DNA complex reveals a substrate-binding mechanism distinct from that for its mammalian orthologue DNMT1. In addition, the dual recognition of H3K9me3 peptide by the DIM2 RFTS and BAH1 domains allosterically impacts the DIM2-substrate binding, thereby controlling DIM2-mediated DNA methylation. Together, this study uncovers how multiple heterochromatin factors coordinately orchestrate an activity-switching mechanism for region-specific DNA methylation.


Asunto(s)
Homólogo de la Proteína Chromobox 5 , Proteínas Cromosómicas no Histona , Metilación de ADN , Proteínas Fúngicas , Heterocromatina , Histonas , Heterocromatina/metabolismo , Proteínas Cromosómicas no Histona/metabolismo , Proteínas Cromosómicas no Histona/genética , Histonas/metabolismo , Histonas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/genética , Unión Proteica , Neurospora crassa/genética , Neurospora crassa/metabolismo
14.
Nucleic Acids Res ; 52(17): 10194-10219, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39142653

RESUMEN

The chromatin-remodeling enzyme helicase lymphoid-specific (HELLS) interacts with cell division cycle-associated 7 (CDCA7) on nucleosomes and is involved in the regulation of DNA methylation in higher organisms. Mutations in these genes cause immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, which also results in DNA hypomethylation of satellite repeat regions. We investigated the functional domains of human CDCA7 in HELLS using several mutant CDCA7 proteins. The central region is critical for binding to HELLS, activation of ATPase, and nucleosome sliding activities of HELLS-CDCA7. The N-terminal region tends to inhibit ATPase activity. The C-terminal 4CXXC-type zinc finger domain contributes to CpG and hemimethylated CpG DNA preference for DNA-dependent HELLS-CDCA7 ATPase activity. Furthermore, CDCA7 showed a binding preference to DNA containing hemimethylated CpG, and replication-dependent pericentromeric heterochromatin foci formation of CDCA7 with HELLS was observed in mouse embryonic stem cells; however, all these phenotypes were lost in the case of an ICF syndrome mutant of CDCA7 mutated in the zinc finger domain. Thus, CDCA7 most likely plays a role in the recruitment of HELLS, activates its chromatin remodeling function, and efficiently induces DNA methylation, especially at hemimethylated replication sites.


Asunto(s)
Ensamble y Desensamble de Cromatina , ADN Helicasas , Metilación de ADN , Dedos de Zinc , Humanos , Animales , Ratones , ADN Helicasas/metabolismo , ADN Helicasas/genética , ADN Helicasas/química , Enfermedades de Inmunodeficiencia Primaria/genética , Enfermedades de Inmunodeficiencia Primaria/metabolismo , Islas de CpG/genética , ADN/metabolismo , ADN/genética , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfatasas/genética , Mutación , Unión Proteica , Nucleosomas/metabolismo , Nucleosomas/genética , Síndromes de Inmunodeficiencia/genética , Síndromes de Inmunodeficiencia/metabolismo , Dominios Proteicos , Células Madre Embrionarias de Ratones/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Cara/anomalías , Proteínas Nucleares
15.
Mol Cell ; 84(17): 3223-3236.e4, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39094566

RESUMEN

Chromatin-based epigenetic memory relies on the symmetric distribution of parental histones to newly synthesized daughter DNA strands, aided by histone chaperones within the DNA replication machinery. However, the mechanism of parental histone transfer remains elusive. Here, we reveal that in fission yeast, the replisome protein Mrc1 plays a crucial role in promoting the transfer of parental histone H3-H4 to the lagging strand, ensuring proper heterochromatin inheritance. In addition, Mrc1 facilitates the interaction between Mcm2 and DNA polymerase alpha, two histone-binding proteins critical for parental histone transfer. Furthermore, Mrc1's involvement in parental histone transfer and epigenetic inheritance is independent of its known functions in DNA replication checkpoint activation and replisome speed control. Instead, Mrc1 interacts with Mcm2 outside of its histone-binding region, creating a physical barrier to separate parental histone transfer pathways. These findings unveil Mrc1 as a key player within the replisome, coordinating parental histone segregation to regulate epigenetic inheritance.


Asunto(s)
Replicación del ADN , Epigénesis Genética , Histonas , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , ADN Polimerasa I/metabolismo , ADN Polimerasa I/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Histonas/genética , Unión Proteica , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética
16.
Nucleic Acids Res ; 52(17): 10220-10234, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39149894

RESUMEN

The 3D chromatin organization plays a major role in the control of gene expression. However, our comprehension of the governing principles behind nuclear organization remains incomplete. Particularly, the spatial segregation of loci with similar repressive transcriptional states in plants poses a significant yet poorly understood puzzle. In this study, employing a combination of genetics and advanced 3D genomics approaches, we demonstrated that a redistribution of facultative heterochromatin marks in regions usually occupied by constitutive heterochromatin marks disrupts the 3D genome compartmentalisation. This disturbance, in turn, triggers novel chromatin interactions between genic and transposable element (TE) regions. Interestingly, our results imply that epigenetic features, constrained by genetic factors, intricately mold the landscape of 3D genome organisation. This study sheds light on the profound genetic-epigenetic interplay that underlies the regulation of gene expression within the intricate framework of the 3D genome. Our findings highlight the complexity of the relationships between genetic determinants and epigenetic features in shaping the dynamic configuration of the 3D genome.


Asunto(s)
Arabidopsis , Elementos Transponibles de ADN , Epigénesis Genética , Genoma de Planta , Heterocromatina , Elementos Transponibles de ADN/genética , Heterocromatina/metabolismo , Heterocromatina/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Cromatina/metabolismo , Cromatina/genética , Histonas/metabolismo , Histonas/genética , Genómica/métodos
17.
Dev Cell ; 59(16): 2222-2238.e4, 2024 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-39094565

RESUMEN

Epigenetic mechanisms enable cells to develop novel adaptive phenotypes without altering their genetic blueprint. Recent studies show histone modifications, such as heterochromatin-defining H3K9 methylation (H3K9me), can be redistributed to establish adaptive phenotypes. We developed a precision-engineered genetic approach to trigger heterochromatin misregulation on-demand in fission yeast. This enabled us to trace genome-scale RNA and H3K9me changes over time in long-term, continuous cultures. Adaptive H3K9me establishes over remarkably slow timescales relative to the initiating stress. We captured dynamic H3K9me redistribution events which depend on an RNA binding complex MTREC, ultimately leading to cells converging on an optimal adaptive solution. Upon stress removal, cells relax to new transcriptional and chromatin states, establishing memory that is tunable and primed for future adaptive epigenetic responses. Collectively, we identify the slow kinetics of epigenetic adaptation that allow cells to discover and heritably encode novel adaptive solutions, with implications for drug resistance and response to infection.


Asunto(s)
Epigénesis Genética , Heterocromatina , Histonas , Schizosaccharomyces , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Heterocromatina/metabolismo , Heterocromatina/genética , Histonas/metabolismo , Histonas/genética , Adaptación Fisiológica/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Regulación Fúngica de la Expresión Génica , Metilación
18.
Sci Adv ; 10(34): eadr0036, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178265

RESUMEN

CDCA7, encoding a protein with a carboxyl-terminal cysteine-rich domain (CRD), is mutated in immunodeficiency, centromeric instability, and facial anomalies (ICF) syndrome, a disease related to hypomethylation of juxtacentromeric satellite DNA. How CDCA7 directs DNA methylation to juxtacentromeric regions is unknown. Here, we show that the CDCA7 CRD adopts a unique zinc-binding structure that recognizes a CpG dyad in a non-B DNA formed by two sequence motifs. CDCA7, but not ICF mutants, preferentially binds the non-B DNA with strand-specific CpG hemi-methylation. The unmethylated sequence motif is highly enriched at centromeres of human chromosomes, whereas the methylated motif is distributed throughout the genome. At S phase, CDCA7, but not ICF mutants, is concentrated in constitutive heterochromatin foci, and the formation of such foci can be inhibited by exogenous hemi-methylated non-B DNA bound by the CRD. Binding of the non-B DNA formed in juxtacentromeric regions during DNA replication provides a mechanism by which CDCA7 controls the specificity of DNA methylation.


Asunto(s)
Centrómero , Islas de CpG , Metilación de ADN , Síndromes de Inmunodeficiencia , Enfermedades de Inmunodeficiencia Primaria , Unión Proteica , Humanos , Enfermedades de Inmunodeficiencia Primaria/metabolismo , Enfermedades de Inmunodeficiencia Primaria/genética , Síndromes de Inmunodeficiencia/metabolismo , Síndromes de Inmunodeficiencia/genética , Centrómero/metabolismo , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/química , Dominios Proteicos , ADN/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/química , Mutación , Heterocromatina/metabolismo , Heterocromatina/genética , Cara/anomalías , Proteínas Nucleares
19.
Mol Cell ; 84(17): 3175-3191.e8, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39096900

RESUMEN

Heterochromatin enforces transcriptional gene silencing and can be epigenetically inherited, but the underlying mechanisms remain unclear. Here, we show that histone deacetylation, a conserved feature of heterochromatin domains, blocks SWI/SNF subfamily remodelers involved in chromatin unraveling, thereby stabilizing modified nucleosomes that preserve gene silencing. Histone hyperacetylation, resulting from either the loss of histone deacetylase (HDAC) activity or the direct targeting of a histone acetyltransferase to heterochromatin, permits remodeler access, leading to silencing defects. The requirement for HDAC in heterochromatin silencing can be bypassed by impeding SWI/SNF activity. Highlighting the crucial role of remodelers, merely targeting SWI/SNF to heterochromatin, even in cells with functional HDAC, increases nucleosome turnover, causing defective gene silencing and compromised epigenetic inheritance. This study elucidates a fundamental mechanism whereby histone hypoacetylation, maintained by high HDAC levels in heterochromatic regions, ensures stable gene silencing and epigenetic inheritance, providing insights into genome regulatory mechanisms relevant to human diseases.


Asunto(s)
Ensamble y Desensamble de Cromatina , Epigénesis Genética , Silenciador del Gen , Heterocromatina , Histona Desacetilasas , Histonas , Nucleosomas , Heterocromatina/metabolismo , Heterocromatina/genética , Nucleosomas/metabolismo , Nucleosomas/genética , Histonas/metabolismo , Histonas/genética , Acetilación , Histona Desacetilasas/metabolismo , Histona Desacetilasas/genética , Humanos , Histona Acetiltransferasas/metabolismo , Histona Acetiltransferasas/genética , Animales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA