Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.065
Filtrar
Más filtros

Intervalo de año de publicación
1.
Drug Res (Stuttg) ; 74(5): 241-249, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38830372

RESUMEN

Pentoxifylline (PTX), a non-selective phosphodiesterase inhibitor, has demonstrated protective effects against lung injury in animal models. Given the significance of pulmonary toxicity resulting from paraquat (PQ) exposure, the present investigation was designed to explore the impact of PTX on PQ-induced pulmonary oxidative impairment in male mice.Following preliminary studies, thirty-six mice were divided into six groups. Group 1 received normal saline, group 2 received a single dose of PQ (20 mg/kg; i.p.), and group 3 received PTX (100 mg/kg/day; i.p.). Additionally, treatment groups 4-6 were received various doses of PTX (25, 50, and 100 mg/kg/day; respectively) one hour after a single dose of PQ. After 72 hours, the animals were sacrificed, and lung tissue was collected.PQ administration caused a significant decrease in hematocrit and an increase in blood potassium levels. Moreover, a notable increase was found in the lipid peroxidation (LPO), nitric oxide (NO), and myeloperoxidase (MPO) levels, along with a notable decrease in total thiol (TTM) and total antioxidant capacity (TAC) contents, catalase (CAT) and superoxide dismutase (SOD) enzymes activity in lung tissue. PTX demonstrated the ability to improve hematocrit levels; enhance SOD activity and TTM content; and decrease MPO activity, LPO and NO levels in PQ-induced pulmonary toxicity. Furthermore, these findings were well-correlated with the observed lung histopathological changes.In conclusion, our results suggest that the high dose of PTX may ameliorate lung injury by improving the oxidant/antioxidant balance in animals exposed to PQ.


Asunto(s)
Antioxidantes , Peroxidación de Lípido , Pulmón , Paraquat , Pentoxifilina , Superóxido Dismutasa , Animales , Pentoxifilina/farmacología , Pentoxifilina/uso terapéutico , Paraquat/toxicidad , Ratones , Masculino , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Antioxidantes/farmacología , Superóxido Dismutasa/metabolismo , Estrés Oxidativo/efectos de los fármacos , Catalasa/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Inhibidores de Fosfodiesterasa/uso terapéutico , Óxido Nítrico/metabolismo , Peroxidasa/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Hidrolasas Diéster Fosfóricas/metabolismo
2.
Sci Rep ; 14(1): 14231, 2024 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-38902260

RESUMEN

Butorphanol is widely used as an anesthetic drug, whether butorphanol could reduce organ injury and protecting lung tissue is unknown. This study explored the effects of butorphanol on ALI and investigated its underlying mechanisms. We established a "two-hit" rat model and "two-hit" cell model to prove our hypothesis. Rats were divided into four groups [control, "two-hit" (OA + LPS), "two-hit" + butorphanol (4 mg/kg and 8 mg/kg) (OA + LPS + B1 and OA + LPS + B2)]. RPMVE cells were divided into four groups [control, "two-hit" (OA + LPS), "two-hit" + butorphanol (4 µM and 8 µM) (OA + LPS + 4 µM and OA + LPS + 8 µM)]. Inflammatory injury was assessed by the histopathology and W/D ratio, inflammatory cytokines, and arterial blood gas analysis. Apoptosis was assessed by Western blotting and flow cytometry. The effect of NF-κB p65 was detected by ELISA. Butorphanol could relieve the "two-hit" induced lung injury, the expression of TNF, IL-1ß, IL-6, and improve lung ventilation. In addition, butorphanol decreased Bax and cleaved caspase-3, increased an antiapoptotic protein (Bcl-2), and inhibited the "two-hit" cell apoptosis ratio. Moreover, butorphanol suppressed NF-κB p65 activity in rat lung injury. Our research showed that butorphanol may attenuate "two-hit"-induced lung injury by regulating the activity of NF-κB p65, which may supply more evidence for ALI treatment.


Asunto(s)
Lesión Pulmonar Aguda , Apoptosis , Butorfanol , Inflamación , Animales , Butorfanol/farmacología , Apoptosis/efectos de los fármacos , Ratas , Masculino , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/prevención & control , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Inflamación/patología , Factor de Transcripción ReIA/metabolismo , Lipopolisacáridos , Ratas Sprague-Dawley , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/prevención & control , Modelos Animales de Enfermedad , Citocinas/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Pulmón/metabolismo
3.
Sci Total Environ ; 944: 173760, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38857800

RESUMEN

Ferrate (Fe(VI)) is an environmentally friendly disinfectant that is widely used to eradicate microbes in reclaimed water. However, the potential health risks associated with inhalation of Fe(VI)-treated bacteria-laden reclaimed water remains uncertain. We aimed to explore the inhalation hazards and potential mechanisms of K2FeO4-treated Escherichia coli (E. coli, ATCC 25922). Our findings indicated that Fe(VI) disinfection induced a dose- and time-dependent E. coli inactivation, accompanied by a rapid release of the bacterial endotoxin, lipopolysaccharide (LPS). Scanning electron microscopy (SEM) observations indicate that Fe(VI)-induced endotoxin production consists of at least two stages: initial binding of endotoxin to bacteria and subsequent dissociation to release free endotoxin. Furthermore, Fe(VI) disinfection was not able to effectively eliminate pure or E. coli-derived endotoxins. The E. coli strain used in this study lacks lung infection capability, thus the inhalation of bacteria alone failed to induce severe lung injury. However, mice inhaled exposure to Fe(VI)-treated E. coli showed severe impairment of lung structure and function. Moreover, we observed an accumulation of neutrophil/macrophage recruitment, cell apoptosis, and ROS generation in the lung tissue of mice subjected to Fe(VI)-treated E. coli. RNA sequencing (RNA-seq) and PCR results revealed that genes involved with endotoxin stimuli, cell apoptosis, antioxidant defence, inflammation response, chemokines and their receptors were upregulated in response to Fe(VI)-treated E. coli. In conclusion, Fe(VI) is ineffective in eliminating endotoxins and can trigger secondary hazards owing to endotoxin release from inactivated bacteria. Aerosol exposure to Fe(VI)-treated E. coli causes considerable damage to lung tissue by inducing oxidative stress and inflammatory responses.


Asunto(s)
Endotoxinas , Escherichia coli , Inflamación , Lesión Pulmonar , Estrés Oxidativo , Escherichia coli/efectos de los fármacos , Ratones , Animales , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/microbiología , Hierro/metabolismo , Desinfección/métodos , Desinfectantes/toxicidad
4.
Int Immunopharmacol ; 134: 112165, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38692017

RESUMEN

Particulate matter (PM) is considered the fundamental component of atmospheric pollutants and is associated with the pathogenesis of many respiratory diseases. Fibroblast growth factor 10 (FGF10) mediates mesenchymal-epithelial signaling and has been linked with the repair process of PM-induced lung injury (PMLI). However, the pathogenic mechanism of PMLI and the specific FGF10 protective mechanism against this injury are still undetermined. PM was administered in vivo into murine airways or in vitro to human bronchial epithelial cells (HBECs), and the inflammatory response and ferroptosis-related proteins SLC7A11 and GPX4 were assessed. The present research investigates the FGF10-mediated regulation of ferroptosis in PMLI mice models in vivo and HBECs in vitro. The results showed that FGF10 pretreatment reduced PM-mediated oxidative damage and ferroptosis in vivo and in vitro. Furthermore, FGF10 pretreatment led to reduced oxidative stress, decreased secretion of inflammatory mediators, and activation of the Nrf2-dependent antioxidant signaling. Additionally, silencing of Nrf2 using siRNA in the context of FGF10 treatment attenuated the effect on ferroptosis. Altogether, both in vivo and in vitro assessments confirmed that FGF10 protects against PMLI by inhibiting ferroptosis via the Nrf2 signaling. Thus, FGF10 can be used as a novel ferroptosis suppressor and a potential treatment target in PMLI.


Asunto(s)
Ferroptosis , Factor 10 de Crecimiento de Fibroblastos , Lesión Pulmonar , Ratones Endogámicos C57BL , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Material Particulado , Transducción de Señal , Ferroptosis/efectos de los fármacos , Factor 2 Relacionado con NF-E2/metabolismo , Animales , Material Particulado/toxicidad , Humanos , Transducción de Señal/efectos de los fármacos , Factor 10 de Crecimiento de Fibroblastos/metabolismo , Factor 10 de Crecimiento de Fibroblastos/genética , Ratones , Estrés Oxidativo/efectos de los fármacos , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Lesión Pulmonar/prevención & control , Masculino , Células Epiteliales/efectos de los fármacos , Células Epiteliales/metabolismo , Línea Celular , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Modelos Animales de Enfermedad , Sistema de Transporte de Aminoácidos y+
6.
Poult Sci ; 103(7): 103860, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38795514

RESUMEN

A large amount of hydrogen sulfide (H2S) is produced in the process of chicken breeding, which can cause serious inflammation and oxidative damage to the respiratory system of chickens. Tea tree oil (TTO) has antioxidant and anti-inflammatory properties. No studies have been reported on the use of TTO in H2S-induced lung injury in chickens. Therefore, in this study, 240 one-day-old Roman pink laying hens were randomly and equally divided into 3 groups: control group (CON), H2S exposure group (AVG, containing H2S), and TTO treatment group (TTG, containing H2S and 0.02 mL/L TTO) to establish an experimental model of TTO treatment with H2S exposure for a period of 42 d. Hematoxylin and eosin (H&E) staining was used to detect lung histopathology. Gene expression profiles were analyzed using transcriptomics. The underlying mechanism of the amelioration of lung injury by TTO was further revealed by antioxidant enzyme assays and qRT-PCR. The results showed that H2S exposure induced significant gene expression of CYP450s (CYP1B1 and CYP1C1) (P < 0.05), and caused intense oxidative stress, apoptosis and inflammation compared with CON. TTO could reduce ROS production and enhance antioxidant capacity (SOD, CAT, T-AOC, and GSH-PX) by regulating the CYP450s/ROS pathway (P < 0.05). Compared with the control group, the treatment group showed significantly decreased expression of apoptotic (Caspase-8, Caspase-3, Bid and Fas) (P < 0.05) and inflammatory (IL-4, IL-16, NF-κB, TNF-α and IFN-γ) (P < 0.05) factors in the lung. This study revealed that TTO regulated CYP450s/ROS pathway to alleviate H2S-induced lung injury in chickens. These results enrich the theory of the action mechanism of TTO on H2S-exposed chicken lungs and are of great value for the treatment of H2S-exposed animals.


Asunto(s)
Pollos , Sistema Enzimático del Citocromo P-450 , Sulfuro de Hidrógeno , Pulmón , Estrés Oxidativo , Aceite de Árbol de Té , Animales , Sulfuro de Hidrógeno/metabolismo , Estrés Oxidativo/efectos de los fármacos , Aceite de Árbol de Té/farmacología , Aceite de Árbol de Té/administración & dosificación , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Sistema Enzimático del Citocromo P-450/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Femenino , Especies Reactivas de Oxígeno/metabolismo , Enfermedades de las Aves de Corral/inducido químicamente , Antioxidantes/metabolismo , Antioxidantes/farmacología , Proteínas Aviares/metabolismo , Proteínas Aviares/genética , Distribución Aleatoria , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/veterinaria , Lesión Pulmonar/tratamiento farmacológico
7.
Sci Rep ; 14(1): 11637, 2024 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773158

RESUMEN

Ricin, an extremely potent toxin produced from the seeds of castor plant, Ricinus communis, is ribosome-inactivating protein that blocks cell-protein synthesis. It is considered a biological threat due to worldwide availability of castor beans, massive quantities as a by-product of castor oil production, high stability and ease of production. The consequence of exposure to lethal dose of ricin was extensively described in various animal models. However, it is assumed that in case of aerosolized ricin bioterror attack, the majority of individuals would be exposed to sublethal doses rather than to lethal ones. Therefore, the purpose of current study was to assess short- and long-term effects on physiological parameters and function following sublethal pulmonary exposure. We show that in the short-term, sublethal exposure of mice to ricin resulted in acute lung injury, including interstitial pneumonia, cytokine storm, neutrophil influx, edema and cellular death. This damage was manifested in reduced lung performance and physiological function. Interestingly, although in the long-term, mice recovered from acute lung damage and restored pulmonary and physiological functionality, the reparative process was associated with lasting fibrotic lesions. Therefore, restriction of short-term acute phase of the disease and management of long-term pulmonary fibrosis by medical countermeasures is expected to facilitate the quality of life of exposed survivors.


Asunto(s)
Ricina , Animales , Ricina/toxicidad , Ratones , Pulmón/efectos de los fármacos , Pulmón/patología , Citocinas/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Femenino , Modelos Animales de Enfermedad
8.
Stem Cell Res Ther ; 15(1): 147, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38773627

RESUMEN

BACKGROUND: Bleomycin (BLM)-induced lung injury is characterized by mixed histopathologic changes with inflammation and fibrosis, such as observed in human patients with bronchopulmonary dysplasia, idiopathic pulmonary fibrosis, and chronic obstructive pulmonary disease. Although no curative therapies for these lung diseases exist, stem cell therapy has emerged as a potential therapeutic option. Multilineage-differentiating stress-enduring (Muse) cells are endogenous pluripotent- and macrophage-like stem cells distributed in various adult and fetal tissues as stage-specific embryonic antigen-3-positive cells. They selectively home to damaged tissue by sensing sphingosine-1-phosphate and replace the damaged/apoptotic cells by in vivo differentiation. Clinical trials for some human diseases suggest the safety and therapeutic efficacy of intravenously injected human leukocyte antigen-mismatched allogenic Muse cells from adult bone marrow (BM) without immunosuppressant. Here, we evaluated the therapeutic effects of human Muse cells from preterm and term umbilical cord (UC), and adult BM in a rat BLM-induced lung injury model. METHODS: Rats were endotracheally administered BLM to induce lung injury on day 0. On day 3, human preterm UC-Muse, term UC-Muse, or adult BM-Muse cells were administered intravenously without immunosuppressants, and rats were subjected to histopathologic analysis on day 21. Body weight, serum surfactant protein D (SP-D) levels, and oxygen saturation (SpO2) were monitored. Histopathologic lung injury scoring by the Ashcroft and modified American Thoracic Society document scales, quantitative characterization of engrafted Muse cells, RNA sequencing analysis, and in vitro migration assay of infused Muse cells were performed. RESULTS: Rats administered preterm- and term-UC-Muse cells exhibited a significantly better recovery based on weight loss, serum SP-D levels, SpO2, and histopathologic lung injury scores, and a significantly higher rate of both Muse cell homing to the lung and alveolar marker expression (podoplanin and prosurfactant protein-C) than rats administered BM-Muse cells. Rats receiving preterm-UC-Muse cells showed statistically superior results to those receiving term-UC-Muse cells in many of the measures. These findings are thought to be due to higher expression of genes related to cell migration, lung differentiation, and cell adhesion. CONCLUSION: Preterm UC-Muse cells deliver more efficient therapeutic effects than term UC- and BM-Muse cells for treating BLM-induced lung injury in a rat model.


Asunto(s)
Bleomicina , Modelos Animales de Enfermedad , Lesión Pulmonar , Cordón Umbilical , Animales , Humanos , Ratas , Lesión Pulmonar/terapia , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Cordón Umbilical/citología , Ratas Sprague-Dawley , Masculino , Diferenciación Celular , Femenino
9.
Sci Total Environ ; 931: 172910, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38701926

RESUMEN

Significant impairment of pulmonary function has been demonstrated through long-term exposure to neonicotinoid insecticides, such as imidacloprid (IMI). However, the underlying mechanisms of lung injury induced by IMI remain unclear. In this study, a mouse model of IMI-induced pulmonary injury was established, and the toxicity and lung damage were assessed through mouse body weight, organ index, hematological parameters, and histopathological analysis of lung tissues. Furthermore, metabolomics and transcriptomics techniques were employed to explore the mechanistic aspects. Results from the toxicity assessments indicated that mouse body weight was significantly reduced by IMI, organ index was disturbed, and hematological parameters were disrupted, resulting in pulmonary injury. The mechanistic experimental results indicate that the differences in metabolites and gene expression in mouse lungs could be altered by IMI. Validation of the results through combined analysis of metabolomics and transcriptomics revealed that the mechanism by which IMI induces lung injury in mice might be associated with the activation of the TLR4 receptor, thereby activating the PI3K/AKT/NF-κB signaling pathway to induce inflammation in mouse lungs. This study provided valuable insights into the mechanisms underlying IMI-induced pulmonary damage, potentially contributing to the development of safer pest control strategies. The knowledge gained served as a robust scientific foundation for the prevention and treatment of IMI-related pulmonary injuries.


Asunto(s)
Insecticidas , Lesión Pulmonar , FN-kappa B , Neonicotinoides , Nitrocompuestos , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Receptor Toll-Like 4 , Animales , Neonicotinoides/toxicidad , Nitrocompuestos/toxicidad , Ratones , Lesión Pulmonar/inducido químicamente , Transducción de Señal/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , FN-kappa B/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Insecticidas/toxicidad , Receptor Toll-Like 4/metabolismo , Pulmón/efectos de los fármacos , Pulmón/patología
10.
Disaster Med Public Health Prep ; 18: e86, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38706344

RESUMEN

Nuclear and chemical weapons of mass destruction share both a tragic and beneficial legacy in mankind's history and health. The horrific health effects of ionizing radiation and mustard gas exposures unleashed during disasters, wars, and conflicts have been harnessed to treat human health maladies. Both agents of destruction have been transformed into therapies to treat a wide range of cancers. The discovery of therapeutic uses of radiation and sulfur mustard was largely due to observations by clinicians treating victims of radiation and sulfur mustard gas exposures. Clinicians identified vulnerability of leukocytes to these agents and repurposed their use in the treatment of leukemias and lymphomas. Given the overlap in therapeutic modalities, it goes to reason that there may be common mechanisms to target as protective strategies against their damaging effects. This commentary will highlight oxidative stress as a common mechanism shared by both radiation and sulfur mustard gas exposures and discuss potential therapies targeting oxidative stress as medical countermeasures against the devastating lung diseases wrought by these agents.


Asunto(s)
Lesión Pulmonar , Gas Mostaza , Estrés Oxidativo , Humanos , Estrés Oxidativo/efectos de los fármacos , Lesión Pulmonar/inducido químicamente , Sustancias para la Guerra Química
11.
Environ Sci Pollut Res Int ; 31(22): 33098-33106, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38676862

RESUMEN

A number of biocidal disinfectant chemicals are used as household products to prevent spread of pathogens. People are commonly exposed to multiple chemicals through those disinfectants. However, effects of interactions (e.g., synergism) between disinfectants on human health outcomes have been rarely studied. In this study, we aimed to investigate associations of a mixture of chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT) and polyhexamethylene guanidine (PHMG), which had been used as humidifier disinfectants (HDs) in South Korea, with HD-associated lung injury (HDLI) in a Korean population (n = 4058) with HD exposure through use of HD products. Exposure to HD was retrospectively assessed by an interview-based standardized survey, and HDLI was determined by clinical assessment. After adjusting for covariates, PHMG-specific exposure indices (e.g., amount of use, indoor air concentration, and weekly exposure level) were dose-dependently associated with HDLI (their odds ratios for the comparison of third tertile versus first tertile were 1.95, 1.77, and 2.16, respectively). CMIT/MIT exposure was not observed to have a significant association with HDLI in a single chemical exposure model; however, associations between PHMG exposure and HDLI were strengthened by co-exposure to CMIT/MIT in combined chemical exposure models, where synergistic interactions between CMIT/MIT use and PHMG indices (amount of use and weekly exposure level) were observed (p-interaction in additive scale: 0.02 and 0.03, respectively). Our findings imply that adverse effects of PHMG exposure on lung injury among HD users might be worsened by co-exposure to CMIT/MIT. Given that plenty of household products contain disinfectants on global markets, epidemiological and toxicological investigations are warranted on interaction effects of co-exposure to disinfectants.


Asunto(s)
Desinfectantes , Guanidinas , Humidificadores , Lesión Pulmonar , Humanos , Lesión Pulmonar/inducido químicamente , República de Corea , Masculino , Femenino , Tiazoles , Adulto , Persona de Mediana Edad
12.
Eur J Pharmacol ; 974: 176612, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677537

RESUMEN

One of the main pathological features of chronic obstructive pulmonary disease (COPD) is the loss of functional alveolar tissue as a consequence of impaired regenerative capacities (emphysema). Recent research suggests that the secretome from mesenchymal cells, particularly extracellular vesicles (EVs), may possess regenerative properties beneficial for lung repair. However, the regenerative potential of the soluble factors (SFs) within the secretome remains largely unexplored in COPD. To this extent, we purified EVs and SFs secreted by lung fibroblasts to generate EV-enriched and SF-enriched fractions, and evaluated their effects on elastase-induced lung injury in both precision-cut lung slices (PCLS) and a mouse model. EV- and SF-enriched fractions were concentrated and purified from the conditioned medium of cultured MRC-5 lung fibroblasts using a combination of ultrafiltration and size exclusion chromatography, and were subsequently characterized according to the MISEV guidelines. Treatment with EV- or SF-enriched concentrates prevented and improved elastase-induced emphysema in PCLS, leading to reduced lung injury and upregulated markers of alveolar epithelial cells (aquaporin 5 and surfactant protein C), indicating potential parenchymal regeneration. Accordingly, prophylactic intratracheal treatment with lung fibroblast-derived EV- and SF-enriched concentrates in vivo attenuated elastase-induced lung tissue destruction, improved lung function, and enhanced gene expression of alveolar epithelial cell markers. Here, alveolar repair not only serves the purpose of facilitating gas exchange, but also by reinstating the essential parenchymal tethering required for optimal airway mechanics. In conclusion, this study highlights the therapeutic potential of both lung fibroblast-derived EV- and SF-enriched concentrates for the treatment of lung injury and emphysema.


Asunto(s)
Vesículas Extracelulares , Fibroblastos , Pulmón , Elastasa Pancreática , Vesículas Extracelulares/metabolismo , Vesículas Extracelulares/trasplante , Animales , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Pulmón/patología , Pulmón/efectos de los fármacos , Ratones , Humanos , Lesión Pulmonar/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Línea Celular , Masculino , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Solubilidad
13.
Am J Physiol Cell Physiol ; 326(6): C1637-C1647, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38646782

RESUMEN

Bleomycin (BLM)-induced lung injury in mice is a valuable model for investigating the molecular mechanisms that drive inflammation and fibrosis and for evaluating potential therapeutic approaches to treat the disease. Given high variability in the BLM model, it is critical to accurately phenotype the animals in the course of an experiment. In the present study, we aimed to demonstrate the utility of microscopic computed tomography (µCT) imaging combined with an artificial intelligence (AI)-convolutional neural network (CNN)-powered lung segmentation for rapid phenotyping of BLM mice. µCT was performed in freely breathing C57BL/6J mice under isoflurane anesthesia on days 7 and 21 after BLM administration. Terminal invasive lung function measurement and histological assessment of the left lung collagen content were conducted as well. µCT image analysis demonstrated gradual and time-dependent development of lung injury as evident by alterations in the lung density, air-to-tissue volume ratio, and lung aeration in mice treated with BLM. The right and left lung were unequally affected. µCT-derived parameters such as lung density, air-to-tissue volume ratio, and nonaerated lung volume correlated well with the invasive lung function measurement and left lung collagen content. Our study demonstrates the utility of AI-CNN-powered µCT image analysis for rapid and accurate phenotyping of BLM mice in the course of disease development and progression.NEW & NOTEWORTHY Microscopic computed tomography (µCT) imaging combined with an artificial intelligence (AI)-convolutional neural network (CNN)-powered lung segmentation is a rapid and powerful tool for noninvasive phenotyping of bleomycin mice over the course of the disease. This, in turn, allows earlier and more reliable identification of therapeutic effects of new drug candidates, ultimately leading to the reduction of unnecessary procedures in animals in pharmacological research.


Asunto(s)
Bleomicina , Lesión Pulmonar , Pulmón , Ratones Endogámicos C57BL , Redes Neurales de la Computación , Fenotipo , Animales , Bleomicina/toxicidad , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/diagnóstico por imagen , Lesión Pulmonar/patología , Lesión Pulmonar/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/efectos de los fármacos , Pulmón/patología , Pulmón/metabolismo , Ratones , Microtomografía por Rayos X/métodos , Modelos Animales de Enfermedad , Inteligencia Artificial , Masculino , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Colágeno/metabolismo
14.
Environ Int ; 187: 108700, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38678936

RESUMEN

The significant correlation between particulate matter with aerodynamic diameters of ≤ 2.5 µm (PM2.5) and the high morbidity and mortality of respiratory diseases has become the consensus of the research. Epidemiological studies have clearly pointed out that there is no safe concentration of PM2.5, and mechanism studies have also shown that exposure to PM2.5 will first cause pulmonary inflammation. Therefore, the purpose of this study is to explore the mechanism of early lung injury induced by low-level PM2.5 from the perspective of epigenetics. Based on the previous results of population samples, combined with an in vitro/vivo exposure model of PM2.5, it was found that low-level PM2.5 promoted the transport of circ_0092363 from intracellular to extracellular spaces. The decreased expression of intracellular circ_0092363 resulted in reduced absorption of miR-31-5p, leading to inhibition of Rho associated coiled-coil containing protein kinase 1 (ROCK1) and the subsequent abnormal expression of tight junction proteins such as Zonula occludens protein 1 (ZO-1) and Claudin-1, ultimately inducing the occurrence of early pulmonary injury. Furthermore, this study innovatively introduced organoid technology and conducted a preliminary exploration for a study of the relationship among environmental exposure genomics, epigenetics and disease genomics in organoids. The role of circ_0092363 in early pulmonary injury induced by low-level PM2.5 was elucidated, and its value as a potential diagnostic biomarker was confirmed.


Asunto(s)
Lesión Pulmonar , Material Particulado , Lesión Pulmonar/inducido químicamente , Humanos , Quinasas Asociadas a rho/genética , Quinasas Asociadas a rho/metabolismo , Animales , MicroARNs/genética , Contaminantes Atmosféricos/toxicidad , Exposición a Riesgos Ambientales/efectos adversos
15.
Exp Lung Res ; 50(1): 106-117, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38642025

RESUMEN

BACKGROUND: Pulmonary emphysema is a condition that causes damage to the lung tissue over time. GBP5, as part of the guanylate-binding protein family, is dysregulated in mouse pulmonary emphysema. However, the role of GBP5 in lung inflammation in ARDS remains unveiled. METHODS: To investigate whether GBP5 regulates lung inflammation and autophagy regulation, the study employed a mouse ARDS model and MLE-12 cell culture. Vector transfection was performed for the genetic manipulation of GBP5. Then, RT-qPCR, WB and IHC staining were conducted to assess its transcriptional and expression levels. Histological features of the lung tissue were observed through HE staining. Moreover, ELISA was conducted to evaluate the secretion of inflammatory cytokines, autophagy was assessed by immunofluorescent staining, and MPO activity was determined using a commercial kit. RESULTS: Our study revealed that GBP5 expression was altered in mouse ARDS and LPS-induced MLE-12 cell models. Moreover, the suppression of GBP5 reduced lung inflammation induced by LPS in mice. Conversely, overexpression of GBP5 diminished the inhibitory impact of LPS on ARDS during autophagy, leading to increased inflammation. In the cell line of MLE-12, GBP5 exacerbates LPS-induced inflammation by blocking autophagy. CONCLUSION: The study suggests that GBP5 facilitates lung inflammation and autophagy regulation. Thus, GBP5 could be a potential therapeutic approach for improving ARDS treatment outcomes, but further research is required to validate these findings.


Asunto(s)
Autofagia , Proteínas de Unión al GTP , Lesión Pulmonar , Neumonía , Síndrome de Dificultad Respiratoria , Animales , Ratones , Autofagia/efectos de los fármacos , Inflamación/metabolismo , Lipopolisacáridos , Pulmón/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Neumonía/metabolismo , Enfisema Pulmonar , Síndrome de Dificultad Respiratoria/inducido químicamente , Síndrome de Dificultad Respiratoria/tratamiento farmacológico , Síndrome de Dificultad Respiratoria/metabolismo , Proteínas de Unión al GTP/antagonistas & inhibidores , Proteínas de Unión al GTP/metabolismo
16.
Ecotoxicol Environ Saf ; 277: 116330, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38636406

RESUMEN

PIWI-interacting RNAs (piRNAs) is an emerging class of small non-coding RNAs that has been recently reported to have functions in infertility, tumorigenesis, and multiple diseases in humans. Previously, 5 toxicity pathways were proposed from hundreds of toxicological studies that underlie BaP-induced lung injuries, and a "Bottom-up" approach was established to identify small non-coding RNAs that drive BaP-induced pulmonary effects by investigating the activation of these pathways in vitro, and the expression of the candidate microRNAs were validated in tissues of patients with lung diseases from publications. Here in this study, we employed the "Bottom-up" approach to identifying the roles of piRNAs and further validated the mechanisms in vivo using mouse acute lung injury model. Specifically, by non-coding RNA profiling in in vitro BaP exposure, a total of 3 suppressed piRNAs that regulate 5 toxicity pathways were proposed, including piR-004153 targeting CYP1A1, FGFR1, ITGA5, IL6R, NGRF, and SDHA, piR-020326 targeting CDK6, and piR-020388 targeting RASD1. Animal experiments demonstrated that tail vein injection of respective formulated agomir-piRNAs prior to BaP exposure could all alleviate acute lung injury that was shown by histopathological and biochemical evidences. Immunohistochemical evaluation focusing on NF-kB and Bcl-2 levels showed that exogenous piRNAs protect against BaP-induced inflammation and apoptosis, which further support that the inhibition of the 3 piRNAs had an important impact on BaP-induced lung injuries. This mechanism-driven, endpoint-supported result once again confirmed the plausibility and efficiency of the approach integrating in silico, in vitro, and in vivo evidences for the purpose of identifying key molecules.


Asunto(s)
Benzo(a)pireno , ARN Interferente Pequeño , Animales , Ratones , Benzo(a)pireno/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/patología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/patología , Masculino , Ratones Endogámicos C57BL , Humanos , ARN de Interacción con Piwi
17.
Ecotoxicol Environ Saf ; 277: 116364, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38657461

RESUMEN

The purpose of this study was to investigate the effect of Treg/Th1 imbalance in cadmium-induced lung injury and the potential protective effect of astilbin against cadmium-induced lung injury in chicken. Cadmium exposure significantly decreased T-AOC and GSH-Px levels and SOD activity in the chicken lung tissues. In contrast, it significantly increased the MDA and NO levels. These results indicate that cadmium triggers oxidative stress in lungs. Histopathological analysis revealed that cadmium exposure further induced infiltration of lymphocytes in the chicken lungs, indicating that cadmium causes pulmonary damage. Further analysis revealed that cadmium decreased the expression of IL-4 and IL-10 but increased those of IL-17, Foxp3, TNF-α, and TGF-ß, indicating that the exposure of cadmium induced the imbalance of Treg/Th1. Moreover, cadmium adversely affected chicken lung function by activating the NF-kB pathway and inducing expression of genes downstream to these pathways (COX-2, iNOS), associated with inflammatory injury in the lung tissue. Astilbin reduced cadmium-induced oxidative stress and inflammation in the lungs by increasing antioxidant enzyme activities and restoring Treg/Th1 balance. In conclusion, our results suggest that astilbin treatment alleviated the effects of cadmium-mediated lung injury in chickens by restoring the Treg/Th1 balance.


Asunto(s)
Cadmio , Pollos , Flavonoles , Lesión Pulmonar , Pulmón , Estrés Oxidativo , Transducción de Señal , Linfocitos T Reguladores , Animales , Cadmio/toxicidad , Estrés Oxidativo/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/patología , Transducción de Señal/efectos de los fármacos , Linfocitos T Reguladores/efectos de los fármacos , Flavonoles/farmacología , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/tratamiento farmacológico
18.
J Hazard Mater ; 470: 134151, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38554517

RESUMEN

Ground-level ozone ranks sixth among common air pollutants. It worsens lung diseases like asthma, emphysema, and chronic bronchitis. Despite recent attention from researchers, the link between exhaled breath and ozone-induced injury remains poorly understood. This study aimed to identify novel exhaled biomarkers in ozone-exposed mice using ultra-sensitive photoinduced associative ionization time-of-flight mass spectrometry and machine learning. Distinct ion peaks for acetonitrile (m/z 42, 60, and 78), butyronitrile (m/z 70, 88, and 106), and hydrogen sulfide (m/z 35) were detected. Integration of tissue characteristics, oxidative stress-related mRNA expression, and exhaled breath condensate free-radical analysis enabled a comprehensive exploration of the relationship between ozone-induced biological responses and potential biomarkers. Under similar exposure levels, C57BL/6 mice exhibited pulmonary injury characterized by significant inflammation, oxidative stress, and cardiac damage. Notably, C57BL/6 mice showed free radical signals, indicating a distinct susceptibility profile. Immunodeficient non-obese diabetic Prkdc-/-/Il2rg-/- (NPI) mice exhibited minimal biological responses to pulmonary injury, with little impact on the heart. These findings suggest a divergence in ozone-induced damage pathways in the two mouse types, leading to alterations in exhaled biomarkers. Integrating biomarker discovery with comprehensive biopathological analysis forms a robust foundation for targeted interventions to manage health risks posed by ozone exposure.


Asunto(s)
Biomarcadores , Pruebas Respiratorias , Aprendizaje Automático , Ratones Endogámicos C57BL , Ozono , Animales , Ozono/toxicidad , Biomarcadores/metabolismo , Biomarcadores/análisis , Masculino , Estrés Oxidativo/efectos de los fármacos , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Ratones , Espectrometría de Masas , Espiración , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo
19.
Toxicol Appl Pharmacol ; 485: 116908, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38513841

RESUMEN

Nitrogen mustard (NM) is a toxic vesicant that causes acute injury to the respiratory tract. This is accompanied by an accumulation of activated macrophages in the lung and oxidative stress which have been implicated in tissue injury. In these studies, we analyzed the effects of N-acetylcysteine (NAC), an inhibitor of oxidative stress and inflammation on NM-induced lung injury, macrophage activation and bioenergetics. Treatment of rats with NAC (150 mg/kg, i.p., daily) beginning 30 min after administration of NM (0.125 mg/kg, i.t.) reduced histopathologic alterations in the lung including alveolar interstitial thickening, blood vessel hemorrhage, fibrin deposition, alveolar inflammation, and bronchiolization of alveolar walls within 3 d of exposure; damage to the alveolar-epithelial barrier, measured by bronchoalveolar lavage fluid protein and cells, was also reduced by NAC, along with oxidative stress as measured by heme oxygenase (HO)-1 and Ym-1 expression in the lung. Treatment of rats with NAC attenuated the accumulation of macrophages in the lung expressing proinflammatory genes including Ptgs2, Nos2, Il-6 and Il-12; macrophages expressing inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and tumor necrosis factor (TNF)α protein were also reduced in histologic sections. Conversely, NAC had no effect on macrophages expressing the anti-inflammatory proteins arginase-1 or mannose receptor, or on NM-induced increases in matrix metalloproteinase (MMP)-9 or proliferating cell nuclear antigen (PCNA), markers of tissue repair. Following NM exposure, lung macrophage basal and maximal glycolytic activity increased, while basal respiration decreased indicating greater reliance on glycolysis to generate ATP. NAC increased both glycolysis and oxidative phosphorylation. Additionally, in macrophages from both control and NM treated animals, NAC treatment resulted in increased S-nitrosylation of ATP synthase, protecting the enzyme from oxidative damage. Taken together, these data suggest that alterations in NM-induced macrophage activation and bioenergetics contribute to the efficacy of NAC in mitigating lung injury.


Asunto(s)
Acetilcisteína , Metabolismo Energético , Lesión Pulmonar , Mecloretamina , Estrés Oxidativo , Animales , Estrés Oxidativo/efectos de los fármacos , Acetilcisteína/farmacología , Mecloretamina/toxicidad , Masculino , Metabolismo Energético/efectos de los fármacos , Ratas , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Ratas Sprague-Dawley , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Macrófagos Alveolares/efectos de los fármacos , Macrófagos Alveolares/metabolismo , Sustancias para la Guerra Química/toxicidad
20.
Am J Physiol Lung Cell Mol Physiol ; 326(5): L562-L573, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38469626

RESUMEN

Acute respiratory distress syndrome (ARDS) is characterized by dysregulated inflammation and increased permeability of lung microvascular cells. CD26/dipeptidyl peptidase-4 (DPP4) is a type II membrane protein that is expressed in several cell types and mediates multiple pleiotropic effects. We previously reported that DPP4 inhibition by sitagliptin attenuates lipopolysaccharide (LPS)-induced lung injury in mice. The current study characterized the functional role of CD26/DPP4 expression in LPS-induced lung injury in mice, isolated alveolar macrophages, and cultured lung endothelial cells. In LPS-induced lung injury, inflammatory responses [bronchoalveolar lavage fluid (BALF) neutrophil numbers and several proinflammatory cytokine levels] were attenuated in Dpp4 knockout (Dpp4 KO) mice. However, multiple assays of alveolar capillary permeability were similar between the Dpp4 KO and wild-type mice. TNF-α and IL-6 production was suppressed in alveolar macrophages isolated from Dpp4 KO mice. In contrast, in cultured mouse lung microvascular endothelial cells (MLMVECs), reduction in CD26/DPP4 expression by siRNA resulted in greater ICAM-1 and IL-6 expression after LPS stimulation. Moreover, the LPS-induced vascular monolayer permeability in vitro was higher in MLMVECs treated with Dpp4 siRNA, suggesting that CD26/DPP4 plays a protective role in endothelial barrier function. In summary, this study demonstrated that genetic deficiency of Dpp4 attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential functional roles of CD26/DPP4 expression in resident cellular components of the lung. CD26/DPP4 may be a potential therapeutic target for ARDS and warrants further exploration to precisely identify the multiple functional effects of CD26/DPP4 in ARDS pathophysiology.NEW & NOTEWORTHY We aimed to clarify the functional roles of CD26/DPP4 in ARDS pathophysiology using Dpp4-deficient mice and siRNA reduction techniques in cultured lung cells. Our results suggest that CD26/DPP4 expression plays a proinflammatory role in alveolar macrophages while also playing a protective role in the endothelial barrier. Dpp4 genetic deficiency attenuates inflammatory responses but not permeability in LPS-induced lung injury in mice, potentially through differential roles of CD26/DPP4 expression in the resident cellular components of the lung.


Asunto(s)
Dipeptidil Peptidasa 4 , Lipopolisacáridos , Macrófagos Alveolares , Animales , Masculino , Ratones , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Líquido del Lavado Bronquioalveolar , Permeabilidad Capilar , Células Cultivadas , Dipeptidil Peptidasa 4/metabolismo , Dipeptidil Peptidasa 4/genética , Células Endoteliales/metabolismo , Células Endoteliales/patología , Molécula 1 de Adhesión Intercelular/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Pulmón/patología , Pulmón/metabolismo , Lesión Pulmonar/inducido químicamente , Lesión Pulmonar/metabolismo , Lesión Pulmonar/patología , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Síndrome de Dificultad Respiratoria/metabolismo , Síndrome de Dificultad Respiratoria/patología , Síndrome de Dificultad Respiratoria/inducido químicamente , Factor de Necrosis Tumoral alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA