Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.780
Filtrar
Más filtros

Intervalo de año de publicación
1.
Front Cell Infect Microbiol ; 14: 1464816, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39359938

RESUMEN

Background: In Malaysia, an increase in non-carbapenemase-producing carbapenem-resistant Klebsiella pneumoniae (NC-CRKP) has been observed over the years. Previously, four NC-CRKP with increased susceptibility to ciprofloxacin in the presence of phenylalanine-arginine ß-naphthylamide (PAßN) were identified. However, no contribution of the PAßN-inhibited efflux pump to carbapenem resistance was observed. All four NC-CRKP harboured non-carbapenemase ß-lactamase, with two also exhibiting porin loss. In this study, we further investigated the genomic features and resistance mechanisms of these four isolates. Methods: All four NC-CRKP were subjected to whole-genome sequencing, followed by comparative genomic and phylogenetic analyses. Results: Multi-locus sequence typing (MLST) analysis divided the four NC-CRKP into different sequence types: ST392, ST45, ST14, and ST5947. Neither major nor rare carbapenemase genes were detected. Given the presence of non-carbapenemase ß-lactamase in all isolates, we further investigated the potential mechanisms of resistance by identifying related chromosomal mutations. Deletion mutation was detected in the cation efflux system protein CusF. Insertion mutation was identified in the nickel/cobalt efflux protein RcnA. Missense mutation of ompK36 porin was detected in two isolates, while the loss of ompK36 porin was observed in another two isolates. Conclusions: This study revealed that NC-CRKP may confer carbapenem resistance through a combination of non-carbapenemase ß-lactamase and potential chromosomal mutations including missense mutation or loss of ompK36 porin and/or a frameshift missense mutation in efflux pump systems, such as cation efflux system protein CusF and nickel/cobalt efflux protein RcnA. Our findings highlighted the significance of implementing whole-genome sequencing into clinical practice to promote the surveillance of carbapenem resistance mechanisms among NC-CRKP.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Carbapenémicos , Infecciones por Klebsiella , Klebsiella pneumoniae , Tipificación de Secuencias Multilocus , Secuenciación Completa del Genoma , beta-Lactamasas , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/enzimología , beta-Lactamasas/genética , beta-Lactamasas/metabolismo , Infecciones por Klebsiella/microbiología , Infecciones por Klebsiella/tratamiento farmacológico , Carbapenémicos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Antibacterianos/farmacología , Filogenia , Pruebas de Sensibilidad Microbiana , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Porinas/genética , Porinas/metabolismo , Genoma Bacteriano
2.
Curr Top Membr ; 94: 225-246, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39370208

RESUMEN

Bacterial extracellular vesicles (EVs) are cell-derived particles with a phospholipidic bilayer structure and diameter ranging from 20 to 250 nm, comprising a varied of components, including bioactive proteins, lipids, DNA, RNA, and other metabolites. These EVs play an essential role in bacterial and host function and are recognized as essential keys in cell-to-cell communication and pathogenesis. Due to these characteristics and functions, EVs exhibit great potential for biomedical applications and are promising tools for the development of drug delivery systems and vaccines, as well as for use in disease diagnostics. An interesting focus of this review is on the clinical relevance of EVs, with a particular emphasis on two critical pathogens, Acinetobacter baumannii and Klebsiella pneumoniae. Insights into the outer membrane vesicles (OMVs) derived from these bacteria underscore their roles in antimicrobial resistance and pathogenicity. Additionally, the review explores OMV-based vaccine strategies as a promising means to mitigating these pathogens.


Asunto(s)
Vesículas Extracelulares , Vesículas Extracelulares/metabolismo , Humanos , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/fisiología , Klebsiella pneumoniae/metabolismo , Bacterias/metabolismo , Animales
3.
Sci Rep ; 14(1): 26122, 2024 10 30.
Artículo en Inglés | MEDLINE | ID: mdl-39478041

RESUMEN

This research aimed to analyze the volatile compounds emitted during the proliferation of Klebsiella pneumoniae (K. pneumoniae) in the laboratory setting using gas chromatography-ion mobility spectrometry (GC-IMS) and to investigate the potential of volatile metabolomics for detecting carbapenemase-producing strains of K. pneumoniae. The volatile metabolomics of K. pneumoniae were comprehensively analyzed using GC-IMS in tryptic soy broth (TSB) as the culture medium. Afterward, the growth stabilization period (T2) served as the primary time point for analysis, with the introduction of imipenem and carbapenemase inhibitors (avibactam sodium or EDTA) during the exponential growth phase (T0) to further investigate alterations in volatile molecules associated with K. pneumoniae. Standard strains were utilized as references, while clinical strains were employed for validation purposes. At T2, a total of 22 volatile organic compounds (VOCs) associated with K. pneumoniae were identified (3 VOCs found in both monomer and dimer forms). Significant differences in VOCs were observed between carbapenemase-negative and carbapenemase-positive strains, both standard and clinical, following the introduction of imipenem. Furthermore, the addition of avibactam sodium led to distinct changes in the VOC content of strains producing class A carbapenemase, while the addition of EDTA resulted in specific alterations in the volatile metabolic profiles of strains producing class B carbapenemase. GC-IMS demonstrated significant promise for analyzing bacterial volatile metabolomics, and its application in evaluating the volatolomics of K. pneumoniae may facilitate the timely detection of carbapenemase-producing strains.


Asunto(s)
Espectrometría de Movilidad Iónica , Klebsiella pneumoniae , Metabolómica , Compuestos Orgánicos Volátiles , Klebsiella pneumoniae/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Metabolómica/métodos , Espectrometría de Movilidad Iónica/métodos , Proteínas Bacterianas/metabolismo , Cromatografía de Gases y Espectrometría de Masas/métodos , beta-Lactamasas/metabolismo , Humanos , Imipenem/farmacología
4.
mBio ; 15(10): e0131724, 2024 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-39240091

RESUMEN

Biofilm is a dynamic structure from which individual bacteria and micro-aggregates are released to subsequently colonize new niches by either detachment or dispersal. Screening of a transposon mutant library identified genes associated with the alteration of Klebsiella pneumoniae biofilm including fabR, which encodes a transcriptional regulator involved in membrane lipid homeostasis. An isogenic ∆fabR mutant formed more biofilm than the wild-type (WT) strain and its trans-complemented strain. The thick and round aggregates observed with ∆fabR were resistant to extensive washes, unlike those of the WT strain. Confocal microscopy and BioFlux microfluidic observations showed that fabR deletion was associated with biofilm robustness and impaired erosion over time. The genes fabB and yqfA associated with fatty acid metabolism were significantly overexpressed in the ∆fabR strain, in both planktonic and biofilm conditions. Two monounsaturated fatty acids, palmitoleic acid (C16:1) and oleic acid (C18:1), were found in higher proportion in biofilm cells than in planktonic forms, whereas heptadecenoic acid (C17:1) and octadecanoic acid, 11-methoxy (C18:0-OCH3) were found in higher proportion in the planktonic lifestyle. The fabR mutation induced variations in the fatty acid composition, with no clear differences in the amounts of saturated fatty acids (SFA) and unsaturated fatty acids for the planktonic lifestyle but lower SFA in the biofilm form. Atomic force microscopy showed that deletion of fabR is associated with decreased K. pneumoniae cell rigidity in the biofilm lifestyle, as well as a softer, more elastic biofilm with increased cell cohesion compared to the wild-type strain.IMPORTANCEKlebsiella pneumoniae is an opportunistic pathogen responsible for a wide range of nosocomial infections. The success of this pathogen is due to its high resistance to antibiotics and its ability to form biofilms. The molecular mechanisms involved in biofilm formation have been largely described but the dispersal process that releases individual and aggregate cells from mature biofilm is less well documented while it is associated with the colonization of new environments and thus new threats. Using a multidisciplinary approach, we show that modifications of bacterial membrane fatty acid composition lead to variations in the biofilm robustness, and subsequent bacterial detachment and biofilm erosion over time. These results enhance our understanding of the genetic requirements for biofilm formation in K. pneumoniae that affect the time course of biofilm development and the embrittlement step preceding its dispersal that will make it possible to control K. pneumoniae infections.


Asunto(s)
Biopelículas , Homeostasis , Klebsiella pneumoniae , Lípidos de la Membrana , Biopelículas/crecimiento & desarrollo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/fisiología , Lípidos de la Membrana/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Ácidos Grasos/metabolismo , Eliminación de Gen
5.
Proc Natl Acad Sci U S A ; 121(39): e2409655121, 2024 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-39288182

RESUMEN

Klebsiella pneumoniae is an important pathogen causing difficult-to-treat urinary tract infections (UTIs). Over 1.5 million women per year suffer from recurrent UTI, reducing quality of life and causing substantial morbidity and mortality, especially in the hospital setting. Uropathogenic E. coli (UPEC) is the most prevalent cause of UTI. Like UPEC, K. pneumoniae relies on type 1 pili, tipped with the mannose-binding adhesin FimH, to cause cystitis. However, K. pneumoniae FimH is a poor binder of mannose, despite a mannose-binding pocket identical to UPEC FimH. FimH is composed of two domains that are in an equilibrium between tense (low-affinity) and relaxed (high-affinity) conformations. Substantial interdomain interactions in the tense conformation yield a low-affinity, deformed mannose-binding pocket, while domain-domain interactions are broken in the relaxed state, resulting in a high-affinity binding pocket. Using crystallography, we identified the structural basis by which domain-domain interactions direct the conformational equilibrium of K. pneumoniae FimH, which is strongly shifted toward the low-affinity tense state. Removal of the pilin domain restores mannose binding to the lectin domain, thus showing that poor mannose binding by K. pneumoniae FimH is not an inherent feature of the mannose-binding pocket. Phylogenetic analyses of K. pneumoniae genomes found that FimH sequences are highly conserved. However, we surveyed a collection of K. pneumoniae isolates from patients with long-term indwelling catheters and identified isolates that possessed relaxed higher-binding FimH variants, which increased K. pneumoniae fitness in bladder infection models, suggesting that long-term residence within the urinary tract may select for higher-binding FimH variants.


Asunto(s)
Proteínas Fimbrias , Klebsiella pneumoniae , Manosa , Infecciones Urinarias , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/genética , Proteínas Fimbrias/metabolismo , Proteínas Fimbrias/química , Proteínas Fimbrias/genética , Infecciones Urinarias/microbiología , Manosa/metabolismo , Humanos , Conformación Proteica , Adhesinas de Escherichia coli/metabolismo , Adhesinas de Escherichia coli/química , Adhesinas de Escherichia coli/genética , Sitios de Unión , Dominios Proteicos , Infecciones por Klebsiella/microbiología , Cristalografía por Rayos X , Modelos Moleculares , Adhesinas Bacterianas/metabolismo , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Unión Proteica , Femenino , Fimbrias Bacterianas/metabolismo
6.
Microbiology (Reading) ; 170(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39230258

RESUMEN

Klebsiella pneumoniae is a pathogen of major concern in the global rise of antimicrobial resistance and has been implicated as a reservoir for the transfer of resistance genes between species. The upregulation of efflux pumps is a particularly concerning mechanism of resistance acquisition as, in many instances, a single point mutation can simultaneously provide resistance to a range of antimicrobials and biocides. The current study investigated mutations in oqxR, which encodes a negative regulator of the RND-family efflux pump genes, oqxAB, natively found in the chromosome of K. pneumoniae. Resistant mutants in four K. pneumoniae strains (KP6870155, NTUH-K2044, SGH10, and ATCC43816) were selected from single exposures to 30 µg/mL chloramphenicol and 12 mutants were selected for whole genome sequencing to identify mutations associated with resistance. Resistant mutants generated by single exposures to chloramphenicol, tetracycline, or ciprofloxacin at ≥4 X MIC were replica plated onto all three antibiotics to observe simultaneous cross-resistance to all compounds, indicative of a multidrug resistance phenotype. A variety of novel mutations, including single point mutations, deletions, and insertions, were found to disrupt oqxR leading to significant and simultaneous increases in resistance to chloramphenicol, tetracycline, and ciprofloxacin. The oqxAB-oqxR locus has been mobilized and dispersed on plasmids in many Enterobacteriaceae species and the diversity of these loci was examined to evaluate the evolutionary pressures acting on these genes. Comparison of the promoter regions of oqxR in plasmid-borne copies of the oqxR-oqxAB operon indicated that some constructs may produce truncated versions of the oqxR transcript, which may impact on oqxAB regulation and expression. In some instances, co-carriage of chromosomal and plasmid encoded oqxAB-oqxR was found in K. pneumoniae, implying that there is selective pressure to maintain and expand the efflux pump. Given that OqxR is a repressor of oqxAB, any mutation affecting its expression or function can lead to multidrug resistance. This is in contrast to antibiotic target site mutations that must occur in limited sequence space to be effective and not impact the fitness of the cell. Therefore, oqxR may act as a simple genetic switch to facilitate resistance via OqxAB mediated efflux.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Farmacorresistencia Bacteriana Múltiple , Klebsiella pneumoniae , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cloranfenicol/farmacología , Ciprofloxacina/farmacología , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Pruebas de Sensibilidad Microbiana , Mutación , Tetraciclina/farmacología , Secuenciación Completa del Genoma
7.
NPJ Biofilms Microbiomes ; 10(1): 91, 2024 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-39341797

RESUMEN

Biofilms in nature often exist as communities. In this study, an experimental mixed-species community consisting of Pseudomonas aeruginosa, Pseudomonas protegens and Klebsiella pneumoniae was used to investigate how AI-2 transporters affect interspecies interactions and composition. The K. pneumoniae lsrB/lsrD deletion mutants had a 10-25-fold higher concentration of extracellular AI-2 compared to the wild-type. Although these deletion mutants produced monospecies biofilms of similar biomass, the substitution of these mutants for the parental strain significantly altered composition. Dual-species biofilm assays demonstrated that the changes in composition were due to the cumulative effect of pairwise interactions. It was further revealed that K. pneumoniae being present physically in the consortium was important in AI-2 mediating composition in the consortium, and that AI-2 transporters were crucial in achieving maximum biomass in the community. In conclusion, these findings demonstrate that AI-2 transporters mediate interspecies interactions and is important in maintaining the compositional equilibrium of the community.


Asunto(s)
Proteínas Bacterianas , Biopelículas , Klebsiella pneumoniae , Pseudomonas aeruginosa , Biopelículas/crecimiento & desarrollo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Interacciones Microbianas , Homoserina/análogos & derivados , Homoserina/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas de Transporte de Membrana/genética , Eliminación de Gen , Biomasa , Lactonas
8.
Microbiol Spectr ; 12(10): e0012224, 2024 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-39150249

RESUMEN

Background emergence of multidrug-resistant (MDR) bacterial strains is a public health concern that threatens global and regional security. Efflux pump-overexpressing MDR strains from clinical isolates are the best subjects for studying the mechanisms of MDR caused by bacterial efflux pumps. A Klebsiella pneumoniae strain overexpressing the OqxB-only efflux pump was screened from a clinical strain library to explore reverse OqxB-mediated bacterial resistance strategies. We identified non-repetitive clinical isolated K. pneumoniae strains using a matrix-assisted laser desorption/ionization time-of-flight (TOF) mass spectrometry clinical TOF-II (Clin-TOF-II) and susceptibility test screening against levofloxacin and ciprofloxacin. And the polymorphism analysis was conducted using pulsed-field gel electrophoresis. Efflux pump function of resistant strains is obtained by combined drug sensitivity test of phenylalanine-arginine beta-naphthylamide (PaßN, an efflux pump inhibitor) and detection with ethidium bromide as an indicator. The quantitative reverse transcription PCR was performed to assess whether the oqxB gene was overexpressed in K. pneumoniae isolates. Additional analyses assessed whether the oqxB gene was overexpressed in K. pneumoniae isolates and gene knockout and complementation strains were constructed. The binding mode of PaßN with OqxB was determined using molecular docking modeling. Among the clinical quinolone-resistant K. pneumoniae strains, one mediates resistance almost exclusively through the overexpression of the resistance-nodulation-division efflux pump, OqxB. Crystal structure of OqxB has been reported recently by N. Bharatham, P. Bhowmik, M. Aoki, U. Okada et al. (Nat Commun 12:5400, 2021, https://doi.org/10.1038/s41467-021-25679-0). The discovery of this strain will contribute to a better understanding of the role of the OqxB transporter in K. pneumoniae and builds on the foundation for addressing the threat posed by quinolone resistance.IMPORTANCEThe emergence of antimicrobial resistance is a growing and significant health concern, particularly in the context of K. pneumoniae infections. The upregulation of efflux pump systems is a key factor that contributes to this resistance. Our results indicated that the K. pneumoniae strain GN 172867 exhibited a higher oqxB gene expression compared to the reference strain ATCC 43816. Deletion of oqxB led a decrease in the minimum inhibitory concentration of levofloxacin. Complementation with oqxB rescued antibiotic resistance in the oqxB mutant strain. We demonstrated that the overexpression of the OqxB efflux pump plays an important role in quinolone resistance. The discovery of strain GN 172867 will contribute to a better understanding of the role of the OqxB transporter in K. pneumoniae and promotes further study of antimicrobial resistance.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Ciprofloxacina , Farmacorresistencia Bacteriana Múltiple , Infecciones por Klebsiella , Klebsiella pneumoniae , Proteínas de Transporte de Membrana , Pruebas de Sensibilidad Microbiana , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/aislamiento & purificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Antibacterianos/farmacología , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Farmacorresistencia Bacteriana Múltiple/genética , Humanos , Infecciones por Klebsiella/microbiología , Ciprofloxacina/farmacología , Levofloxacino/farmacología
9.
J Phys Chem B ; 128(35): 8376-8387, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39180156

RESUMEN

Experimental studies on the translocation and accumulation of antibiotics in Gram-negative bacteria have revealed details of the properties that allow efficient permeation through bacterial outer membrane porins. Among the major outer membrane diffusion channels, OmpF has been extensively studied to understand the antibiotic translocation process. In a few cases, this knowledge has also helped to improve the efficacy of existing antibacterial molecules. However, the extension of these strategies to enhance the efficacy of other existing and novel drugs require comprehensive molecular insight into the permeation process and an understanding of how antibiotic and channel properties influence the effective permeation rates. Previous studies have investigated how differences in antibiotic charge distribution can influence the observed permeation pathways through the OmpF channel, and have shown that the dynamics of the L3 loop can play a dominant role in the permeation process. Here, we perform all-atom simulations of the OmpF orthologs, OmpE35 from Enterobacter cloacae and OmpK35 from Klebsiella pneumoniae. Unbiased simulations of the porins and biased simulations of the ciprofloxacin permeation processes through these channels provide insight into the differences in the permeation pathway and energetics. In addition, we show that similar to the OmpF channel, antibiotic-induced dynamics of the L3 loop are also operative in the orthologs. However, the sequence and structural differences, influence the extent of the L3 loop fluctuations with OmpK35 showing greater stability in unbiased runs and subdued fluctuations in simulations with ciprofloxacin.


Asunto(s)
Antibacterianos , Ciprofloxacina , Enterobacter cloacae , Klebsiella pneumoniae , Simulación de Dinámica Molecular , Porinas , Enterobacter cloacae/metabolismo , Enterobacter cloacae/efectos de los fármacos , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Ciprofloxacina/farmacología , Ciprofloxacina/química , Ciprofloxacina/metabolismo , Porinas/metabolismo , Porinas/química , Antibacterianos/farmacología , Antibacterianos/química , Antibacterianos/metabolismo , Difusión , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química
10.
Sheng Wu Gong Cheng Xue Bao ; 40(8): 2386-2402, 2024 Aug 25.
Artículo en Chino | MEDLINE | ID: mdl-39174460

RESUMEN

1, 3-propanediol is an important monomer for the production of polytrimethylene terephthalate (PTT). Currently, it is mainly produced by microbial fermentation, which, however, has low production efficiency. To address this problem, this study employed atmospheric room temperature plasma (ARTP) mutagenesis technology and high-throughput screening to obtain a strain with high tolerance to osmotic pressure, which achieved a 1, 3-propanediol titer of 87 g/L. Furthermore, the gene expression elements suitable for Klebsiella pneumoniae were screened, and metabolic engineering was employed to block redundant metabolic pathways (deletion of ldhA, budA, and aldA) and enhance the synthesis pathway (overexpression of dhaB and yqhD). The titer of 1, 3-propanediol produced by the engineered strain increased to 107 g/L. Finally, in a 5 L fermenter, the optimal strain KP-FMME-6 achieved a 1, 3-propanediol titer of 118 g/L, with a glycerol conversion rate of 42% and productivity of 2.46 g/(h·L), after optimization of the fermentation parameters. This study provides a reference for the industrial production of 1, 3-propanediol.


Asunto(s)
Fermentación , Klebsiella pneumoniae , Ingeniería Metabólica , Glicoles de Propileno , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Glicoles de Propileno/metabolismo , Ingeniería Metabólica/métodos , Glicerol/metabolismo , Mutagénesis , Presión Osmótica
11.
J Appl Microbiol ; 135(8)2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39090973

RESUMEN

AIMS: Hypervirulent Klebsiella pneumoniae (hvKp) causes invasive community-acquired infections in healthy individuals, and hypermucoviscosity (HMV) is the main phenotype associated with hvKp. This study investigates the impact of microaerobic environment availability on the mucoviscosity of K. pneumoniae. METHODS AND RESULTS: By culturing 25 clinical strains under microaerobic and aerobic environments, we observed a notable reduction in mucoviscosity in microaerobic environments. RNA sequencing and qRT-PCR revealed downregulated expressions of capsule synthesis genes (galf, orf2, wzi, wza, wzb, wzc, wcaj, manC, manB, and ugd) and regulatory genes (rmpA, rmpD, and rmpC) under microaerobic conditions. Transmission electron microscopy and Indian ink staining analysis were performed, revealing that the capsular thickness of K. pneumoniae decreased by half in microaerobic conditions compared to aerobic conditions. Deletion of rmpD and rmpC caused the loss of the HMV phenotype in both aerobic and microaerobic conditions. However, compared to wild-type strain in microaerobic condition, only rmpD overexpression strain, and not rmpC overexpression strain, displayed a significant increase in capsule thickness in microaerobic conditions. CONCLUSIONS: Microaerobic conditions can suppress the mucoviscosity of K. pneumoniae, but this suppression can be overcome by altering the expression of rmpD, indicating a specific function for rmpD in the oxygen environmental adaptation of K. pneumoniae.


Asunto(s)
Proteínas Bacterianas , Klebsiella pneumoniae , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Aerobiosis , Humanos , Regulación Bacteriana de la Expresión Génica , Fenotipo , Infecciones por Klebsiella/microbiología , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Virulencia/genética
12.
Front Immunol ; 15: 1436039, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39148735

RESUMEN

Klebsiella pneumoniae is an opportunistic bacterium that frequently colonizes the nasopharynx and gastrointestinal tract and can also cause severe infections when invading other tissues, particularly in immunocompromised individuals. Moreover, K. pneumoniae variants exhibiting a hypermucoviscous (HMV) phenotype are usually associated with hypervirulent strains that can produce invasive infections even in immunocompetent individuals. Major carbohydrate structures displayed on the K. pneumoniae surface are the polysaccharide capsule and the lipopolysaccharide, which presents an O-polysaccharide chain in its outermost part. Various capsular and O-chain structures have been described. Of note, production of a thick capsule is frequently observed in HMV variants. Here we examined the surface sugar epitopes of a collection of HMV and non-HMV K. pneumoniae clinical isolates and their recognition by several Siglecs and galectins, two lectin families of the innate immune system, using bacteria microarrays as main tool. No significant differences among isolates in sialic acid content or recognition by Siglecs were observed. In contrast, analysis of the binding of model lectins with diverse carbohydrate-binding specificities revealed striking differences in the recognition by galactose- and mannose-specific lectins, which correlated with the binding or lack of binding of galectins and pointed to the O-chain as the plausible ligand. Fluorescence microscopy and microarray analyses of galectin-9 binding to entire cells and outer membranes of two representative HMV isolates supported the bacteria microarray results. In addition, Western blot analysis of the binding of galectin-9 to outer membranes unveiled protein bands recognized by this galectin, and fingerprint analysis of these bands identified several proteins containing potential O-glycosylation sites, thus broadening the spectrum of possible galectin ligands on the K. pneumoniae surface. Moreover, Siglecs and galectins apparently target different structures on K. pneumoniae surfaces, thereby behaving as non-redundant complementary tools of the innate immune system.


Asunto(s)
Galectinas , Inmunidad Innata , Infecciones por Klebsiella , Klebsiella pneumoniae , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico , Klebsiella pneumoniae/inmunología , Klebsiella pneumoniae/metabolismo , Humanos , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/metabolismo , Lectinas Similares a la Inmunoglobulina de Unión a Ácido Siálico/inmunología , Galectinas/metabolismo , Galectinas/inmunología , Infecciones por Klebsiella/inmunología , Infecciones por Klebsiella/microbiología , Cápsulas Bacterianas/inmunología , Cápsulas Bacterianas/metabolismo , Lectinas/metabolismo , Lectinas/inmunología , Unión Proteica
13.
Nat Commun ; 15(1): 6946, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138169

RESUMEN

Hypervirulent Klebsiella pneumoniae (HvKP) is an emerging bacterial pathogen causing invasive infection in immune-competent humans. The hypervirulence is strongly linked to the overproduction of hypermucoviscous capsule, but the underlying regulatory mechanisms of hypermucoviscosity (HMV) have been elusive, especially at the post-transcriptional level mediated by small noncoding RNAs (sRNAs). Using a recently developed RNA interactome profiling approach iRIL-seq, we interrogate the Hfq-associated sRNA regulatory network and establish an intracellular RNA-RNA interactome in HvKP. Our data reveal numerous interactions between sRNAs and HMV-related mRNAs, and identify a plethora of sRNAs that repress or promote HMV. One of the strongest HMV repressors is ArcZ, which is activated by the catabolite regulator CRP and targets many HMV-related genes including mlaA and fbp. We discover that MlaA and its function in phospholipid transport is crucial for capsule retention and HMV, inactivation of which abolishes Klebsiella virulence in mice. ArcZ overexpression drastically reduces bacterial burden in mice and reduces HMV in multiple hypervirulent and carbapenem-resistant clinical isolates, indicating ArcZ is a potent RNA inhibitor of bacterial pneumonia with therapeutic potential. Our work unravels a novel CRP-ArcZ-MlaA regulatory circuit of HMV and provides mechanistic insights into the posttranscriptional virulence control in a superbug of global concern.


Asunto(s)
Cápsulas Bacterianas , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Infecciones por Klebsiella , Klebsiella pneumoniae , ARN Bacteriano , ARN Pequeño no Traducido , Klebsiella pneumoniae/patogenicidad , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Animales , Virulencia/genética , Ratones , Infecciones por Klebsiella/microbiología , ARN Pequeño no Traducido/genética , ARN Pequeño no Traducido/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , Humanos , Femenino , Proteína de Factor 1 del Huésped/metabolismo , Proteína de Factor 1 del Huésped/genética
14.
BMC Microbiol ; 24(1): 312, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182027

RESUMEN

BACKGROUND: More than a century has passed since it was discovered that many bacteria produce indole, but research into the actual biological roles of this molecule is just now beginning. The influence of indole on bacterial virulence was extensively investigated in indole-producing bacteria like Escherichia coli. To gain a deeper comprehension of its functional role, this study investigated how indole at concentrations of 0.5-1.0 mM found in the supernatant of Escherichia coli stationary phase culture was able to alter the virulence of non-indole-producing bacteria, such as Pseudomonas aeruginosa, Proteus mirabilis, and Klebsiella pneumoniae, which are naturally exposed to indole in mixed infections with Escherichia coli. RESULTS: Biofilm formation, antimicrobial susceptibility, and efflux pump activity were the three phenotypic tests that were assessed. Indole was found to influence antibiotic susceptibly of Pseudomonas aeruginosa, Proteus mirabilis and Klebsiella pneumoniae to ciprofloxacin, imipenem, ceftriaxone, ceftazidime, and amikacin through significant reduction in MIC with fold change ranged from 4 to 16. Biofilm production was partially abrogated in both 32/45 Pseudomonas aeruginosa and all eight Proteus mirabilis, while induced biofilm production was observed in 30/40 Klebsiella pneumoniae. Moreover, acrAB and oqxAB, which encode four genes responsible for resistance-nodulation-division multidrug efflux pumps in five isolates of Klebsiella pneumoniae were investigated genotypically using quantitative real-time (qRT)-PCR. This revealed that all four genes exhibited reduced expression indicated by 2^-ΔΔCT < 1 in indole-treated isolates compared to control group. CONCLUSION: The outcomes of qRT-PCR investigation of efflux pump expression have established a novel clear correlation of the molecular mechanism that lies beneath the influence of indole on bacterial antibiotic tolerance. This research provides novel perspectives on the various mechanisms and diverse biological functions of indole signaling and how it impacts the pathogenicity of non-indole-producing bacteria.


Asunto(s)
Antibacterianos , Biopelículas , Escherichia coli , Indoles , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Pseudomonas aeruginosa , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Biopelículas/crecimiento & desarrollo , Biopelículas/efectos de los fármacos , Indoles/metabolismo , Indoles/farmacología , Escherichia coli/genética , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Antibacterianos/farmacología , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Pseudomonas aeruginosa/metabolismo , Regulación Bacteriana de la Expresión Génica/efectos de los fármacos , Regulación hacia Abajo , Proteus mirabilis/genética , Proteus mirabilis/efectos de los fármacos , Proteus mirabilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Virulencia/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo
15.
Appl Environ Microbiol ; 90(8): e0007524, 2024 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-38995045

RESUMEN

Glycerol dehydratase is the key and rate-limiting enzyme in the 1,3-propanediol synthesis pathway of Klebsiella pneumoniae, which determined the producing rate and yield of 1,3-propanediol. However, the expression regulation mechanism of glycerol dehydratase gene dhaB remains poorly unknown. In this study, a histone-like nucleoid-structuring (H-NS) protein was identified and characterized as the positive transcription regulator for dhaB expression in K. pneumoniae 2e, which exhibited high tolerance against crude glycerol in our previous study. Deletion of hns gene significantly decreased the transcription level of dhaB in K. pneumoniae 2e, which led to a remarkable defect on strain growth, glycerol dehydratase activity, and 3-hydroxypropanal production during glycerol fermentation. The transcription level of dhaB was significantly up-regulated in crude glycerol relative to pure glycerol, while the inactivation of H-NS resulted in more negative effect for transcription level of dhaB in the former. Though the H-NS expression level was almost comparable in both substrates, its multimer state was reduced in crude glycerol relative to pure glycerol, suggesting that the oligomerization state of H-NS might have contributed for positive regulation of dhaB expression. Furthermore, electrophoretic mobility shift and DNase I footprinting assays showed that H-NS could directly bind to the upstream promoter region of dhaB by recognizing the AT-rich region. These findings provided new insight into the transcriptional regulation mechanism of H-NS for glycerol dehydratase expression in K. pneumoniae, which might offer new target for engineering bacteria to industrially produce 1,3-propanediol.IMPORTANCEThe biological production of 1,3-propanediol from glycerol by microbial fermentation shows great promising prospect on industrial application. Glycerol dehydratase catalyzes the penultimate step in glycerol metabolism and is regarded as one of the key and rate-limiting enzymes for 1,3-propanediol production. H-NS was reported as a pleiotropic modulator with negative effects on gene expression in most studies. Here, we reported for the first time that the expression of glycerol dehydratase gene is positively regulated by the H-NS. The results provide insight into a novel molecular mechanism of H-NS for positive regulation of glycerol dehydratase gene expression in K. pneumoniae, which holds promising potential for facilitating construction of engineering highly efficient 1,3-propanediol-producing strains.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Glicerol , Hidroliasas , Klebsiella pneumoniae , Glicoles de Propileno , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/enzimología , Klebsiella pneumoniae/metabolismo , Hidroliasas/genética , Hidroliasas/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Glicerol/metabolismo , Glicoles de Propileno/metabolismo , Regiones Promotoras Genéticas , Fermentación
16.
Microb Pathog ; 194: 106823, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39059698

RESUMEN

Antibiotic resistance is increasing among Gram-negative bacteria, prompting the development of new antibiotics as well as alternative treatment approaches. Klebsiella pneumoniae Carbapenemases (KPC) has become a major concern in the treatment of infections, since KPC-producing bacteria are resistant to a number of ß -lactam and non ß-lactam antibiotics in addition to hydrolyzing carbapenemases. The aim of this study is to examine the synergistic effect of human Glucose-dependent Insulinotropic Polypeptide (GIP) on KPC producer. The K. pneumoniae isolates were identified by using biochemical tests and PCR genotyping. The disc diffusion method was used to assess the antimicrobial susceptibility of each isolate, and the modified Hodge test (MHT) was used to find carbapenemases. Agar well diffusion and minimum inhibitory concentration (MIC) assays were used to validate the synergistic effect of GIP against Klebsiella species. MIC values of chosen antimicrobial compounds demonstrated a considerable synergism impact when combined with human GIP, particularly against KPC strains. The antibacterial activity of the antimicrobial compounds was boosted by 4-16 times due to human GIP, reducing the MIC values. The fractional inhibitory concentration (FIC) ranged from 0.032 to 0.25 for examined antibiotics. Thus, GIP can be considered an antibacterial adjuvant with the potential to supplement the current antibiotic spectrum.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Sinergismo Farmacológico , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas , beta-Lactamasas/metabolismo , beta-Lactamasas/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/aislamiento & purificación , Klebsiella pneumoniae/enzimología , Humanos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Infecciones por Klebsiella/microbiología , Polipéptido Inhibidor Gástrico/metabolismo , Polipéptido Inhibidor Gástrico/farmacología
17.
Med Sci Monit ; 30: e944507, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39080926

RESUMEN

BACKGROUND This study aimed to detect the volatile organic compound (VOC), 3-hydroxy-2-butanone (acetoin) using gas chromatography-ion mobility spectrometry (GC-IMS) in antimicrobial-resistant Klebsiella pneumoniae (K. pneumoniae) carbapenemase (KPC)-producing bacteria. MATERIAL AND METHODS Using stromal fluid of blood culture bottles (BacT/ALERT® SA) as the medium, 3-hydroxy-2-butanone (acetoin) released by K. pneumoniae during growth was detected using GC-IMS. The impact of imipenem (IPM) and carbapenemase inhibitors [avibactam sodium or pyridine-2,6-dicarboxylic acid (DPA)] on the emission of 3-hydroxy-2-butanone (acetoin) from various carbapenemase-producing K. pneumoniae was further investigated. Subsequently, VOCal software was used to generate a pseudo-3D plot of 3-hydroxy-2-butanone (acetoin), and the relative peak volumes were exported for data analysis. Standard strains served as references, and the findings were validated with clinical isolates. RESULTS The pattern of temporal changes in the 3-hydroxy-2-butanone (acetoin) release from K. pneumoniae in the absence of IPM was consistent with the growth curve. After the IPM addition, carbapenemase-positive strains released significantly higher contents of 3-hydroxy-2-butanone (acetoin) than carbapenemase-negative strains at the late exponential growth phase (T2). Notably, adding avibactam sodium significantly decreased the 3-hydroxy-2-butanone (acetoin) content released from the class A carbapenemase-producing strains as compared to the absence of the carbapenemase inhibitor. Conversely, adding DPA significantly decreased the 3-hydroxy-2-butanone (acetoin) content released from the class B carbapenemase-producing strains (both standard and clinical strains, all P<0.05). CONCLUSIONS This study demonstrated the potential of 3-hydroxy-2-butanone (acetoin) as a VOC biomarker for detecting carbapenemase-producing K. pneumoniae, as revealed by GC-IMS analysis.


Asunto(s)
Acetoína , Proteínas Bacterianas , Biomarcadores , Espectrometría de Movilidad Iónica , Klebsiella pneumoniae , beta-Lactamasas , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Proteínas Bacterianas/metabolismo , beta-Lactamasas/metabolismo , Biomarcadores/metabolismo , Humanos , Acetoína/metabolismo , Espectrometría de Movilidad Iónica/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Imipenem/farmacología , Infecciones por Klebsiella/microbiología , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/metabolismo , Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología
18.
BMC Microbiol ; 24(1): 279, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39061004

RESUMEN

BACKGROUND: Klebsiella pneumoniae is a Gram-negative pathogen that has become a threat to public health worldwide due to the emergence of hypervirulent and multidrug-resistant strains. Cell-surface components, such as polysaccharide capsules, fimbriae, and lipopolysaccharides (LPS), are among the major virulence factors for K. pneumoniae. One of the genes involved in LPS biosynthesis is the uge gene, which encodes the uridine diphosphate galacturonate 4-epimerase enzyme. Although essential for the LPS formation in K. pneumoniae, little is known about the mechanisms that regulate the expression of uge. Ferric uptake regulator (Fur) is an iron-responsive transcription factor that modulates the expression of capsular and fimbrial genes, but its role in LPS expression has not yet been identified. This work aimed to investigate the role of the Fur regulator in the expression of the K. pneumoniae uge gene and to determine whether the production of LPS by K. pneumoniae is modulated by the iron levels available to the bacterium. RESULTS: Using bioinformatic analyses, a Fur-binding site was identified on the promoter region of the uge gene; this binding site was validated experimentally through Fur Titration Assay (FURTA) and DNA Electrophoretic Mobility Shift Assay (EMSA) techniques. RT-qPCR analyses were used to evaluate the expression of uge according to the iron levels available to the bacterium. The iron-rich condition led to a down-regulation of uge, while the iron-restricted condition resulted in up-regulation. In addition, LPS was extracted and quantified on K. pneumoniae cells subjected to iron-replete and iron-limited conditions. The iron-limited condition increased the amount of LPS produced by K. pneumoniae. Finally, the expression levels of uge and the amount of the LPS were evaluated on a K. pneumoniae strain mutant for the fur gene. Compared to the wild-type, the strain with the fur gene knocked out presented a lower LPS amount and an unchanged expression of uge, regardless of the iron levels. CONCLUSIONS: Here, we show that iron deprivation led the K. pneumoniae cells to produce higher amount of LPS and that the Fur regulator modulates the expression of uge, a gene essential for LPS biosynthesis. Thus, our results indicate that iron availability modulates the LPS biosynthesis in K. pneumoniae through a Fur-dependent mechanism.


Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Hierro , Klebsiella pneumoniae , Lipopolisacáridos , Regiones Promotoras Genéticas , Proteínas Represoras , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/efectos de los fármacos , Lipopolisacáridos/biosíntesis , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Hierro/metabolismo , Sitios de Unión , Carbohidrato Epimerasas/genética , Carbohidrato Epimerasas/metabolismo
19.
Microb Cell Fact ; 23(1): 205, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39044245

RESUMEN

BACKGROUND: (R,R)-2,3-butanediol (BDO) is employed in a variety of applications and is gaining prominence due to its unique physicochemical features. The use of glycerol as a carbon source for 2,3-BDO production in Klebsiella pneumoniae has been limited, since 1,3-propanediol (PDO) is generated during glycerol fermentation. RESULTS: In this study, the inactivation of the budC gene in K. pneumoniae increased the production rate of (R,R)-2,3-BDO from 21.92 ± 2.10 to 92.05 ± 1.20%. The major isomer form of K. pneumoniae (meso-2,3-BDO) was shifted to (R,R)-2,3-BDO. The purity of (R,R)-2,3-BDO was examined by agitation speed, and 98.54% of (R,R)-2,3-BDO was obtained at 500 rpm. However, as the cultivation period got longer, the purity of (R,R)-2,3-BDO declined. For this problem, a two-step agitation speed control strategy (adjusted from 500 to 400 rpm after 24 h) and over-expression of the dhaD gene involved in (R,R)-2,3-BDO biosynthesis were used. Nevertheless, the purity of (R,R)-2,3-BDO still gradually decreased over time. Finally, when pure glycerol was replaced with crude glycerol, the titer of 89.47 g/L of (R,R)-2,3-BDO (1.69 g/L of meso-2,3-BDO), productivity of 1.24 g/L/h, and yield of 0.35 g/g consumed crude glycerol was achieved while maintaining a purity of 98% or higher. CONCLUSIONS: This study is meaningful in that it demonstrated the highest production and productivity among studies in that produced (R,R)-2,3-BDO with a high purity in Klebsiella sp. strains. In addition, to the best of our knowledge, this is the first study to produce (R,R)-2,3-BDO using glycerol as the sole carbon source.


Asunto(s)
Butileno Glicoles , Fermentación , Glicerol , Klebsiella pneumoniae , Klebsiella pneumoniae/metabolismo , Klebsiella pneumoniae/genética , Glicerol/metabolismo , Butileno Glicoles/metabolismo , Ingeniería Metabólica/métodos , Oxidación-Reducción , Estereoisomerismo , Glicoles de Propileno/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética
20.
Microbiol Res ; 287: 127825, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39047663

RESUMEN

Tigecycline and the newly Food and Drug Administration-approved tetracyclines, including eravacycline and omadacycline, are regarded as last-resort treatments for multidrug-resistant Enterobacterales. However, tigecycline resistance in Klebsiella pneumoniae has increased, especially the underlying mechanism of heteroresistance is unclear. This study aimed to elucidate the mechanisms underlying tigecycline resistance and heteroresistance in clinical K. pneumoniae isolates. A total of 153 clinical K. pneumoniae isolates were collected, and identified 15 tigecycline-resistant and three tigecycline-heteroresistant isolates using broth microdilution and population analysis profile methods, respectively. Total RNAs from K. pneumoniae ATCC13883 and the laboratory-induced tigecycline-resistant strain were extracted and sequenced on an Illumina platform. Differentially expressed genes and regulatory small RNAs (sRNAs) were analyzed and validated in clinical isolates of K. pneumoniae using quantitative real-time PCR. RNA sequencing results showed that mdtABC efflux pump genes were significantly upregulated in the tigecycline-resistant strains. Overexpression of mdtABC was observed in a clinical K. pneumoniae isolate, which increased tigecycline minimum inhibitory concentrations (MICs) and was involved in tigecycline heteroresistance. Sequencing analysis of sRNA demonstrated that candidate sRNA-120 directly interacted with the mdtABC operon and was downregulated in tigecycline-resistant strains. We generated an sRNA-120 deletion mutation strain and a complemented strain of K. pneumoniae. The sRNA-120 deletion strain displayed increased mRNA levels of mdtA, mdtB, and mdtC and an increase in MICs of tigecycline. The complemented strain of sRNA-120 restored the mRNA levels of these genes and the susceptibility to tigecycline. RNA antisense purification and parallel reaction monitoring mass spectrometry were performed to verify the interactions between sRNA-120 and mdtABC. Collectively, our study highlights that the post-transcriptional repression of mdtABC through sRNA-120 may provide an additional layer of efflux pump gene expression control, which is important for resistance and heteroresistance in clinical K. pneumoniae isolates.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Infecciones por Klebsiella , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , Tigeciclina , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Tigeciclina/farmacología , Antibacterianos/farmacología , Infecciones por Klebsiella/microbiología , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Proteínas de Transporte de Membrana/genética , Proteínas de Transporte de Membrana/metabolismo , Farmacorresistencia Bacteriana/genética , ARN Bacteriano/genética , Farmacorresistencia Bacteriana Múltiple/genética , Minociclina/farmacología , Minociclina/análogos & derivados
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA