RESUMEN
Click chemistry, also known as "link chemistry," is an important molecular connection method that can achieve simple and efficient connections between specific small molecular groups at the molecular level. Click chemistry offers several advantages, including high efficiency, good selectivity, mild conditions, and few side reactions. These features make it a valuable tool for in-depth analysis of various protein posttranslational modifications (PTMs) caused by changes in cell metabolism during viral infection. This chapter considers the palmitoylation, carbonylation, and alkylation of STING and presents detailed information and experimental procedures for measuring PTMs using click chemistry.
Asunto(s)
Química Clic , Procesamiento Proteico-Postraduccional , Química Clic/métodos , Humanos , Alquilación , Lipoilación , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Carbonilación ProteicaRESUMEN
Promoting palmitoylation of the adaptor protein MAVS enhances the antiviral immune response.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/genética , Humanos , Animales , Lipoilación , Transducción de Señal/inmunologíaRESUMEN
Palmitoylation, a lipid-based posttranslational protein modification, plays a crucial role in regulating various aspects of neuronal function through altering protein membrane-targeting, stabilities, and protein-protein interaction profiles. Disruption of palmitoylation has recently garnered attention as disease mechanism in neurodegeneration. Many proteins implicated in neurodegenerative diseases and associated neuronal dysfunction, including but not limited to amyloid precursor protein, ß-secretase (BACE1), postsynaptic density protein 95, Fyn, synaptotagmin-11, mutant huntingtin, and mutant superoxide dismutase 1, undergo palmitoylation, and recent evidence suggests that altered palmitoylation contributes to the pathological characteristics of these proteins and associated disruption of cellular processes. In addition, dysfunction of enzymes that catalyze palmitoylation and depalmitoylation has been connected to the development of neurological disorders. This review highlights some of the latest advances in our understanding of palmitoylation regulation in neurodegenerative diseases and explores potential therapeutic implications.
Asunto(s)
Lipoilación , Enfermedades Neurodegenerativas , Humanos , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/genética , Animales , Procesamiento Proteico-PostraduccionalRESUMEN
RNA N6-methyladenosine (m6A) demethylase AlkB homolog 5 (ALKBH5) plays a crucial role in regulating innate immunity. Lysine acylation, a widespread protein modification, influences protein function, but its impact on ALKBH5 during viral infections has not been well characterized. This study investigates the presence and regulatory mechanisms of a previously unidentified lysine acylation in ALKBH5 and its role in mediating m6A modifications to activate antiviral innate immune responses. We demonstrate that ALKBH5 undergoes lactylation, which is essential for an effective innate immune response against DNA herpesviruses, including herpes simplex virus type 1 (HSV-1), Kaposi's sarcoma-associated herpesvirus (KSHV), and mpox virus (MPXV). This lactylation attenuates viral replication. Mechanistically, viral infections enhance ALKBH5 lactylation by increasing its interaction with acetyltransferase ESCO2 and decreasing its interaction with deacetyltransferase SIRT6. Lactylated ALKBH5 binds interferon-beta (IFN-ß) messenger RNA (mRNA), leading to demethylation of its m6A modifications and promoting IFN-ß mRNA biogenesis. Overexpression of ESCO2 or depletion of SIRT6 further enhances ALKBH5 lactylation to strengthen IFN-ß mRNA biogenesis. Our results identify a posttranslational modification of ALKBH5 and its role in regulating antiviral innate immune responses through m6A modification. The finding provides an understanding of innate immunity and offers a potential therapeutic target for HSV-1, KSHV, and MPXV infections.
Asunto(s)
Desmetilasa de ARN, Homólogo 5 de AlkB , Herpesvirus Humano 8 , Inmunidad Innata , Replicación Viral , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Humanos , Replicación Viral/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/inmunología , Interferón beta/metabolismo , Interferón beta/genética , Herpesvirus Humano 1/inmunología , Herpesvirus Humano 1/genética , Células HEK293 , Herpesviridae/inmunología , LipoilaciónRESUMEN
Alzheimer's disease (AD) is the leading form of dementia, characterized by the accumulation and aggregation of amyloid in brain. Transient receptor potential vanilloid 2 (TRPV2) is an ion channel involved in diverse physiopathological processes, including microglial phagocytosis. Previous studies suggested that cannabidiol (CBD), an activator of TRPV2, improves microglial amyloid-ß (Aß) phagocytosis by TRPV2 modulation. However, the molecular mechanism of TRPV2 in microglial Aß phagocytosis remains unknown. In this study, we aimed to investigate the involvement of TRPV2 channel in microglial Aß phagocytosis and the underlying mechanisms. Utilizing human datasets, mouse primary neuron and microglia cultures, and AD model mice, to evaluate TRPV2 expression and microglial Aß phagocytosis in both in vivo and in vitro. TRPV2 was expressed in cortex, hippocampus, and microglia.Cannabidiol (CBD) could activate and sensitize TRPV2 channel. Short-term CBD (1 week) injection intraperitoneally (i.p.) reduced the expression of neuroinflammation and microglial phagocytic receptors, but long-term CBD (3 week) administration (i.p.) induced neuroinflammation and suppressed the expression of microglial phagocytic receptors in APP/PS1 mice. Furthermore, the hyper-sensitivity of TRPV2 channel was mediated by tyrosine phosphorylation at the molecular sites Tyr(338), Tyr(466), and Tyr(520) by protein tyrosine kinase JAK1, and these sites mutation reduced the microglial Aß phagocytosis partially dependence on its localization. While TRPV2 was palmitoylated at Cys 277 site and blocking TRPV2 palmitoylation improved microglial Aß phagocytosis. Moreover, it was demonstrated that TRPV2 palmitoylation was dynamically regulated by ZDHHC21. Overall, our findings elucidated the intricate interplay between TRPV2 channel regulated by tyrosine phosphorylation/dephosphorylation and cysteine palmitoylation/depalmitoylation, which had divergent effects on microglial Aß phagocytosis. These findings provide valuable insights into the underlying mechanisms linking microglial phagocytosis and TRPV2 sensitivity, and offer potential therapeutic strategies for managing AD.
Asunto(s)
Péptidos beta-Amiloides , Lipoilación , Ratones Transgénicos , Microglía , Fagocitosis , Canales Catiónicos TRPV , Tirosina , Animales , Ratones , Microglía/metabolismo , Microglía/efectos de los fármacos , Canales Catiónicos TRPV/metabolismo , Péptidos beta-Amiloides/metabolismo , Fagocitosis/efectos de los fármacos , Humanos , Fosforilación/efectos de los fármacos , Tirosina/metabolismo , Lipoilación/efectos de los fármacos , Células Cultivadas , Enfermedad de Alzheimer/metabolismo , Cannabidiol/farmacología , Ratones Endogámicos C57BL , Canales de CalcioRESUMEN
The Envelope (E) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an integral structural protein in the virus particles. However, its role in the assembly of virions and the underlying molecular mechanisms are yet to be elucidated, including whether the function of E protein is regulated by post-translational modifications. In the present study, we report that SARS-CoV-2 E protein is palmitoylated at C40, C43, and C44 by palmitoyltransferases zDHHC3, 6, 12, 15, and 20. Mutating these three cysteines to serines (C40/43/44S) reduced the stability of E protein, decreased the interaction of E with structural proteins Spike, Membrane, and Nucleocapsid, and thereby inhibited the production of virus-like particles (VLPs) and VLP-mediated luciferase transcriptional delivery. Specifically, the C40/43/44S mutation of E protein reduced the density of VLPs. Collectively, these results demonstrate that palmitoylation of E protein is vital for its function in the assembly of SARS-CoV-2 particles.IMPORTANCEIn this study, we systematically examined the biochemistry of palmitoylation of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) E protein and demonstrated that palmitoylation of SARS-CoV-2 E protein is required for virus-like particle (VLP) production and maintaining normal particle density. These results suggest that palmitoylated E protein is central for proper morphogenesis of SARS-CoV-2 VLPs in densities required for viral infectivity. This study presents a significant advancement in the understanding of how palmitoylation of viral proteins is vital for assembling SARS-CoV-2 particles and supports that palmitoyl acyltransferases can be potential therapeutic targets for the development of SARS-CoV-2 inhibitors.
Asunto(s)
Aciltransferasas , Proteínas de la Envoltura de Coronavirus , Lipoilación , SARS-CoV-2 , Virión , Ensamble de Virus , Humanos , SARS-CoV-2/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteínas de la Envoltura de Coronavirus/metabolismo , Proteínas de la Envoltura de Coronavirus/genética , Virión/metabolismo , Aciltransferasas/metabolismo , Aciltransferasas/genética , COVID-19/virología , COVID-19/metabolismo , Células HEK293 , Procesamiento Proteico-Postraduccional , Glicoproteína de la Espiga del Coronavirus/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/química , MutaciónRESUMEN
Glutathione transferase P1 (GSTP1) is a multi-functional protein that protects cells from electrophiles by catalyzing their conjugation with glutathione, and contributes to the regulation of cell proliferation, apoptosis, and signalling. GSTP1, usually described as a cytosolic enzyme, can localize to other cell compartments and we have reported its strong association with the plasma membrane. In the current study, the hypothesis that GSTP1 is palmitoylated and this modification facilitates its dynamic localization and function was investigated. Palmitoylation is the reversible post-translational addition of a 16-C saturated fatty acid to proteins, most commonly on Cys residues through a thioester bond. GSTP1 in MCF7 cells was modified by palmitate, however, GSTP1 Cys to Ser mutants (individual and Cys-less) retained palmitoylation. Treatment of palmitoylated GSTP1 with 0.1 N NaOH, which cleaves ester bonds, did not remove palmitate. Purified GSTP1 was spontaneously palmitoylated in vitro and peptide sequencing revealed that Cys48 and Cys102 undergo S-palmitoylation, while Lys103 undergoes the rare N-palmitoylation. N-palmitoylation occurs via a stable NaOH-resistant amide bond. Analysis of subcellular fractions of MCF7-GSTP1 cells and a modified proximity ligation assay revealed that palmitoylated GSTP1 was present not only in the membrane fraction but also in the cytosol. GSTP1 isolated from E. coli, and MCF7 cells (grown under fatty acid free or regular conditions), associated with plasma membrane-enriched fractions and this association was not altered by palmitoyl CoA. Overall, GSTP1 is modified by palmitate, at multiple sites, including at least one non-Cys residue. These modifications could contribute to regulating the diverse functions of GSTP1.
Asunto(s)
Gutatión-S-Transferasa pi , Lipoilación , Palmitatos , Humanos , Gutatión-S-Transferasa pi/metabolismo , Gutatión-S-Transferasa pi/genética , Gutatión-S-Transferasa pi/química , Células MCF-7 , Palmitatos/metabolismo , Membrana Celular/metabolismo , Citosol/metabolismo , Cisteína/metabolismo , Procesamiento Proteico-Postraduccional , Ácido Palmítico/metabolismoRESUMEN
Innate immunity serves as the primary defense against viral and microbial infections in humans. The precise influence of cellular metabolites, especially fatty acids, on antiviral innate immunity remains largely elusive. Here, through screening a metabolite library, palmitic acid (PA) has been identified as a key modulator of antiviral infections in human cells. Mechanistically, PA induces mitochondrial antiviral signaling protein (MAVS) palmitoylation, aggregation, and subsequent activation, thereby enhancing the innate immune response. The palmitoyl-transferase ZDHHC24 catalyzes MAVS palmitoylation, thereby boosting the TBK1-IRF3-interferon (IFN) pathway, particularly under conditions of PA stimulation or high-fat-diet-fed mouse models, leading to antiviral immune responses. Additionally, APT2 de-palmitoylates MAVS, thus inhibiting antiviral signaling, suggesting that its inhibitors, such as ML349, effectively reverse MAVS activation in response to antiviral infections. These findings underscore the critical role of PA in regulating antiviral innate immunity through MAVS palmitoylation and provide strategies for enhancing PA intake or targeting APT2 for combating viral infections.
Asunto(s)
Aciltransferasas , Proteínas Adaptadoras Transductoras de Señales , Inmunidad Innata , Factor 3 Regulador del Interferón , Lipoilación , Ácido Palmítico , Transducción de Señal , Inmunidad Innata/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/inmunología , Humanos , Animales , Ácido Palmítico/farmacología , Ratones , Células HEK293 , Factor 3 Regulador del Interferón/metabolismo , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/inmunología , Aciltransferasas/genética , Aciltransferasas/inmunología , Aciltransferasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones Endogámicos C57BL , Antivirales/farmacología , Proteínas de Neoplasias , Péptidos y Proteínas de Señalización IntracelularRESUMEN
The downregulation of Cadm4 (Cell adhesion molecular 4) is a prominent feature in demyelination diseases, yet, the underlying molecular mechanism remains elusive. Here, we reveal that Cadm4 undergoes specific palmitoylation at cysteine-347 (C347), which is crucial for its stable localization on the plasma membrane (PM). Mutation of C347 to alanine (C347A), blocking palmitoylation, causes Cadm4 internalization from the PM and subsequent degradation. In vivo experiments introducing the C347A mutation (Cadm4-KI) lead to severe myelin abnormalities in the central nervous system (CNS), characterized by loss, demyelination, and hypermyelination. We further identify ZDHHC3 (Zinc finger DHHC-type palmitoyltransferase 3) as the enzyme responsible for catalyzing Cadm4 palmitoylation. Depletion of ZDHHC3 reduces Cadm4 palmitoylation and diminishes its PM localization. Remarkably, genetic deletion of ZDHHC3 results in decreased Cadm4 palmitoylation and defects in CNS myelination, phenocopying the Cadm4-KI mouse model. Consequently, altered Cadm4 palmitoylation impairs neuronal transmission and cognitive behaviors in both Cadm4-KI and ZDHHC3 knockout mice. Importantly, attenuated ZDHHC3-Cadm4 signaling significantly influences neuroinflammation in diverse demyelination diseases. Mechanistically, we demonstrate the predominant expression of Cadm4 in the oligodendrocyte lineage and its potential role in modulating cell differentiation via the WNT-ß-Catenin pathway. Together, our findings propose that dysregulated ZDHHC3-Cadm4 signaling contributes to myelin abnormalities, suggesting a common pathological mechanism underlying demyelination diseases associated with neuroinflammation.
Asunto(s)
Aciltransferasas , Sistema Nervioso Central , Lipoilación , Vaina de Mielina , Lipoilación/genética , Animales , Aciltransferasas/genética , Ratones , Humanos , Vaina de Mielina/genética , Vaina de Mielina/metabolismo , Vaina de Mielina/patología , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Enfermedades Desmielinizantes/genética , Enfermedades Desmielinizantes/patología , Enfermedades Desmielinizantes/metabolismo , Ratones NoqueadosRESUMEN
Rap2b, a proto-oncogene upregulated in colorectal cancer (CRC), undergoes protein S-palmitoylation at specific C-terminus sites (C176/C177). These palmitoylation sites are crucial for Rap2b localization on the plasma membrane (PM), as mutation of C176 or C177 results in cytosolic relocation of Rap2b. Our study demonstrates that Rap2b influences cell migration and invasion in CRC cells, independent of proliferation, and this activity relies on its palmitoylation. We identify ABHD17a as the depalmitoylating enzyme for Rap2b, altering PM localization and inhibiting cell migration and invasion. EGFR/PI3K signaling regulates Rap2b palmitoylation, with PI3K phosphorylating ABHD17a to modulate its activity. These findings highlight the potential of targeting Rap2b palmitoylation as an intervention strategy. Blocking the C176/C177 sites using an interacting peptide attenuates Rap2b palmitoylation, disrupting PM localization, and suppressing CRC metastasis. This study offers insights into therapeutic approaches targeting Rap2b palmitoylation for the treatment of metastatic CRC, presenting opportunities to improve patient outcomes.
Asunto(s)
Membrana Celular , Neoplasias Colorrectales , Lipoilación , Proteínas de Unión al GTP rap , Animales , Humanos , Ratones , Línea Celular Tumoral , Membrana Celular/metabolismo , Movimiento Celular , Proliferación Celular , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/genética , Receptores ErbB/metabolismo , Ratones Desnudos , Metástasis de la Neoplasia , Fosfatidilinositol 3-Quinasas/metabolismo , Proto-Oncogenes Mas , Proteínas de Unión al GTP rap/metabolismo , Proteínas de Unión al GTP rap/genética , Transducción de SeñalRESUMEN
Here, we present an optimized acyl-PEGyl exchange gel shift (APEGS) assay to monitor palmitoylation of high-molecular-weight proteins from primary neuronal cultures. We describe steps for culturing cortical neurons from rat embryos and expressing proteins of interest. We then detail procedures for employing a fatty acyl exchange technique wherein hydroxylamine is used to cleave palmitic acid from the palmitoyl-thioester bond, exposing cysteine residues that are subsequently labeled with methoxy polyethylene glycol maleimide (mPEG-MAL-10k). For complete details on the use and execution of this protocol, please refer to Yucel et al.1.
Asunto(s)
Lipoilación , Neuronas , Polietilenglicoles , Animales , Ratas , Polietilenglicoles/química , Polietilenglicoles/metabolismo , Neuronas/metabolismo , Neuronas/citología , Células Cultivadas , Ácido Palmítico/metabolismo , Ácido Palmítico/química , Peso MolecularRESUMEN
Adult mammary stem cells (aMaSCs) are vital to tissue expansion and remodeling during the process of postnatal mammary development. The protein C receptor (Procr) is one of the well-identified surface markers of multipotent aMaSCs. However, an understanding of the regulatory mechanisms governing Procr's protein stability remains incomplete. In this study, we identified Glycoprotein m6a (Gpm6a) as a critical protein for aMaSC activity modulation by using the Gpm6a knockout mouse model. Interestingly, we determined that Gpm6a depletion results in a reduction of Procr protein stability. Mechanistically, Gpm6a regulates Procr protein stability by mediating the formation of lipid rafts, a process requiring Zdhhc1 and Zdhhc2 to palmitate Gpm6a at Cys17,18 and Cys246 sites. Our findings highlight an important mechanism involving Zdhhc1- and Zdhhc2-mediated Gpm6a palmitoylation for the regulation of Procr stability, aMaSC activity, and postnatal mammary development.
Asunto(s)
Aciltransferasas , Lipoilación , Glándulas Mamarias Animales , Animales , Aciltransferasas/metabolismo , Aciltransferasas/genética , Glándulas Mamarias Animales/metabolismo , Glándulas Mamarias Animales/citología , Ratones , Femenino , Ratones Noqueados , Humanos , Microdominios de Membrana/metabolismo , Células Madre/metabolismo , Células Madre/citología , Estabilidad ProteicaRESUMEN
Gasdermin D (GSDMD) executes the cell death program of pyroptosis by assembling into oligomers that permeabilize the plasma membrane. Here, by single-molecule imaging, we elucidate the yet unclear mechanism of Gasdermin D pore assembly and the role of cysteine residues in GSDMD oligomerization. We show that GSDMD preassembles at the membrane into dimeric and trimeric building blocks that can either be inserted into the membrane, or further assemble into higher-order oligomers prior to insertion into the membrane. The GSDMD residues Cys39, Cys57, and Cys192 are the only relevant cysteines involved in GSDMD oligomerization. S-palmitoylation of Cys192, combined with the presence of negatively-charged lipids, controls GSDMD membrane targeting. Simultaneous Cys39/57/192-to-alanine (Ala) mutations, but not Ala mutations of Cys192 or the Cys39/57 pair individually, completely abolish GSDMD insertion into artificial membranes as well as into the plasma membrane. Finally, either Cys192 or the Cys39/Cys57 pair are sufficient to enable formation of GSDMD dimers/trimers, but they are all required for functional higher-order oligomer formation. Overall, our study unveils a cooperative role of Cys192 palmitoylation-mediated membrane binding and Cys39/57/192-mediated oligomerization in GSDMD pore assembly. This study supports a model in which Gasdermin D oligomerization relies on a two-step mechanism mediated by specific cysteine residues.
Asunto(s)
Membrana Celular , Cisteína , Lipoilación , Proteínas de Unión a Fosfato , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Cisteína/metabolismo , Humanos , Membrana Celular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Multimerización de Proteína , Células HEK293 , Animales , GasderminasRESUMEN
BACKGROUND: Breast cancer (BC) ranks as the third most fatal malignant tumor worldwide, with a strong reliance on fatty acid metabolism. CLDN6, a candidate BC suppressor gene, was previously identified as a regulator of fatty acid biosynthesis; however, the underlying mechanism remains elusive. In this research, we aim to clarify the specific mechanism through which CLDN6 modulates fatty acid anabolism and its impact on BC growth and metastasis. METHODS: Cell function assays, tumor xenograft mouse models, and lung metastasis mouse models were conducted to evaluate BC growth and metastasis. Human palmitic acid assay, triglyceride assay, Nile red staining, and oil red O staining were employed to investigate fatty acid anabolism. Reverse transcription polymerase chain reaction (RT-PCR), western blot, immunohistochemistry (IHC) assay, nuclear fractionation, immunofluorescence (IF), immunoprecipitation and acyl-biotin exchange (IP-ABE), chromatin immunoprecipitation (ChIP), dual luciferase reporter assay, and co-immunoprecipitation (Co-IP) were applied to elucidate the underlying molecular mechanism. Moreover, tissue microarrays of BC were analyzed to explore the clinical implications. RESULTS: We identified that CLDN6 inhibited BC growth and metastasis by impeding RAS palmitoylation both in vitro and in vivo. We proposed a unique theory suggesting that CLDN6 suppressed RAS palmitoylation through SREBP1-modulated de novo palmitic acid synthesis. Mechanistically, CLDN6 interacted with MAGI2 to prevent KLF5 from entering the nucleus, thereby restraining SREBF1 transcription. The downregulation of SREBP1 reduced de novo palmitic acid synthesis, hindering RAS palmitoylation and subsequent endosomal sorting complex required for transport (ESCRT)-mediated plasma membrane localization required for RAS oncogenic activation. Besides, targeting inhibition of RAS palmitoylation synergized with CLDN6 to repress BC progression. CONCLUSIONS: Our findings provide compelling evidence that CLDN6 suppresses the palmitic acid-induced RAS palmitoylation through the MAGI2/KLF5/SREBP1 axis, thereby impeding BC malignant progression. These results propose a new insight that monitoring CLDN6 expression alongside targeting inhibition of palmitic acid-mediated palmitoylation could be a viable strategy for treating oncogenic RAS-driven BC.
Asunto(s)
Neoplasias de la Mama , Proliferación Celular , Claudinas , Lipoilación , Proteína 1 de Unión a los Elementos Reguladores de Esteroles , Animales , Femenino , Humanos , Ratones , Neoplasias de la Mama/patología , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Claudinas/metabolismo , Claudinas/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/secundario , Ratones Desnudos , Metástasis de la Neoplasia , Proteínas ras/metabolismo , Proteínas ras/genética , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/metabolismo , Proteína 1 de Unión a los Elementos Reguladores de Esteroles/genéticaRESUMEN
BACKGROUND: Breast cancer is a prevalent public health concern affecting numerous women globally and is associated with palmitoylation, a post-translational protein modification. Despite increasing focus on palmitoylation, its specific implications for breast cancer prognosis remain unclear. The work aimed to identify prognostic factors linked to palmitoylation in breast cancer and assess its effectiveness in predicting responses to chemotherapy and immunotherapy. METHODS: We utilized the "limma" package to analyze the differential expression of palmitoylation-related genes between breast cancer and normal tissues. Hub genes were identified using the "WGCNA" package. Using the least absolute shrinkage and selection operator (LASSO) Cox regression analysis, we identified a prognostic feature associated with palmitoylation and developed a prognostic nomogram with the "regplot" package. The predictive values of the model for chemotherapy and immunotherapy responses were assessed using immunophenoscore (IPS) and the "pRophetic" package. RESULTS: We identified 211 differentially expressed genes related to palmitoylation, among which 44 demonstrated prognostic potential. Subsequently, a predictive model comprising eleven palmitoylation-related genes was developed. Patients were classified into high-risk and low-risk groups based on the median risk score. The findings revealed that individuals in the high-risk group exhibited lower survival rates, while those in the low-risk group showed increased immune cell infiltration and improved responses to chemotherapy and immunotherapy. Moreover, the BC-Palmitoylation Tool website was established. CONCLUSION: This study developed the first machine learning-based predictive model for palmitoylation-related genes and created a corresponding website, providing clinicians with a valuable tool to improve patient outcomes.
Asunto(s)
Biomarcadores de Tumor , Neoplasias de la Mama , Regulación Neoplásica de la Expresión Génica , Lipoilación , Aprendizaje Automático , Humanos , Femenino , Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Neoplasias de la Mama/patología , Neoplasias de la Mama/mortalidad , Pronóstico , Biomarcadores de Tumor/genética , Perfilación de la Expresión Génica , Nomogramas , Biología Computacional/métodos , Resultado del Tratamiento , Transcriptoma , Redes Reguladoras de Genes , Inmunoterapia/métodosRESUMEN
S-palmitoylation is a reversible and dynamic process that involves the addition of long-chain fatty acids to proteins. This protein modification regulates various aspects of protein function, including subcellular localization, stability, conformation, and biomolecular interactions. The zinc finger DHHC (ZDHHC) domain-containing protein family is the main group of enzymes responsible for catalyzing protein S-palmitoylation, and 23 members have been identified in mammalian cells. Many proteins that undergo S-palmitoylation have been linked to disease pathogenesis and progression, suggesting that the development of effective inhibitors is a promising therapeutic strategy. Reducing the protein S-palmitoylation level can target either the PATs directly or their substrates. However, there are rare clinically effective S-palmitoylation inhibitors. This review aims to provide an overview of the S-palmitoylation field, including the catalytic mechanism of ZDHHC, S-palmitoylation detection methods, and the functional impact of protein S-palmitoylation. Additionally, this review focuses on current strategies for expanding the chemical toolbox to develop novel and effective inhibitors that can reduce the level of S-palmitoylation of the target protein.
Asunto(s)
Lipoilación , Humanos , Aciltransferasas/antagonistas & inhibidores , Aciltransferasas/metabolismo , Animales , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/química , Descubrimiento de Drogas/métodos , Procesamiento Proteico-PostraduccionalRESUMEN
Cells may undergo senescence in response to DNA damage, which is associated with cell cycle arrest, altered gene expression and altered cell morphology. Protein palmitoylation is one of the mechanisms by which the DNA damage response is regulated. Therefore, we hypothesized that protein palmitoylation played a role in regulation of the senescent phenotype. Here, we showed that treatment of senescent human vascular smooth muscle cells (VSMCs) with 2-bromopalmitate (2-BP), an inhibitor of protein acyltransferases, is associated with changes in different aspects of the senescent phenotype, including the resumption of cell proliferation, a decrease in DNA damage markers and the downregulation of senescence-associated ß-galactosidase activity. The effects were dose dependent and associated with significantly decreased total protein palmitoylation level. We also showed that the senescence-modifying properties of 2-BP were at least partially mediated by the downregulation of elements of DNA damage-related molecular pathways, such as phosphorylated p53. Our data suggest that cell senescence may be regulated by palmitoylation, which provides a new perspective on the role of this posttranslational modification in age-related diseases.
Asunto(s)
Senescencia Celular , Daño del ADN , Lipoilación , Palmitatos , Humanos , Senescencia Celular/efectos de los fármacos , Palmitatos/farmacología , Lipoilación/efectos de los fármacos , Daño del ADN/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Fenotipo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/citología , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células Cultivadas , beta-Galactosidasa/metabolismoRESUMEN
The Hippo tumor suppressor pathway controls transcription by regulating nuclear abundance of YAP and TAZ, which activate transcription with the TEAD1-TEAD4 DNA-binding proteins. Recently, several small-molecule inhibitors of YAP and TEADs have been reported, with some entering clinical trials for different cancers with Hippo pathway deregulation, most notably, mesothelioma. Using genome-wide CRISPR/Cas9 screens we reveal that mutations in genes from the Hippo, MAPK, and JAK-STAT signaling pathways all modulate the response of mesothelioma cell lines to TEAD palmitoylation inhibitors. By exploring gene expression programs of mutant cells, we find that MAPK pathway hyperactivation confers resistance to TEAD inhibition by reinstating expression of a subset of YAP/TAZ target genes. Consistent with this, combined inhibition of TEAD and the MAPK kinase MEK, synergistically blocks proliferation of multiple mesothelioma and lung cancer cell lines and more potently reduces the growth of patient-derived lung cancer xenografts in vivo. Collectively, we reveal mechanisms by which cells can overcome small-molecule inhibition of TEAD palmitoylation and potential strategies to enhance the anti-tumor activity of emerging Hippo pathway targeted therapies.
Asunto(s)
Proteínas de Unión al ADN , Factores de Transcripción de Dominio TEA , Factores de Transcripción , Humanos , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Línea Celular Tumoral , Animales , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Vía de Señalización Hippo , Ratones , Resistencia a Antineoplásicos/genética , Resistencia a Antineoplásicos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Lipoilación , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Bibliotecas de Moléculas Pequeñas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , MutaciónRESUMEN
NLRP3 inflammasome activation, essential for cytokine secretion and pyroptosis in response to diverse stimuli, is closely associated with various diseases. Upon stimulation, NLRP3 undergoes subcellular membrane trafficking and conformational rearrangements, preparing itself for inflammasome assembly at the microtubule-organizing center (MTOC). Here, we elucidate an orchestrated mechanism underlying these ordered processes using human and murine cells. Specifically, NLRP3 undergoes palmitoylation at two sites by palmitoyl transferase zDHHC1, facilitating its trafficking between subcellular membranes, including the mitochondria, trans-Golgi network (TGN), and endosome. This dynamic trafficking culminates in the localization of NLRP3 to the MTOC, where LATS1/2, pre-recruited to MTOC during priming, phosphorylates NLRP3 to further facilitate its interaction with NIMA-related kinase 7 (NEK7), ultimately leading to full NLRP3 activation. Consistently, Zdhhc1-deficiency mitigated LPS-induced inflammation and conferred protection against mortality in mice. Altogether, our findings provide valuable insights into the regulation of NLRP3 membrane trafficking and inflammasome activation, governed by palmitoylation and phosphorylation events.
Asunto(s)
Inflamasomas , Lipoilación , Proteína con Dominio Pirina 3 de la Familia NLR , Transporte de Proteínas , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Inflamasomas/metabolismo , Inflamasomas/genética , Animales , Fosforilación , Humanos , Ratones , Células HEK293 , Quinasas Relacionadas con NIMA/metabolismo , Quinasas Relacionadas con NIMA/genética , Aciltransferasas/metabolismo , Aciltransferasas/genética , Centro Organizador de los Microtúbulos/metabolismo , Ratones Endogámicos C57BL , Red trans-Golgi/metabolismo , Ratones Noqueados , Endosomas/metabolismo , Mitocondrias/metabolismoRESUMEN
N-Nitrosamine disinfection by-products (NAs-DBPs) have been well proven for its role in esophageal carcinogenesis. However, the role of intratumoral microorganisms in esophageal squamous cell carcinoma (ESCC) has not yet been well explored in the context of exposure to NAs-DBPs. Here, the multi-omics integration reveals F. periodonticum (Fp) as "facilitators" is highly enriched in cancer tissues and promotes the epithelial mesenchymal transition (EMT)-like subtype formation of ESCC. We demonstrate that Fp potently drives de novo synthesis of fatty acids, migration, invasion and EMT phenotype through its unique FadAL adhesin. However, N-nitrosomethylbenzylamine upregulates the transcription level of FadAL. Mechanistically, co-immunoprecipitation coupled to mass spectrometry shows that FadAL interacts with FLOT1. Furthermore, FLOT1 activates PI3K-AKT/FASN signaling pathway, leading to triglyceride and palmitic acid (PA) accumulation. Innovatively, the results from the acyl-biotin exchange demonstrate that FadAL-mediated PA accumulation enhances Wnt3A palmitoylation on a conserved cysteine residue, Cys-77, and promotes Wnt3A membrane localization and the translocation of ß-catenin into the nucleus, further activating Wnt3A/ß-catenin axis and inducing EMT phenotype. We therefore propose a "microbiota-cancer cell subpopulation" interaction model in the highly heterogeneous tumor microenvironment. This study unveils a mechanism by which Fp can drive ESCC and identifies FadAL as a potential diagnostic and therapeutic target for ESCC.