Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.782
Filtrar
Más filtros

Intervalo de año de publicación
1.
Methods Mol Biol ; 2847: 193-204, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39312145

RESUMEN

Riboswitches are naturally occurring regulatory segments of RNA molecules that modulate gene expression in response to specific ligand binding. They serve as a molecular 'switch' that controls the RNA's structure and function, typically influencing the synthesis of proteins. Riboswitches are unique because they directly interact with metabolites without the need for proteins, making them attractive tools in synthetic biology and RNA-based therapeutics. In synthetic biology, riboswitches are harnessed to create biosensors and genetic circuits. Their ability to respond to specific molecular signals allows for the design of precise control mechanisms in genetic engineering. This specificity is particularly useful in therapeutic applications, where riboswitches can be synthetically designed to respond to disease-specific metabolites, thereby enabling targeted drug delivery or gene therapy. Advancements in designing synthetic riboswitches for RNA-based therapeutics hinge on sophisticated computational techniques, which are described in this chapter. The chapter concludes by underscoring the potential of computational strategies in revolutionizing the design and application of synthetic riboswitches, paving the way for advanced RNA-based therapeutic solutions.


Asunto(s)
Biología Computacional , Riboswitch , Biología Sintética , Riboswitch/genética , Biología Sintética/métodos , Biología Computacional/métodos , Humanos , ARN/genética , Ingeniería Genética/métodos , Aptámeros de Nucleótidos/genética , Ligandos , Conformación de Ácido Nucleico
2.
Biomaterials ; 313: 122796, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39226654

RESUMEN

Chemotherapy-induced cellular senescence leads to an increased proportion of cancer stem cells (CSCs) in breast cancer (BC), contributing to recurrence and metastasis, while effective means to clear them are currently lacking. Herein, we aim to develop new approaches for selectively killing senescent-escape CSCs. High CD276 (95.60%) expression in multidrug-resistant BC cells, facilitates immune evasion by low-immunogenic senescent escape CSCs. CALD1, upregulated in ADR-resistant BC, promoting senescent-escape of CSCs with an anti-apoptosis state and upregulating CD276, PD-L1 to promote chemoresistance and immune escape. We have developed a controlled-released thermosensitive hydrogel containing pH- responsive anti-CD276 scFV engineered biomimetic nanovesicles to overcome BC in primary, recurrent, metastatic and abscopal humanized mice models. Nanovesicles coated anti-CD276 scFV selectively fuses with cell membrane of senescent-escape CSCs, then sequentially delivers siCALD1 and ADR due to pH-responsive MnP shell. siCALD1 together with ADR effectively induce apoptosis of CSCs, decrease expression of CD276 and PD-L1, and upregulate MHC I combined with Mn2+ to overcome chemoresistance and promote CD8+T cells infiltration. This combined therapeutic approach reveals insights into immune surveillance evasion by senescent-escape CSCs, offering a promising strategy to immunotherapy effectiveness in cancer therapy.


Asunto(s)
Neoplasias de la Mama , Senescencia Celular , Resistencia a Antineoplásicos , Células Madre Neoplásicas , Humanos , Animales , Neoplasias de la Mama/patología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/terapia , Resistencia a Antineoplásicos/efectos de los fármacos , Femenino , Células Madre Neoplásicas/efectos de los fármacos , Células Madre Neoplásicas/metabolismo , Células Madre Neoplásicas/patología , Senescencia Celular/efectos de los fármacos , Línea Celular Tumoral , Ratones , Materiales Biomiméticos/química , Materiales Biomiméticos/farmacología , Ingeniería Genética/métodos , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Nanopartículas/química , Anticuerpos de Cadena Única/química , Escape del Tumor/efectos de los fármacos , Antígeno B7-H1/metabolismo , Apoptosis/efectos de los fármacos , Biomimética/métodos , Antígenos B7
3.
Methods Mol Biol ; 2850: 345-363, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363081

RESUMEN

Gene Doctoring is a genetic modification technique for E. coli and related bacteria, in which the Red-recombinase from bacteriophage λ mediates chromosomal integration of a fragment of DNA by homologous recombination (known as recombineering). In contrast to the traditional recombineering method, the integrated fragment for Gene Doctoring is supplied on a donor plasmid rather than as a linear DNA. This protects the DNA from degradation, facilitates transformation, and ensures multiple copies are present per cell, increasing the efficiency and making the technique particularly suitable for strains that are difficult to modify. Production of the donor plasmid has, until recently, relied on traditional cloning techniques that are inflexible, tedious, and inefficient. This protocol describes a procedure for Gene Doctoring combined with Golden Gate assembly of a donor plasmid, using a custom-designed plasmid backbone, for rapid and simple production of complex, multi-part assemblies. Insertion of a gene for superfolder green fluorescent protein, with selection by tetracycline resistance, into E. coli strain MG1655 is used as an example but in principle the method can be tailored for virtually any modification in a wide range of bacteria.


Asunto(s)
Escherichia coli , Plásmidos , Plásmidos/genética , Escherichia coli/genética , Ingeniería Genética/métodos , Bacteriófago lambda/genética , Recombinación Homóloga , Vectores Genéticos/genética , Clonación Molecular/métodos
4.
Methods Mol Biol ; 2850: 365-375, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363082

RESUMEN

Vibrio natriegens is a gram-negative bacterium, which has received increasing attention due to its very fast growth with a doubling time of under 10 min under optimal conditions. To enable a wide range of projects spanning from basic research to biotechnological applications, we developed NT-CRISPR as a new method for genome engineering. This book chapter provides a step-by-step protocol for the use of this previously published tool. NT-CRISPR combines natural transformation with counterselection through CRISPR-Cas9. Thereby, genomic regions can be deleted, foreign sequences can be integrated, and point mutations can be introduced. Furthermore, up to three simultaneous modifications are possible.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Genoma Bacteriano , Vibrio , Vibrio/genética , Edición Génica/métodos , Ingeniería Genética/métodos , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética
5.
Methods Mol Biol ; 2850: 451-465, 2025.
Artículo en Inglés | MEDLINE | ID: mdl-39363087

RESUMEN

Modern synthetic biology requires fast and efficient cloning strategies for the assembly of new transcription units or entire pathways. Modular Cloning (MoClo) is a standardized synthetic biology workflow, which has tremendously simplified the assembly of genetic elements for transgene expression. MoClo is based on Golden Gate Assembly and allows to combine genetic elements of a library through a hierarchical syntax-driven pipeline. Here we describe the assembly of a genetic cassette for transgene expression in the single-celled model alga Chlamydomonas reinhardtii.


Asunto(s)
Chlamydomonas reinhardtii , Clonación Molecular , Biología Sintética , Clonación Molecular/métodos , Chlamydomonas reinhardtii/genética , Biología Sintética/métodos , Transgenes , Vectores Genéticos/genética , Ingeniería Genética/métodos , Chlamydomonas/genética , Biblioteca de Genes
6.
Nat Commun ; 15(1): 8752, 2024 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-39384772

RESUMEN

As synthetic biology expands, creating "drag-and-drop" regulatory tools that can achieve diverse regulatory outcomes are paramount. Herein, we develop a approach for engineering complex post-transcriptional control by rewiring the Carbon Storage Regulatory (Csr) Network of Escherichia coli. We co-opt native interactions of the Csr Network to establish post-transcriptional logic gates and achieve complex bacterial regulation. First, we rationally engineer RNA-protein interactions to create a genetic toolbox of 12 BUFFER Gates that achieves a 15-fold range of expression. Subsequently, we develop a Csr-regulated NOT Gate by integrating a cognate 5' UTR that is natively Csr-activated into our platform. We then deploy the BUFFER and NOT gates to build a bi-directional regulator, two input Boolean Logic gates OR, NOR, AND and NAND and a pulse-generating circuit. Last, we port our Csr-regulated BUFFER Gate into three industrially relevant bacteria simply by leveraging the conserved Csr Network in each species.


Asunto(s)
Proteínas de Escherichia coli , Escherichia coli , Regulación Bacteriana de la Expresión Génica , Redes Reguladoras de Genes , Biología Sintética , Escherichia coli/genética , Escherichia coli/metabolismo , Biología Sintética/métodos , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regiones no Traducidas 5'/genética , Ingeniería Genética/métodos
7.
World J Microbiol Biotechnol ; 40(11): 339, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39358476

RESUMEN

Plant pathogens and other biological pests represent significant obstacles to crop Protection worldwide. Even though there are many effective conventional methods for controlling plant diseases, new methods that are also effective, environmentally safe, and cost-effective are required. While plant breeding has traditionally been used to manipulate the plant genome to develop resistant cultivars for controlling plant diseases, the emergence of genetic engineering has introduced a completely new approach to render plants resistant to bacteria, nematodes, fungi, and viruses. The RNA interference (RNAi) approach has recently emerged as a potentially useful tool for mitigating the inherent risks associated with the development of conventional transgenics. These risks include the use of specific transgenes, gene control sequences, or marker genes. Utilizing RNAi to silence certain genes is a promising solution to this dilemma as disease-resistant transgenic plants can be generated within a legislative structure. Recent investigations have shown that using target double stranded RNAs via an effective vector system can produce significant silencing effects. Both dsRNA-containing crop sprays and transgenic plants carrying RNAi vectors have proven effective in controlling plant diseases that threaten commercially significant crop species. This article discusses the methods and applications of the most recent RNAi technology for reducing plant diseases to ensure sustainable agricultural yields.


Asunto(s)
Biotecnología , Resistencia a la Enfermedad , Enfermedades de las Plantas , Plantas Modificadas Genéticamente , Interferencia de ARN , Enfermedades de las Plantas/prevención & control , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente/genética , Resistencia a la Enfermedad/genética , Biotecnología/métodos , Productos Agrícolas/genética , Productos Agrícolas/microbiología , Ingeniería Genética/métodos , ARN Bicatenario/genética , Plantas/genética , Plantas/microbiología , Animales , Vectores Genéticos/genética , Fitomejoramiento/métodos
8.
BMC Microbiol ; 24(1): 392, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379820

RESUMEN

BACKGROUND: Chlamydomonas reinhardtii is gaining recognition as a promising expression system for the production of recombinant proteins. However, its performance as a cellular biofactory remains suboptimal, especially with respect to consistent expression of heterologous genes. Gene silencing mechanisms, position effect, and low nuclear transgene expression are major drawbacks for recombinant protein production in this model system. To unveil the molecular changes following transgene insertion, retention, and expression in this species, we genetically engineered C. reinhardtii wild type strain 137c (strain cc-125 mt+) to express the fluorescent protein mVenus and subsequently analysed its intracellular proteome. RESULTS: The obtained transgenic cell lines showed differences in abundance in more than 400 proteins, with multiple pathways altered post-transformation. Proteins involved in chromatin remodelling, translation initiation and elongation, and protein quality control and transport were found in lower abundance. On the other hand, ribosomal proteins showed higher abundance, a signal of ribosomal stress response. CONCLUSIONS: These results provide new insights into the modifications of C. reinhardtii proteome after transformation, highlighting possible pathways involved in gene silencing. Moreover, this study identifies multiple protein targets for future genetic engineering approaches to improve the prospective use of C. reinhardtii as cell biofactory for industrial applications.


Asunto(s)
Chlamydomonas reinhardtii , Ingeniería Genética , Proteoma , Proteómica , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Proteómica/métodos , Ingeniería Genética/métodos , Proteoma/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transgenes , Silenciador del Gen
9.
Microb Cell Fact ; 23(1): 268, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39379966

RESUMEN

Marine cyanobacteria such as Picosynechococcus sp. (formerly called Synechococcus sp.) PCC 7002 are promising chassis for photosynthetic production of commodity chemicals with low environmental burdens. Genetic engineering of cyanobacteria conventionally employs antibiotic resistance markers. However, limited availability of antibiotic-resistant markers is a problem for highly multigenic strain engineering. Although several markerless genetic manipulation methods have been developed for PCC 7002, they often lack versatility due to the requirement of gene disruption in the host strain. To achieve markerless transformation in Synechococcus sp. with no requirements for the host strain, this study developed a method in which temporarily introduces a mutated phenylalanyl-tRNA synthetase gene (pheS) into the genome for counter selection. Amino acid substitutions in the PheS that cause high susceptibility of PCC 7002 to the phenylalanine analog p-chlorophenylalanine were examined, and the combination of T261A and A303G was determined as the most suitable mutation. The mutated PheS-based selection was utilized for the markerless knockout of the nblA gene in PCC 7002. In addition, the genetic construct containing the lldD and lldP genes from Escherichia coli was introduced into the ldhA gene site using the counter selection strategy, resulting in a markerless recombinant strain. The repeatability of this method was demonstrated by the double markerless knockin recombinant strain, suggesting it will be a powerful tool for multigenic strain engineering of cyanobacteria.


Asunto(s)
Synechococcus , Synechococcus/genética , Synechococcus/metabolismo , Synechococcus/crecimiento & desarrollo , Fenilalanina-ARNt Ligasa/genética , Fenilalanina-ARNt Ligasa/metabolismo , Ingeniería Genética/métodos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación
10.
Theranostics ; 14(16): 6409-6425, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39431008

RESUMEN

Background: Inducing immunogenic cell death (ICD) is a promising strategy to enhance immune responses for immune checkpoint blockade (ICB) therapy, but the lack of a simple and effective platform to integrate ICD and ICB therapy limits their clinical application. Methods: Here, we developed programmed cell death protein 1 (PD1)-overexpressing genetically engineered nanovesicles (NVs)-coated curcumin (Cur)-loaded poly (lactic-co-poly-polyglycolic acid) nanoparticles (PD1@Cur-PLGA) to integrate ICD and ICB therapy for enhancing tumor immunotherapy. Results: Genetically engineered NVs greatly enhanced the tumor targeting of nanoparticles, and the PD1 on NVs dramatically blocked the PD1/PDL1 signaling pathway and stimulated antitumor immune responses. Meanwhile, the delivered Cur successfully induced tumor cell apoptosis and activated ICD by inhibiting NF-κB phosphorylation and Bcl-2 protein expression and activating caspase and Bax apoptotic signaling. By synergizing the ICD effect of Cur and the PD1/PDL1 axis blocking function of genetically engineered NVs, the PD1@Cur-PLGA enhanced the intratumoral infiltration rate of mature dendritic cells and CD8+ T cells in tumor tissues, resulting in significantly inhibiting tumor growth in breast and prostate tumor-bearing mouse models. Conclusion: This synergistic ICD and ICB therapy based on genetically engineered NVs provides a low-cost, safe, and effective strategy to enhance cancer immunotherapy.


Asunto(s)
Curcumina , Inmunoterapia , Nanopartículas , Receptor de Muerte Celular Programada 1 , Animales , Inmunoterapia/métodos , Ratones , Nanopartículas/química , Receptor de Muerte Celular Programada 1/metabolismo , Curcumina/farmacología , Curcumina/química , Curcumina/uso terapéutico , Línea Celular Tumoral , Humanos , Ingeniería Genética/métodos , Muerte Celular Inmunogénica/efectos de los fármacos , Apoptosis/efectos de los fármacos , Antígeno B7-H1/metabolismo , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Femenino , Masculino , Inhibidores de Puntos de Control Inmunológico/farmacología , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos
11.
Bioresour Technol ; 413: 131553, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39362347

RESUMEN

Worsening environmental conditions make lactic acid a sustainable alternative to petroleum-based plastics. This study created a genetically-engineered strain Lactiplantibacillus pentosus PeL containing a disrupted L-lactate dehydrogenase gene to produce high yield and optically pure D-lactic acid. Cellobiose was identified as the optimal sugar in the single carbon source test, yielding the highest lactic acid. In 5-L fermentation tests, pretreated wood chips hydrolysate was the best lignocellulosic substrate for PeL, resulting in a D-lactic acid yield of 900.7 ± 141.4 mg/g of consumed sugars with an optical purity of 99.8 ± 0.0 %. Gradually scaled-up fermentations using this substrate were achieved in 100-, and 9,000-L fermenters; PeL produced remarkably high D-lactic acid yields of 836.3 ± 11.9 and 915.9 ± 4.4 mg/g of consumed sugars, with optical purities of 95.0 ± 0.0 % and 93.8 ± 0.2 %, respectively. This study is the pioneer in demonstrating economical and sustainable ton-scale production of D-lactic acid.


Asunto(s)
Biomasa , Ácido Láctico , Ácido Láctico/metabolismo , Fermentación , Lignina/metabolismo , Agricultura/métodos , Ingeniería Genética/métodos , Madera , L-Lactato Deshidrogenasa/metabolismo , Celobiosa/metabolismo
12.
Int J Mol Sci ; 25(19)2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39408696

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapy has achieved notable success in treating hematological cancers but faces significant challenges in solid-tumor treatment and overall efficacy. Key limitations include T-cell exhaustion, tumor relapse, immunosuppressive tumor microenvironments (TME), immunogenicity, and antigen heterogeneity. To address these issues, various genetic engineering strategies have been proposed. Approaches such as overexpression of transcription factors or metabolic armoring and dynamic CAR regulation are being explored to improve CAR T-cell function and safety. Other efforts to improve CAR T-cell efficacy in solid tumors include targeting novel antigens or developing alternative strategies to address antigen diversity. Despite the promising preclinical results of these solutions, challenges remain in translating CAR T-cell therapies to the clinic to enable economically viable access to these transformative medicines. The efficiency and scalability of autologous CAR T-cell therapy production are hindered by traditional, manual processes which are costly, time-consuming, and prone to variability and contamination. These high-cost, time-intensive processes have complex quality-control requirements. Recent advancements suggest that smaller, decentralized solutions such as microbioreactors and automated point-of-care systems could improve production efficiency, reduce costs, and shorten manufacturing timelines, especially when coupled with innovative manufacturing methods such as transposons and lipid nanoparticles. Future advancements may include harmonized consumables and AI-enabled technologies, which promise to streamline manufacturing, reduce costs, and enhance production quality.


Asunto(s)
Ingeniería Genética , Inmunoterapia Adoptiva , Neoplasias , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/métodos , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/inmunología , Ingeniería Genética/métodos , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/genética , Microambiente Tumoral , Linfocitos T/inmunología , Linfocitos T/metabolismo , Animales
13.
J Nanobiotechnology ; 22(1): 615, 2024 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-39385196

RESUMEN

Focused ultrasound ablation surgery (FUAS) is a minimally invasive treatment option that has been utilized in various tumors. However, its clinical advancement has been hindered by issues such as low safety and efficiency, single image guidance mode, and postoperative tumor residue. To address these limitations, this study aimed to develop a novel multi-functional gas-producing engineering bacteria biological targeting cooperative system. Pulse-focused ultrasound (PFUS) could adjust the ratio of thermal effect to non-thermal effect by adjusting the duty cycle, and improve the safety and effectiveness of treatment.The genetic modification of Escherichia coli (E.coli) involved the insertion of an acoustic reporter gene to encode gas vesicles (GVs), resulting in gas-producing E.coli (GVs-E.coli) capable of targeting tumor anoxia. GVs-E.coli colonized and proliferated within the tumor while the GVs facilitated ultrasound imaging and cooperative PFUS. Additionally, multifunctional cationic polyethyleneimine (PEI)-poly (lactic-co-glycolic acid) (PLGA) nanoparticles (PEI-PLGA/EPI/PFH@Fe3O4) containing superparamagnetic iron oxide (SPIO, Fe3O4), perfluorohexane (PFH), and epirubicin (EPI) were developed. These nanoparticles offered synergistic PFUS, supplementary chemotherapy, and multimodal imaging capabilities.GVs-E.coli effectively directed the PEI-PLGA/EPI/PFH@Fe3O4 to accumulate within the tumor target area by means of electrostatic adsorption, resulting in a synergistic therapeutic impact on tumor eradication.In conclusion, GVs-E.coli-mediated multi-functional nanoparticles can synergize with PFUS and chemotherapy to effectively treat tumors, overcoming the limitations of current FUAS therapy and improving safety and efficacy. This approach presents a promising new strategy for tumor therapy.


Asunto(s)
Escherichia coli , Imagen Multimodal , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Animales , Escherichia coli/efectos de los fármacos , Ratones , Imagen Multimodal/métodos , Línea Celular Tumoral , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Imagen por Resonancia Magnética/métodos , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Fluorocarburos/química , Polietileneimina/química , Humanos , Ingeniería Genética/métodos , Ratones Endogámicos BALB C , Técnicas Fotoacústicas/métodos , Femenino , Nanopartículas/química , Epirrubicina/farmacología , Epirrubicina/uso terapéutico , Epirrubicina/química , Ácido Poliglicólico/química , Ácido Láctico/química , Ultrasonido Enfocado de Alta Intensidad de Ablación/métodos
14.
J Vis Exp ; (211)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39311601

RESUMEN

Excitable cells such as neuronal and muscle cells can be primary targets in rapidly emerging electroporation-based treatments. However, they can be affected by electric pulses even in therapies where they are not the primary targets, and this can cause adverse side effects. Therefore, to optimize the electroporation-based treatments of excitable and non-excitable tissues, there is a need to study the effects of electric pulses on excitable cells, their ion channels, and excitability in vitro. For this purpose, a protocol was developed for optical monitoring of changes in action potential generation due to electroporation on a simple excitable cell model of genetically engineered tet-on spiking HEK cells. With the use of a fluorescent potentiometric dye, the changes in transmembrane voltage were monitored under a fluorescence microscope, and relevant parameters of cell responses were extracted automatically with a MATLAB application. This way, the excitable cell responses to different electric pulses and the interplay between excitation and electroporation could be efficiently evaluated.


Asunto(s)
Potenciales de Acción , Electroporación , Electroporación/métodos , Humanos , Células HEK293 , Potenciales de Acción/fisiología , Ingeniería Genética/métodos , Microscopía Fluorescente/métodos , Colorantes Fluorescentes/química
15.
PLoS Genet ; 20(9): e1011384, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39231196

RESUMEN

Lytic bacteriophages hold substantial promise in medical and biotechnological applications. Therefore a comprehensive understanding of phage infection mechanisms is crucial. CRISPR-Cas systems offer a way to explore these mechanisms via site-specific phage mutagenesis. However, phages can resist Cas-mediated cleavage through extensive DNA modifications like cytosine glycosylation, hindering mutagenesis efficiency. Our study utilizes the eukaryotic enzyme NgTET to temporarily reduce phage DNA modifications, facilitating Cas nuclease cleavage and enhancing mutagenesis efficiency. This approach enables precise DNA targeting and seamless point mutation integration, exemplified by deactivating specific ADP-ribosyltransferases crucial for phage infection. Furthermore, by temporally removing DNA modifications, we elucidated the effects of these modifications on T4 phage infections without necessitating gene deletions. Our results present a strategy enabling the investigation of phage epigenome functions and streamlining the engineering of phages with cytosine DNA modifications. The described temporal modulation of the phage epigenome is valuable for synthetic biology and fundamental research to comprehend phage infection mechanisms through the generation of mutants.


Asunto(s)
Bacteriófagos , Sistemas CRISPR-Cas , ADN Viral , Epigenoma , ADN Viral/genética , Bacteriófagos/genética , Ingeniería Genética/métodos , Bacteriófago T4/genética , Mutagénesis Sitio-Dirigida/métodos , Escherichia coli/genética , Escherichia coli/virología , Genoma Viral
16.
Sci Rep ; 14(1): 22626, 2024 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349521

RESUMEN

The International Mouse Phenotyping Consortium (IMPC) systematically produces and phenotypes mouse lines with presumptive null mutations to provide insight into gene function. The IMPC now uses the programmable RNA-guided nuclease Cas9 for its increased capacity and flexibility to efficiently generate null alleles in the C57BL/6N strain. In addition to being a valuable novel and accessible research resource, the production of 3313 knockout mouse lines using comparable protocols provides a rich dataset to analyze experimental and biological variables affecting in vivo gene engineering with Cas9. Mouse line production has two critical steps - generation of founders with the desired allele and germline transmission (GLT) of that allele from founders to offspring. A systematic evaluation of the variables impacting success rates identified gene essentiality as the primary factor influencing successful production of null alleles. Collectively, our findings provide best practice recommendations for using Cas9 to generate alleles in mouse essential genes, many of which are orthologs of genes linked to human disease.


Asunto(s)
Edición Génica , Genes Esenciales , Ratones Noqueados , Animales , Ratones , Edición Génica/métodos , Sistemas CRISPR-Cas , Alelos , Ratones Endogámicos C57BL , Masculino , Femenino , Ingeniería Genética/métodos , Fenotipo
17.
Sci Rep ; 14(1): 22568, 2024 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-39343787

RESUMEN

Intracellular delivery of biomolecules is a prerequisite for genetic techniques such as recombinant engineering and genome editing. Realizing the full potential of this technology requires the development of safe and effective methods for delivering protein tools into cells. In this study, we demonstrated the spontaneous internalization of exogenous proteins into intact cells and root tissue of whole plants of Arabidopsis thaliana. We termed this internalization phenomenon as protein Delivery Independent of Vehicles or Equipment (DIVE), which efficiently delivered genome engineering proteins including Cre recombinase and zinc-finger nucleases (ZFN) into plant cells. Using protein DIVE, we achieved less toxic protein delivery than electroporation with up to 94% efficiency in Arabidopsis cell culture and 19% genome modification in Arabidopsis plants that was maintained in regenerated tissue. This work illustrates the potential of protein DIVE for a wide range of applications, including genome engineering in plants.


Asunto(s)
Arabidopsis , Genoma de Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Integrasas/metabolismo , Integrasas/genética , Ingeniería Genética/métodos , Edición Génica/métodos , Nucleasas con Dedos de Zinc/metabolismo , Nucleasas con Dedos de Zinc/genética , Plantas Modificadas Genéticamente
18.
ACS Synth Biol ; 13(9): 2960-2968, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39229974

RESUMEN

N-terminal coding sequence (NCS) influences gene expression by impacting the translation initiation rate. The NCS optimization problem is to find an NCS that maximizes gene expression. The problem is important in genetic engineering. However, current methods for NCS optimization such as rational design and statistics-guided approaches are labor-intensive yield only relatively small improvements. This paper introduces a deep learning/synthetic biology codesigned few-shot training workflow for NCS optimization. Our method utilizes k-nearest encoding followed by word2vec to encode the NCS, then performs feature extraction using attention mechanisms, before constructing a time-series network for predicting gene expression intensity, and finally a direct search algorithm identifies the optimal NCS with limited training data. We took green fluorescent protein (GFP) expressed by Bacillus subtilis as a reporting protein of NCSs, and employed the fluorescence enhancement factor as the metric of NCS optimization. Within just six iterative experiments, our model generated an NCS (MLD62) that increased average GFP expression by 5.41-fold, outperforming the state-of-the-art NCS designs. Extending our findings beyond GFP, we showed that our engineered NCS (MLD62) can effectively boost the production of N-acetylneuraminic acid by enhancing the expression of the crucial rate-limiting GNA1 gene, demonstrating its practical utility. We have open-sourced our NCS expression database and experimental procedures for public use.


Asunto(s)
Bacillus subtilis , Aprendizaje Profundo , Proteínas Fluorescentes Verdes , Biología Sintética , Biología Sintética/métodos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Expresión Génica/genética , Algoritmos , Ingeniería Genética/métodos
19.
ACS Synth Biol ; 13(9): 3022-3031, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39238421

RESUMEN

Genome integration enables host organisms to stably carry heterologous DNA messages, introducing new genotypes and phenotypes for expanded applications. While several genome integration approaches have been reported, a scalable tool for DNA message storage within site-specific genome landing pads is still lacking. Here, we introduce an iterative genome integration method utilizing orthogonal serine integrases, enabling the stable storage of multiple heterologous genes in the chromosome of Escherichia coli MG1655. By leveraging serine integrases TP901-1, Bxb1, and PhiC31, along with engineered integration vectors, we demonstrate high-efficiency, marker-free integration of DNA fragments up to 13 kb in length. To further simplify the procedure, we then develop a streamlined integration method and showcase the system's versatility by constructing an engineered E. coli strain capable of storing and expressing multiple genes from diverse species. Additionally, we illustrate the potential utility of these engineered strains for synthetic biology applications, including in vivo and in vitro protein expression. Our work extends the application scope of serine integrases for scalable gene integration cascades, with implications for genome manipulation and gene storage applications in synthetic biology.


Asunto(s)
Escherichia coli , Genoma Bacteriano , Integrasas , Escherichia coli/genética , Genoma Bacteriano/genética , Integrasas/genética , Integrasas/metabolismo , Biología Sintética/métodos , Serina/metabolismo , Serina/genética , Ingeniería Genética/métodos , Vectores Genéticos/genética
20.
Microb Cell Fact ; 23(1): 239, 2024 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-39227830

RESUMEN

BACKGROUND: The type II based CRISPR-Cas system remains restrictedly utilized in archaea, a featured domain of life that ranks parallelly with Bacteria and Eukaryotes. Methanococcus maripaludis, known for rapid growth and genetic tractability, serves as an exemplary model for studying archaeal biology and exploring CO2-based biotechnological applications. However, tools for controlled gene regulation remain deficient and CRISPR-Cas tools still need improved in this archaeon, limiting its application as an archaeal model cellular factory. RESULTS: This study not only improved the CRISPR-Cas9 system for optimizing multiplex genome editing and CRISPR plasmid construction efficiencies but also pioneered an effective CRISPR interference (CRISPRi) system for controlled gene regulation in M. maripaludis. We developed two novel strategies for balanced expression of multiple sgRNAs, facilitating efficient multiplex genome editing. We also engineered a strain expressing Cas9 genomically, which simplified the CRISPR plasmid construction and facilitated more efficient genome modifications, including markerless and scarless gene knock-in. Importantly, we established a CRISPRi system using catalytic inactive dCas9, achieving up to 100-fold repression on target gene. Here, sgRNAs targeting near and downstream regions of the transcription start site and the 5'end ORF achieved the highest repression efficacy. Furthermore, we developed an inducible CRISPRi-dCas9 system based on TetR/tetO platform. This facilitated the inducible gene repression, especially for essential genes. CONCLUSIONS: Therefore, these advancements not only expand the toolkit for genetic manipulation but also bridge methodological gaps for controlled gene regulation, especially for essential genes, in M. maripaludis. The robust toolkit developed here paves the way for applying M. maripaludis as a vital model archaeal cell factory, facilitating fundamental biological studies and applied biotechnology development of archaea.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Methanococcus , Methanococcus/genética , Edición Génica/métodos , Plásmidos/genética , ARN Guía de Sistemas CRISPR-Cas/genética , Genoma Arqueal , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Ingeniería Genética/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA