Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
BMC Biotechnol ; 24(1): 55, 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39135175

RESUMEN

BACKGROUND: Diffuse large B-cell lymphoma (DLBCL) is a malignant tumour. Although some standard therapies have been established to improve the cure rate, they remain ineffective for specific individuals. Therefore, it is meaningful to find more novel therapeutic approaches. Macrophage polarisation is extensively involved in the process of tumour development. Recombinant hirudin (rH) affects macrophages and has been researched frequently in clinical trials lately. Our article validated the regulatory role of rH in macrophage polarisation and the mechanism of PAR-1 by collecting clinical samples and subsequently establishing a cellular model to provide a scientifically supported perspective for discovering new therapeutic approaches. METHOD: We assessed the expression of macrophage polarisation markers, cytokines and PAR-1 in clinical samples. We established a cell model by co-culture with THP-1 and OCI-Ly10 cell. We determined the degree of cell polarisation and expression of validation cytokines by flow cytometry, ELISA, and RT-qPCR to confirm the success of the cell model. Subsequently, different doses of rH were added to discover the function of rH on cell polarisation. We confirmed the mechanism of PAR-1 in macrophage polarisation by transfecting si-PAR-1 and pcDNA3.1-PAR-1. RESULTS: We found higher expression of M2 macrophage markers (CD163 + CMAF+) and PAR-1 in 32 DLBCL samples. After inducing monocyte differentiation into M0 macrophages and co-culturing with OCI-Ly10 lymphoma cells, we found a trend of these expressions in the cell model consistent with the clinical samples. Subsequently, we discovered that rH promotes the polarisation of M1 macrophages but inhibits the polarisation of M2 macrophages. We also found that PAR-1 regulates macrophage polarisation, inhibiting cell proliferation, migration, invasion and angiogenic capacity. CONCLUSION: rH inhibits macrophage polarisation towards the M2 type and PAR-1 regulates polarisation, proliferation, migration, invasion, and angiogenesis of DLBCL-associated macrophages.


Asunto(s)
Hirudinas , Linfoma de Células B Grandes Difuso , Macrófagos , Receptor PAR-1 , Proteínas Recombinantes , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/genética , Humanos , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Receptor PAR-1/metabolismo , Receptor PAR-1/genética , Hirudinas/farmacología , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Línea Celular Tumoral , Técnicas de Cocultivo , Polaridad Celular/efectos de los fármacos , Femenino , Masculino , Citocinas/metabolismo , Persona de Mediana Edad , Células THP-1 , Anciano
2.
Biomaterials ; 311: 122670, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38941685

RESUMEN

After orthopedic surgeries, such as hip replacement, many patients are prone to developing deep vein thrombosis (DVT), which in severe cases can lead to fatal pulmonary embolism or major bleeding. Clinical intervention with high-dose anticoagulant therapy inevitably carries the risk of bleeding. Therefore, a targeted drug delivery system that adjusts local DVT lesions and potentially reduces drug dosage and toxic side effects important. In this study, we developed a targeted drug delivery platelet-derived nanoplatform (AMSNP@PM-rH/A) for DVT treatment that can simultaneously deliver a direct thrombin inhibitor (DTI) Recombinant Hirudin (rH), and the Factor Xa inhibitor Apixaban (A) by utilizing Aminated mesoporous silica nanoparticles (AMSNP). This formulation exhibits improved biocompatibility and blood half-life and can effectively eliminate deep vein thrombosis lesions and achieve therapeutic effects at half the dosage. Furthermore, we employed various visualization techniques to capture the targeted accumulation and release of a platelet membrane (PM) coating in deep vein thrombosis and explored its potential targeting mechanism.


Asunto(s)
Plaquetas , Hirudinas , Piridonas , Trombosis de la Vena , Trombosis de la Vena/tratamiento farmacológico , Plaquetas/efectos de los fármacos , Plaquetas/metabolismo , Piridonas/química , Piridonas/uso terapéutico , Piridonas/farmacología , Animales , Humanos , Hirudinas/química , Hirudinas/farmacología , Pirazoles/química , Pirazoles/uso terapéutico , Pirazoles/farmacología , Nanopartículas/química , Sistemas de Liberación de Medicamentos , Nanotecnología/métodos , Masculino , Dióxido de Silicio/química , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ratones , Membrana Celular/metabolismo , Membrana Celular/efectos de los fármacos , Proteínas Recombinantes/uso terapéutico , Inhibidores del Factor Xa/uso terapéutico , Inhibidores del Factor Xa/química , Inhibidores del Factor Xa/farmacología
3.
Nat Commun ; 15(1): 3977, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730234

RESUMEN

Potent and selective inhibition of the structurally homologous proteases of coagulation poses challenges for drug development. Hematophagous organisms frequently accomplish this by fashioning peptide inhibitors combining exosite and active site binding motifs. Inspired by this biological strategy, we create several EXACT inhibitors targeting thrombin and factor Xa de novo by linking EXosite-binding aptamers with small molecule ACTive site inhibitors. The aptamer component within the EXACT inhibitor (1) synergizes with and enhances the potency of small-molecule active site inhibitors by many hundred-fold (2) can redirect an active site inhibitor's selectivity towards a different protease, and (3) enable efficient reversal of inhibition by an antidote that disrupts bivalent binding. One EXACT inhibitor, HD22-7A-DAB, demonstrates extraordinary anticoagulation activity, exhibiting great potential as a potent, rapid onset anticoagulant to support cardiovascular surgeries. Using this generalizable molecular engineering strategy, selective, potent, and rapidly reversible EXACT inhibitors can be created against many enzymes through simple oligonucleotide conjugation for numerous research and therapeutic applications.


Asunto(s)
Aptámeros de Nucleótidos , Dominio Catalítico , Hirudinas , Trombina , Humanos , Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Trombina/antagonistas & inhibidores , Trombina/metabolismo , Trombina/química , Hirudinas/química , Hirudinas/farmacología , Anticoagulantes/farmacología , Anticoagulantes/química , Factor Xa/metabolismo , Factor Xa/química , Inhibidores del Factor Xa/química , Inhibidores del Factor Xa/farmacología , Animales , Sitios de Unión , Coagulación Sanguínea/efectos de los fármacos
4.
Macromol Biosci ; 24(8): e2400015, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38695486

RESUMEN

Vascular transplantation is a common treatment for Cardiovascular disease (CVD). However, the mismatch of mechanical, structural, or microenvironmental properties of materials limits the clinical application. Therefore, the functional construction of artificial vessels or other blood contact materials remains an urgent challenge. In this paper, the composite nanofibers of polycaprolactone (PCL) with dopamine and polyethylenimine (PEI) coating are first prepared, which are further self-assembled by anticoagulant hirudin (rH) and antimicrobial peptide (AMP) of HHC36 through layer-by-layer (LBL) method. The results of FTIR and XPS analysis show that hirudin and AMP are successfully loaded on PEI-PDA/PCL nanofibers and the hydrophilicity is improved. They also show good mechanical properties that the ultimate tensile strength and elongation at break are better than natural blood vessels. The antibacterial results show that the antibacterial effect is still 93% against E. coli on the fifth day because of the stable and continuous release of HHC36 and rH. The performance of anticoagulant activity also exhibited the same results, which APTT is even 9.7s longer in the experimental group than the control group on the fifth day. The novel materials would be effectively solve the formation of thrombosis around artificial blood vessel grafts and the treatment of inflammation.


Asunto(s)
Antibacterianos , Anticoagulantes , Escherichia coli , Nanofibras , Poliésteres , Anticoagulantes/farmacología , Anticoagulantes/química , Antibacterianos/farmacología , Antibacterianos/química , Escherichia coli/efectos de los fármacos , Poliésteres/química , Poliésteres/farmacología , Nanofibras/química , Humanos , Polietileneimina/química , Polietileneimina/farmacología , Hirudinas/farmacología , Hirudinas/química , Dopamina/farmacología , Dopamina/química , Materiales Biocompatibles Revestidos/química , Materiales Biocompatibles Revestidos/farmacología , Resistencia a la Tracción
5.
PeerJ ; 12: e17039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38590700

RESUMEN

Background: Acute pulmonary embolism (APE) is classified as a subset of diseases that are characterized by lung obstruction due to various types of emboli. Current clinical APE treatment using anticoagulants is frequently accompanied by high risk of bleeding complications. Recombinant hirudin (R-hirudin) has been found to have antithrombotic properties. However, the specific impact of R-hirudin on APE remains unknown. Methods: Sprague-Dawley (SD) rats were randomly assigned to five groups, with thrombi injections to establish APE models. Control and APE group rats were subcutaneously injected with equal amounts of dimethyl sulfoxide (DMSO). The APE+R-hirudin low-dose, middle-dose, and high-dose groups received subcutaneous injections of hirudin at doses of 0.25 mg/kg, 0.5 mg/kg, and 1.0 mg/kg, respectively. Each group was subdivided into time points of 2 h, 6 h, 1 d, and 4 d, with five animals per point. Subsequently, all rats were euthanized, and serum and lung tissues were collected. Following the assessment of right ventricular pressure (RVP) and mean pulmonary artery pressure (mPAP), blood gas analysis, enzyme-linked immunosorbnent assay (ELISA), pulmonary artery vascular testing, hematoxylin-eosin (HE) staining, Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling (TUNEL) staining, immunohistochemistry, and Western blot experiments were conducted. Results: R-hirudin treatment caused a significant reduction of mPAP, RVP, and Malondialdehyde (MDA) content, as well as H2O2 and myeloperoxidase (MPO) activity, while increasing pressure of oxygen (PaO2) and Superoxide Dismutase (SOD) activity. R-hirudin also decreased wall area ratio and wall thickness to diameter ratio in APE rat pulmonary arteries. Serum levels of endothelin-1 (ET-1) and thromboxaneB2 (TXB2) decreased, while prostaglandin (6-K-PGF1α) and NO levels increased. Moreover, R-hirudin ameliorated histopathological injuries and reduced apoptotic cells and Matrix metalloproteinase-9 (MMP9), vascular cell adhesion molecule-1 (VCAM-1), p-Extracellular signal-regulated kinase (ERK)1/2/ERK1/2, and p-P65/P65 expression in lung tissues. Conclusion: R-hirudin attenuated pulmonary hypertension and thrombosis in APE rats, suggesting its potential as a novel treatment strategy for APE.


Asunto(s)
Hominidae , Hipertensión Pulmonar , Embolia Pulmonar , Trombosis , Ratas , Animales , Hipertensión Pulmonar/tratamiento farmacológico , Ratas Sprague-Dawley , Hirudinas/farmacología , Peróxido de Hidrógeno/uso terapéutico , Embolia Pulmonar/complicaciones , Trombosis/tratamiento farmacológico
6.
J Stomatol Oral Maxillofac Surg ; 125(3S): 101868, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38588856

RESUMEN

BACKGROUND AND PURPOSE: Hirudin, a potent anticoagulant, is used in traditional Chinese medicine (TCM) to treat thrombotic conditions and prevent postoperative thrombosis. Coagulation-related vascular complications are a common cause of perforator flaps failure. This study explores hirudin's potential to enhance flap growth by mitigating coagulation-related issues. MATERIALS AND METHODS: Patients were divided into GroupⅠ(hirudin group) and GroupⅡ(control). Laboratory tests covered red blood cell count (RBC), hematocrit (HCT), platelet count (PLT), monocyte count (MONO), prothrombin time (PT), activated partial thromboplastin time (APTT), fibrinogen (FIB), and D-Dimer. Clinical parameters, including capillary refill time (CRT), flap swelling, and survival status, were evaluated. Animal experiments used Sprague-Dawley (SD) rats to establish random skin flaps. The experimental side received hirudin injection, while the control side received saline. Flaps were photographed to calculate survival rate, and CD31 immunohistochemical (IHC) analysis was performed to calculate microvessel density (MVD). RESULTS: The study, with 29 patients, found significant CRT differences between groups on postoperative days 2 and 6 (p = 0.027; p = 0.019), favoring GroupⅠ. Swelling severity varied significantly over time; GroupⅡhad more pronounced swelling. GroupⅠshowed superior flap growth with fewer complications, statistically significant (p = 0.033). Specific lab indicators (MONO, PT, and FIB) were significant at certain times. In animal experiments, the experimental side consistently had higher flap survival and slightly increased CD31 expression at various times, with higher MVD on days 2 and 6. CONCLUSIONS: Hirudin enhances flap survival through diverse mechanisms, supporting its role as a complementary approach in perforator flap surgeries.


Asunto(s)
Supervivencia de Injerto , Hirudinas , Colgajo Perforante , Ratas Sprague-Dawley , Animales , Ratas , Hirudinas/administración & dosificación , Hirudinas/farmacología , Masculino , Colgajo Perforante/irrigación sanguínea , Humanos , Femenino , Persona de Mediana Edad , Supervivencia de Injerto/efectos de los fármacos , Adulto
7.
J Ethnopharmacol ; 330: 118257, 2024 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-38677578

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Leeches exhibit robust anticoagulant activity, making them useful for treating cardiovascular diseases in traditional Chinese medicine. Whitmania pigra, the primary source species of leech-derived medicinal compounds in China, has been demonstrated to possess formidable anticoagulant properties. Hirudin-like peptides, recognized as potent thrombin inhibitors, are prevalent in hematophagous leeches. Considering that W. pigra is a nonhematophagic leech, the following question arises: does a hirudin variant exist in this species? AIM OF THE STUDY: In this study we identified the hirudin-encoding gene (WP_HV1) in the W. pigra genome. The goal of this study was to assess its anticoagulant activity and analyze the related mechanisms. MATERIALS AND METHODS: In this study, a hirudin-encoding gene, WP_HV1, was identified from the W. pigra genome, and its accurate coding sequence (CDS) was validated through cloning from cDNA extracted from fresh W. pigra specimens. The structure of WP_HV1 and the amino acids associated with its anticoagulant activity were determined by sequence and structural analysis and prediction of its binding energy to thrombin. E. coli was used for the expression of WP_HV1 and recombinant proteins with various structures and mutants. The anticoagulant activity of the synthesized recombinant proteins was then confirmed using thrombin time (TT). RESULTS: Validation of the WP_HV1 gene was accomplished, and three alternative splices were discovered. The TT of the blank sample exceeded that of the recombinant WP_HV1 sample by 1.74 times (0.05 mg/ml), indicating positive anticoagulant activity. The anticoagulant activity of WP_HV1 was found to be associated with its C-terminal tyrosine, along with the presence of 9 acidic amino acids on both the left and right sides. A significant reduction in the corresponding TT was observed for the mutated amino acids compared to those of the wild type, with decreases of 4.8, 6.6, and 3.9 s, respectively. In addition, the anticoagulant activity of WP_HV1 was enhanced and prolonged for 2.7 s when the lysine-67 residue was mutated to tryptophan. CONCLUSION: Only one hirudin-encoding variant was identified in W. pigra. The active amino acids associated with anticoagulation in WP_HV1 were resolved and validated, revealing a novel source for screening and developing new anticoagulant drugs.


Asunto(s)
Empalme Alternativo , Anticoagulantes , Hirudinas , Sanguijuelas , Hirudinas/farmacología , Hirudinas/genética , Animales , Sanguijuelas/genética , Anticoagulantes/farmacología , Secuencia de Aminoácidos , Trombina/metabolismo , Clonación Molecular , Proteínas Recombinantes/genética
8.
Chem Biol Drug Des ; 103(5): e14533, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38684373

RESUMEN

Hirudin is one of the specific inhibitors of thrombin, which has been confirmed to have strong bioactivities, including inhibiting tumors. However, the function and mechanism of hirudin and protease-activated receptor 1 (PAR-1) in diffuse large B-cell lymphoma (DLBCL) have not been clear. Detecting the expression PAR-1 in DLBCL tissues and cells by RT-qPCR and IHC. Transfected sh-NC, sh-PAR-1, or pcDNA3.1-PAR-1 in DLBCL cells or processed DLBCL cells through added thrombin, Vorapaxar, Recombinant hirudin (RH), or Na2S2O4 and co-culture with EA.hy926. And built DLBCL mice observed tumor growth. Detecting the expression of related genes by RT-qPCR, Western blot, IHC, and immunofluorescence, measured the cellular hypoxia with Hypoxyprobe-1 Kit, and estimated the cell inflammatory factors, proliferation, migration, invasion, and apoptosis by ELISA, CCK-8, flow cytometry, wound-healing and Transwell. Co-immunoprecipitation and pull-down measurement were used to verify the relationship. PAR-1 was highly expressed in DLBCL tissues and cells, especially in SUDHL2. Na2S2O4 induced SUDHL2 hypoxia, and PAR-1 did not influence thrombin-activated hypoxia. PAR-1 could promote SUDHL2 proliferation, migration, and invasion, and it was unrelated to cellular hypoxia. PAR-1 promoted proliferation, migration, and angiogenesis of EA.hy926 or SUDHL2 through up-regulation vascular endothelial growth factor (VEGF). RH inhibited tumor growth, cell proliferation, and migration, promoted apoptosis of DLBCL, and inhibited angiogenesis by down-regulating PAR-1-VEGF. RH inhibits proliferation, migration, and angiogenesis of DLBCL cells by down-regulating PAR-1-VEGF.


Asunto(s)
Apoptosis , Proliferación Celular , Hirudinas , Linfoma de Células B Grandes Difuso , Neovascularización Patológica , Receptor PAR-1 , Proteínas Recombinantes , Factor A de Crecimiento Endotelial Vascular , Humanos , Hirudinas/farmacología , Receptor PAR-1/metabolismo , Receptor PAR-1/antagonistas & inhibidores , Linfoma de Células B Grandes Difuso/metabolismo , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Linfoma de Células B Grandes Difuso/patología , Animales , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Ratones , Línea Celular Tumoral , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Apoptosis/efectos de los fármacos , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/metabolismo , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Angiogénesis
9.
Proc Natl Acad Sci U S A ; 121(11): e2314349121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38442174

RESUMEN

Thrombosis, induced by abnormal coagulation or fibrinolytic systems, is the most common pathology associated with many life-threatening cardio-cerebrovascular diseases. However, first-line anticoagulant drugs suffer from rapid drug elimination and risk of hemorrhagic complications. Here, we developed an in situ formed depot of elastin-like polypeptide (ELP)-hirudin fusion protein with a prodrug-like feature for long-term antithrombotic therapy. Highly secretory expression of the fusion protein was achieved with the assistance of the Ffu312 tag. Integration of hirudin, ELP, and responsive moiety can customize fusion proteins with properties of adjustable in vivo retention and controllable recovery of drug bioactivity. After subcutaneous injection, the fusion protein can form a reservoir through temperature-induced coacervation of ELP and slowly diffuse into the blood circulation. The biological activity of hirudin is shielded due to the N-terminal modification, while the activated key proteases upon thrombus occurrence trigger the cleavage of fusion protein together with the release of hirudin, which has antithrombotic activity to counteract thrombosis. We substantiated that the optimized fusion protein produced long-term antithrombotic effects without the risk of bleeding in multiple animal thrombosis models.


Asunto(s)
Polipéptidos Similares a Elastina , Trombosis , Animales , Fibrinolíticos/farmacología , Hirudinas/genética , Hirudinas/farmacología , Anticoagulantes , Trombosis/tratamiento farmacológico , Trombosis/prevención & control
10.
Mol Biotechnol ; 66(5): 1062-1070, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38184808

RESUMEN

To investigate the inhibitory effect of hirudin on the cell proliferation of human ovarian cancer A2780 cells by preventing thrombin and its underlying molecular mechanism. Cell Counting Kit-8 (CCK-8) method was used to detect the effect of different concentrations of hirudin and thrombin on the cell proliferation of A2780 cells. PAR-1 wild-type overexpression plasmid was constructed utilizing enzyme digestion identification, and it was transferred to A2780 cells. Sequencing and Western blot were used to detect the changes in PAR-1 protein expression. Western blot detection of PKCα protein phosphorylation in A2780 cells was performed. We also implemented quantitative PCR to detect the mRNA expression levels of epithelial-mesenchymal transition (EMT)-related genes, CDH2, Snail, and Vimentin, in A2780 cells. 1 µg/ml hirudin treatment maximally inhibited the promotion of A2780 cell proliferation by thrombin. Hirudin inhibited the binding of thrombin to the N-terminus of PAR-1, hindered PKCα protein phosphorylation in A2780 cells, and downregulated the mRNA expression levels of CDH2, Snail, and Vimentin. In conclusion, hirudin inhibits the cell proliferation of ovarian cancer A2780 cells, and the underlying mechanism may be through downregulating the transcription level of EMT genes, CDH2, Snail, and Vimentin. This study indicates that hirudin may have a therapeutic potential as an anti-cancer agent for ovarian cancer.


Asunto(s)
Proliferación Celular , Transición Epitelial-Mesenquimal , Hirudinas , Neoplasias Ováricas , Humanos , Hirudinas/farmacología , Hirudinas/genética , Femenino , Proliferación Celular/efectos de los fármacos , Neoplasias Ováricas/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Transición Epitelial-Mesenquimal/genética , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-alfa/genética , Receptor PAR-1/genética , Receptor PAR-1/metabolismo , Trombina/farmacología , Trombina/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Fosforilación/efectos de los fármacos , Vimentina/metabolismo , Vimentina/genética
11.
Biochem Biophys Res Commun ; 696: 149473, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38241814

RESUMEN

The saliva of the medicinal leech contains various anticoagulants. Some of them, such as hirudin, are well known. However, it is reasonable to believe that not all anticoagulant proteins from medicinal leech saliva have been identified. We previously performed a comprehensive study of the transcriptome, genome, and proteome of leech salivary gland cells, which led to the discovery of several previously unknown hypothetical proteins that may have anticoagulant properties. Subsequently, we obtained a series of recombinant proteins and investigated their impact on coagulation in in vitro assays. We identified a previously undescribed protein that exhibited a high ability to suppress coagulation. The His-tagged recombinant protein was expressed in Escherichia coli and purified using metal chelate chromatography. To determine its activity, commonly used coagulation methods were used: activated partial thromboplastin time, prothrombin time, and thrombin inhibition clotting assay. Clotting and chromogenic assays for factor Xa inhibition were performed to evaluate anti-Xa activity. We used recombinant hirudin as a control anticoagulant protein in all experiments. The new protein showed significantly greater inhibition of coagulation than hirudin at the same molar concentrations in the activated partial thrombin time assay. However, hirudin demonstrated better results in the direct thrombin inhibition test, although the tested protein also exhibited the ability to inhibit thrombin. The chromogenic analysis of factor Xa inhibition revealed no activity, whereas the clotting test for factor Xa showed the opposite result. Thus, a new powerful anticoagulant protein has been discovered in the medicinal leech. This protein is homologous to antistatin, with 28 % identical amino acid residues. The recombinant protein was expressed in E. coli. This protein is capable of directly inhibiting thrombin, and based on indirect evidence, other proteases of the blood coagulation cascade have been identified.


Asunto(s)
Anticoagulantes , Hirudinas , Anticoagulantes/farmacología , Hirudinas/farmacología , Hirudinas/genética , Hirudinas/metabolismo , Trombina/metabolismo , Factor Xa , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Recombinantes/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 326(3): L213-L225, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38113296

RESUMEN

Neonates with congenital diaphragmatic hernia (CDH) frequently require cardiopulmonary bypass and systemic anticoagulation. We previously demonstrated that even subtherapeutic heparin impairs lung growth and function in a murine model of compensatory lung growth (CLG). The direct thrombin inhibitors (DTIs) bivalirudin and argatroban preserved growth in this model. Although DTIs are increasingly used for systemic anticoagulation clinically, patients with CDH may still receive heparin. In this experiment, lung endothelial cell proliferation was assessed following treatment with heparin-alone or mixed with increasing concentrations of bivalirudin or argatroban. The effects of subtherapeutic heparin with or without DTIs in the CLG model were also investigated. C57BL/6J mice underwent left pneumonectomy and subcutaneous implantation of osmotic pumps. Pumps were preloaded with normal saline, bivalirudin, or argatroban; treated animals received daily intraperitoneal low-dose heparin. In vitro, heparin-alone decreased endothelial cell proliferation and increased apoptosis. The effect of heparin on proliferation, but not apoptosis, was reversed by the addition of bivalirudin and argatroban. In vivo, low-dose heparin decreased lung volume compared with saline-treated controls. All three groups that received heparin demonstrated decreased lung function on pulmonary function testing and impaired exercise performance on treadmill tolerance testing. These findings correlated with decreases in alveolarization, vascularization, angiogenic signaling, and gene expression in the heparin-exposed groups. Together, these data suggest that bivalirudin and argatroban fail to reverse the inhibitory effects of subtherapeutic heparin on lung growth and function. Clinical studies on the impact of low-dose heparin with DTIs on CDH outcomes are warranted.NEW & NOTEWORTHY Infants with pulmonary hypoplasia frequently require cardiopulmonary bypass and systemic anticoagulation. We investigate the effects of simultaneous exposure to heparin and direct thrombin inhibitors (DTIs) on lung growth and pulmonary function in a murine model of compensatory lung growth (CGL). Our data suggest that DTIs fail to reverse the inhibitory effects of subtherapeutic heparin on lung growth and function. Clinical studies on the impact of heparin with DTIs on clinical outcomes are thus warranted.


Asunto(s)
Antitrombinas , Arginina/análogos & derivados , Heparina , Ácidos Pipecólicos , Sulfonamidas , Humanos , Animales , Ratones , Heparina/farmacología , Heparina/uso terapéutico , Antitrombinas/farmacología , Antitrombinas/uso terapéutico , Anticoagulantes/uso terapéutico , Neumonectomía , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Hirudinas/farmacología , Fibrinolíticos , Pulmón/metabolismo , Fragmentos de Péptidos/farmacología , Proteínas Recombinantes/farmacología , Trombina/farmacología , Trombina/metabolismo
13.
Acta cir. bras ; 34(1): e20190010000006, 2019. graf
Artículo en Inglés | LILACS | ID: biblio-983690

RESUMEN

Abstract Purpose: To investigate whether hirudin exerts its antithrombin action to decrease the ratio of Human Microvascular Endothelial Cells (HMVECs) apoptosis. Methods: Human microvascular endothelial cells (HMVECs) cultured in the third and fifth generations were used. HMVECs were divided into normal group, thrombin group (T group), natrual hirudin group (H group), thrombin + natrual hirudin group (T + H group), AG490 group, thrombin + AG490 group (T + AG490 group), natrual hirudin + AG490 group (H + AG490 group), thrombin + natural hirudin + AG490 (T + H + AG490 group).Apart from the normal group, the other groups were exposed to the relevant drugs for 24 hours.HMVEC apoptosis was assessed by flow cytometric and double Immunofluorescence of phosphorylation of JAK (P-JAK2) and TUNEL assay. Results: Compared with the normal group, in thrombin group the HMVECs apoptosis rate were significantly increased (P<0.05).The results indicated that the index of apoptosis and the apoptosis rate were improved in cultures treated by natural hirudin (T + H group), relative to cultures with thrombin only (T group). We found that the index of apoptosis and the apoptosis rate in the AG490 + thrombin group were higher than that in the hirudin + thrombin group (P<0.05). Double Immunofluorescence of p-JAK2 and TUNEL assays showed that cells were double positive for P-JAK2 uptake and TUNEL detection liquid binding. Conclusion: The natural hirudin and JAK2/STATs signal inhibitor AG490 could block the effects of thrombin. Natural hirudin could attenuate HMVECs apoptosis via antagonizing thrombin and it is suggested that this effect may occur by blocking the JAK2/STATs signaling pathway and this signaling pathways appears to be not the only pathway.


Asunto(s)
Humanos , Trombina/efectos de los fármacos , Antitrombinas/farmacología , Hirudinas/farmacología , Apoptosis/efectos de los fármacos , Células Endoteliales/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Microvasos/efectos de los fármacos , Microvasos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA