RESUMEN
The changes of physicochemical, structural and functional properties and the lysinoalanine (LAL) formation during the unfolding and refolding of black soldier fly larvae albumin (BSFLA) induced by acid/alkaline pH shift were explored. The results showed that acid/alkaline conditions induced unfolding of BSFLA structure, but also accompanied by the formation of some large aggregates due to the hydrophobic interactions, hydrogen bonds, and disulfide bonds. Compared with control or pH1.5 shift, pH12 shift treatment significantly increased the electrostatic repulsion, surface hydrophobicity, free sulfhydryl group, and deamidation reactions, but reduced the fluorescence intensity of BSFLA, and these change in protein conformation contributed to increase in solubility, emulsion activity, and emulsion stability. But the content of LAL in BSFLA was increased by 93.39 % by pH 12 shift treatment. In addition, pH1.5 shift modified BSFLA tended to form ß-sheet structure through unfolding and refolding, resulting in the formation of aggregates with larger particle sizes, and reducing the solubility and the LAL content by 7.93 % and 65.53 %, respectively. SDS-PAGE profile showed that pH12/1.5 shifting did not cause irreversible denaturation of protein molecules. Therefore, pH12-shift is good way to improve the functional properties of BSFLA, but the content of LAL should be reduced to make it better used in food.
Asunto(s)
Albúminas , Dípteros , Lisinoalanina , Animales , Albúminas/química , Fenómenos Químicos , Dípteros/química , Dípteros/crecimiento & desarrollo , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Proteínas de Insectos/química , Larva , Lisinoalanina/química , Replegamiento Proteico/efectos de los fármacos , Desplegamiento Proteico , SolubilidadRESUMEN
The inhibition of cross-linked lysinoalanine (LAL) formation in silkworm pupa protein isolates (SPPI) by Maillard reaction (using varying xylose concentration) and ultrasound treatment was studied. Results showed that sonicated SPPI was effectively grafted with high concentration of xylose (5 %), resulting in the lowest LAL content, which was 48.75 % and 30.64 % lower than the control and ultrasound-treated samples, respectively. Chemical bond analysis showed that the combined treatment destroyed the ionic bonds, intrachain (g-g-t), and interchain (g-g-g) disulfide bonds, but stimulated the polymerization of hydrogen and hydrophobic bonds between SPPI and xylose, and as well enhanced the net negative charge between SPPI/Xylose complexes. The particles of the complexes were more loose, dispersed and rough, and had a stronger hydrophilic microenvironment, accompanied by alterations in microscopic, secondary and tertiary structures. Ultrasound treatment induced the breakdown of the oxidative cross-linking in SPPI, and promoted the sulfhydryl group-dehydroalanine binding and the carbonyl-amino condensation of the protein and xylose, and thus inhibited the formation of cross-linked LAL. Furthermore, the physicochemical and structural parameters were highly interrelated with cross-linked LAL content (|r| > 0.9). The outcomes provided a novel avenue and theoretical basis for minimizing LAL formation in SPPI and improving the nutrition and safety of SPPI.
Asunto(s)
Bombyx , Lisinoalanina , Animales , Lisinoalanina/análisis , Lisinoalanina/química , Reacción de Maillard , Pupa , XilosaRESUMEN
We added three different carbohydrates (Xylose/Xyl, Maltose/Mal, and Sodium alginate/Sal) to pH12.5-shifted silkworm pupa protein isolates (SPPI), and examined the influence of multi-frequency ultrasound (US) on them, with reference to lysinoalanine (LAL) formation, changes in conformational characteristics and functionality. Results showed that, the LAL content of the glycoconjugates - SPPI-Xyl, SPPI-Mal, and SPPI-Sal decreased by 1.47, 1.39, and 1.54 times, respectively, compared with the control. Notably, ultrasonication further reduced the LAL content by 45.85 % and brought SPPI-Xyl highest graft degree (57.14 %). SPPI-Xyl and SPPI-Mal were polymerized by different non-covalent bonds, and SPPI-Sal were polymerized through ionic, hydrogen, and disulfide (covalent/non-covalent) bonds. Significant increase in turbidity, Maillard reaction products and the formation of new hydroxyl groups was detected in grafted SPPI (p < 0.05). US and glycation altered the structure and surface topography of SPPI, in which sugars with high molecular weight were more likely to aggregate with SPPI into enormous nanoparticles with high steric hindrance. Compared to control, the solubility at pH 7.0, emulsifying capacity and stability, and foaming capacity of SPPI-US-Xyl were respectively increased by 244.33 %, 86.5 %, 414.67 %, and 31.58 %. Thus, combined US and xylose-glycation could be an effective approach for minimizing LAL content and optimizing functionality of SPPI.
Asunto(s)
Bombyx , Lisinoalanina , Animales , Lisinoalanina/química , Lisinoalanina/metabolismo , Reacción de Maillard , Bombyx/metabolismo , Pupa/metabolismo , Xilosa , Concentración de Iones de HidrógenoRESUMEN
Soy protein hydrolysates enhance integral viable cell density (IVCD) and recombinant protein production (Immunoglobulin, IgG) in cell cultures, but their functionality varies from batch-to-batch. This is undesirable since it affects both quantity and characteristics of the recombinant proteins. It is hypothesized that the variability of hydrolysates is due to variations in meal and hydrolysate processing treatments. To study this, hydrolysates were produced from meals heated at 121 °C/0-120 min. The heating decreased free amino acid and reducing monosaccharide contents in meals (0.72-0.27% and 3.3-2.6%) and hydrolysates (14.7-7.1% and 16.9-7.9%). Dry heating introduced large variation in the IVCD ((115-316%), but additional heating in suspension reduced it (131-159%). The decrease in IVCD variation corresponded with decreased variation in carboxymethyl-lysine (CML) and lysinoalanine (LAL) contents. Thus, meal and hydrolysate processing induced substantial variation in hydrolysate functionality. It is therefore critical to establish strict process controls for meal and hydrolysate production to ensure consistency.
Asunto(s)
Calor , Hidrolisados de Proteína , Animales , Técnicas de Cultivo de Célula , Calefacción , Lisinoalanina , Proteínas de SojaRESUMEN
The application of silkworm pupa protein isolates (SPPI) in food industry was limited because SPPI's solubility is poor and it contains a potential harmful component of lysinoalanine (LAL) which formed during protein extraction. In this study, combined treatments of pH shift and heating were performed to improve the solubility of SPPI and to reduce the content of LAL. The experimental results showed that the promoting effect on SPPI's solubility by alkaline pH shift + heat treatment was greater than that by acidic pH shift + heat. And an 8.62 times increase of solubility was observed after pH 12.5 + 80 â treatment compared to the control SPPI sample which was extracted at pH 9.0 without pH shift treatment. Very strong positive correlation was found between alkali dosage and SPPI solubility (Pearson's correlation coefficient r = 0.938). SPPI with pH 12.5 shift treatment showed the highest thermal stability. Alkaline pH shift combined with heat treatment altered the micromorphology of SPPI and destroyed the disulfide bonds between macromolecular subunits (72 and 95 kDa), resulting in reduced particle size and increased zeta potential and free sulfhydryl content of the isolates. The fluorescence spectra analysis showed red shifts phenomena with pH increasing and fluorescence intensity increase with temperature increasing, implying the alterations in the tertiary structure of protein. Compared to the control SPPI sample, the amount of LAL reduced by 47.40 %, 50.36 % and 52.39 % using pH 12.5 + 70 â, pH 12.5 + 80 â and pH 12.5 + 90 â treatment, respectively. These findings provide fundamental information for the development and application of SPPI in food industry.
Asunto(s)
Bombyx , Animales , Lisinoalanina , Pupa , Calor , Solubilidad , Concentración de Iones de HidrógenoRESUMEN
The formation of Maillard reaction products, including Amadori compounds (determined as furosine), advanced glycation end products (AGEs), α-dicarbonyl and furfural compounds, as well as amino acid cross-links (lysinoalanine and lanthionine) was investigated in direct (DI) and indirect (IN) UHT-treated experimental liquid infant formula (IF) during storage at 40 °C. IN-IF had higher concentrations of all investigated compounds compared to DI-IF and low pasteurized IF. IN UHT treatment induced significantly higher concentrations of α-dicarbonyl compounds (glyoxal, methylglyoxal, 3-deoxyglucosone and 3-deoxygalactosone) compared to DI, which facilitated increased formation of AGEs (N-Æ-(carboxymethyl)lysine, methylglyoxal- and glyoxal-derived hydroimidazolones) in unstored IFs. During storage for 6 months, concentrations of furosine and AGEs increased while α-dicarbonyl compounds decreased. Principal component analysis indicated that differences between IN-IF and DI-IF disappeared after 2 months of storage. IN-IF had higher concentrations of lysinoalanine and lanthionine and lower concentrations of available lysine and arginine than DI-IF indicating higher loss of protein quality in IN-IF.
Asunto(s)
Aminoácidos , Reacción de Maillard , Productos Finales de Glicación Avanzada/química , Glioxal/análisis , Humanos , Fórmulas Infantiles/análisis , Lisina/análisis , Lisinoalanina , Piruvaldehído/análisisRESUMEN
pH shift is an effective technique for modifying functional properties of food proteins. However, it can increase lysinoalanine (LAL) content under alkali conditions, thus limiting the use of proteins. This study investigated the inhibition effect of ultrasonic parameters on LAL formation in rapeseed protein isolates (RPI) during pH shift treatment (pH-ST). Results showed that the content of LAL decreased by 49.5% and 74.1%, following the use of ultrasound (28 kHz, 40 W/L, 40 °C, and 30 min) under alkali and acidic treatment, respectively. Structural analysis showed that after ultrasonic irradiation, increased sulfhydryl groups and amino acids reduced the dehydroalanine and, thus, decreased LAL content. Particle size, secondary structure, and microstructure (SEM, AFM) analyses showed relative dispersion in protein distribution, reducing intermolecular or intramolecular cross-linking, thereby lowering the LAL content. Thus, ultrasonic-aided pH-ST may be an operational technique toward minimizing LAL formation in RPI.
Asunto(s)
Brassica napus , Lisinoalanina , Aminoácidos , Concentración de Iones de Hidrógeno , ProteínasRESUMEN
The influences of multi-frequency countercurrent S-type ultrasound (MFSU), with various frequency modes, on lysinoalanine (LAL) formation and conformational characteristics of rice dreg protein isolates (RDPI) were investigated. The ultrasonic operating mode with dual-frequency combination (20/40 kHz) indicated lower LAL content and higher protein dissolution rate of RDPI compared with that of other ultrasound operating modes. Under the dual-frequency ultrasound mode of 20/40 kHz, acoustic power density of 60 W/L, time of 20 min, and temperature of 35 °C, the relative reduction rate of LAL of RDPI reached the highest with its value of 26.95%, and the protein dissolution rate was 71.87%. The changes in chemical interactions between protein molecules indicated that hydrophobic interactions and disulfide bonds played a considerable role in the formation of LAL of RDPI, especially the reduction of g-g-g and g-g-t disulfide bond. Alterations in microstructure showed that ultrasonication loosened the protein structure and created more uniform protein fragments of RDPI. In conclusion, using MFSU in treating RDPI was an efficacious avenue for minimizing LAL content and modifying the conformational characteristics of RDPI.
Asunto(s)
Lisinoalanina/química , Oryza/metabolismo , Proteínas de Plantas/química , Ultrasonido/métodos , Alcaloides Indólicos , Proteínas de Plantas/metabolismo , Conformación ProteicaRESUMEN
The effect of dual-frequency ultrasound treatment with different working modes on the lysinoalanine (LAL) formation and structural characterization of rice dreg protein isolates (RDPI) was studied during alkaline exaction processing. Ultrasonic notably decreased the LAL amount of RDPI and enhanced the protein dissolution rate. The LAL content of RDPI, especially sequential dual frequency 20/40 kHz, decreased by 12.02% (P < 0.05), compared to non-sonicated samples. Herein, the protein dissolution rate was higher. The changes in sulfhydryl groups was positively correlated with the LAL formation. The amino acids (AA) such as threonine (Thr), lysine (Lys), and arginine (Arg) were reduced, resulting in a decrease in LAL content following sonication. Besides, ultrasonication altered protein secondary structure by reducing random coil and ß-sheet contents, while α-helix and ß-turn contents increased. Alterations in the surface hydrophobicity, particle size, particle size distribution, and microstructure indicated more irregular fragment with microparticles of RDPI by sonochemical treatment. Thus, ultrasound treatment may be a new and efficacious process for controlling the LAL generation in prepared-protein food(s) during alkali extraction.
Asunto(s)
Lisinoalanina/química , Oryza/química , Proteínas de Plantas/aislamiento & purificación , Sonicación , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Proteínas de Plantas/química , Conformación Proteica , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Pasteurized donor human milk (PDHM) for preterm infant nutrition is fortified with hydrolyzates of cow's milk proteins, which have been poorly investigated in relation to heat-damage and occurrence of the bioactive peptides ß-casomorphins (BCMs). Therefore, thermal protein modifications of three commercial fortifiers were assessed by measuring well-recognized indexes of heat load. The fortifiers did not contain pyrraline, whereas furosine and lysinoalanine levels roughly overlapped the lowest values reported for liquid formulas addressed to term infant nutrition. Bovine BCMs 3 to 7 and human BCMs 3 to 9 were searched. Bovine BCMs 3, 4, 6 and 7 were found in the undigested fortifiers. Following in vitro digestion simulating the digestive conditions of premature infant, bovine BCMs still occurred in fortified PDHM; the human BCMs 3, 7, 8 and 9 formed. Overall, these results better address the nutritional features of protein fortifiers and fortified PDHM intended for nutrition of preterm infants.
Asunto(s)
Endorfinas/análisis , Alimentos Fortificados , Proteínas de la Leche/química , Leche Humana/química , Animales , Bovinos , Digestión , Endorfinas/química , Femenino , Alimentos Fortificados/análisis , Calor , Humanos , Fenómenos Fisiológicos Nutricionales del Lactante , Recién Nacido , Recien Nacido Prematuro , Lisina/análogos & derivados , Lisina/análisis , Lisinoalanina/análisis , Norleucina/análogos & derivados , Norleucina/análisis , Pasteurización , Pirroles/análisisRESUMEN
The flagellar hook protein FlgE from spirochaete bacteria self-catalyzes the formation of an unusual inter-subunit lysinoalanine (Lal) crosslink that is critical for cell motility. Unlike other known examples of Lal biosynthesis, conserved cysteine and lysine residues in FlgE spontaneously react to form Lal without the involvement of additional enzymes. Oligomerization of FlgE via its D0 and Dc domains drives assembly of the crosslinking site at the D1-D2 domain interface. Structures of the FlgED2 domain, dehydroalanine (DHA) intermediate and Lal crosslinked FlgE subunits reveal successive snapshots of the reaction. Cys178 flips from a buried configuration to release hydrogen sulfide (H2S/HS-) and produce DHA. Interface residues provide hydrogen bonds to anchor the active site, facilitate ß-elimination of Cys178 and polarize the peptide backbone to activate DHA for reaction with Lys165. Cysteine-reactive molecules accelerate DHA formation, whereas nucleophiles can intercept the DHA intermediate, thereby indicating a potential for Lal crosslink inhibitors to combat spirochaetal diseases.
Asunto(s)
Flagelos/fisiología , Lisinoalanina/química , Lisinoalanina/metabolismo , Treponema denticola/fisiología , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Clonación Molecular , Ácido Ditionitrobenzoico/farmacología , Concentración de Iones de Hidrógeno , Modelos Moleculares , Conformación ProteicaRESUMEN
The effect of alkali concentration on the digestibility and absorption characteristics of rice residue protein isolates (RPI) and lysinoalanine (LAL) was studied. When NaOH concentration was 0.03â¯M, the in vitro digestibility of RPI reached a maximum, and when NaOH concentration was higher than 0.03â¯M, the in vitro digestibility decreased. Alkali treatment reduced the release of all amino acids, especially arginine, lysine, phenylalanine, tyrosine, cysteine, and threonine. LAL only released 2.65-9.28% of the total LAL content, which was mainly combined with longer peptide chains, and the molecular weight was mostly accumulated between 1000â¯Da and 3000â¯Da. The experimental model of rats in the small intestine perfusion showed that the high alkali concentration significantly reduced the absorption rate of RPI, and LAL had no specific absorption site in the small intestine of rats, and was not available for intestinal absorption.
Asunto(s)
Álcalis/química , Lisinoalanina/metabolismo , Oryza/química , Proteínas de Vegetales Comestibles/metabolismo , Aminoácidos/metabolismo , Animales , Digestión , Masculino , Ratas , Ratas Sprague-DawleyRESUMEN
Alkaline pH12 shift treatment performed at varying temperatures (20-80 °C for 1, 5, and 60 min) was applied to structurally modify hemp seed protein isolate (HPI). The solubility of HPI (â¼20%) was remarkably improved ( p < 0.05) with elevating the temperature and prolonging the holding time, reaching 97.5% at 80 °C for 60 min. The treated HPI exhibited a strong tendency of forming soluble large aggregates. To limit lysinoalanine (LAL) production, heating was methodically controlled to 60 °C and 5 min, where the LAL content never exceeded 100 mg/100 g of protein and the loss of cysteine and lysine was also minimal. The emulsifying activity of HPI was improved by this mild pH shift-heating combination treatment as a result of the dissociation of protein subunits, unraveling of the tertiary structure, and exposure of hydrophobic groups. Moreover, the emulsion formed by the treated protein maintained a superior stability in particle size and distribution during storage.
Asunto(s)
Cannabis/química , Reactivos de Enlaces Cruzados/química , Emulsiones/química , Proteínas de Plantas/química , Semillas/química , Aminoácidos/química , Calor , Concentración de Iones de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Lisinoalanina/química , Tamaño de la Partícula , Proteínas de Plantas/aislamiento & purificación , Conformación Proteica , SolubilidadRESUMEN
Duramycin is a heavily post-translationally modified peptide that binds phosphatidylethanolamine. It has been investigated as an antibiotic, an inhibitor of viral entry, a therapeutic for cystic fibrosis, and a tumor and vasculature imaging agent. Duramycin contains a ß-hydroxylated Asp (Hya) and four macrocycles, including an essential lysinoalanine (Lal) cross-link. The mechanism of Lal formation is not known. Here we show that Lal is installed stereospecifically by DurN via addition of Lys19 to a dehydroalanine. The structure of DurN reveals an unusual dimer with a new fold. Surprisingly, in the structure of duramycin bound to DurN, no residues of the enzyme are near the Lal cross-link. Instead, Hya15 of the substrate makes interactions with Lal, suggesting it acts as a base to deprotonate Lys19 during catalysis. Biochemical data suggest that DurN preorganizes the reactive conformation of the substrate, such that the Hya15 of the substrate can serve as the catalytic base for Lal formation.
Asunto(s)
Bacteriocinas/química , Lisinoalanina/química , Péptidos/química , Alanina/análogos & derivados , Antibacterianos/química , Bacillus subtilis/efectos de los fármacos , Catálisis , Reactivos de Enlaces Cruzados/química , Cristalografía por Rayos X , Análisis Mutacional de ADN , Escherichia coli/enzimología , Hidrólisis , Simulación de Dinámica Molecular , Mutación , Multimerización de Proteína , Procesamiento Proteico-Postraduccional , Estructura Secundaria de Proteína , Estereoisomerismo , Streptomyces/metabolismo , Especificidad por SustratoRESUMEN
The influence of alkali extraction conditions on the formation of lysinoalanine (LAL) and the structural characterization of lysinoalanine-containing protein in rice residue protein isolates (RRPI) were explored in this study. It was found that LAL content increased from 0.256 to 13.079â¯g/kg as NaOH concentration increased from 0.03 to 0.09â¯M and then decreased to 1.541â¯g/kg at 0.13â¯M NaOH. The extraction temperature and time were found to have a positive correlation with LAL content. The highest LAL content (25.679â¯g/kg) was observed with alkali extraction using 0.09â¯M NaOH at 75⯰C for 120â¯min. The comparative structural analysis results showed that alkali treatment could degrade cystine, lysine, threonine and arginine to generate LAL; increasing alkali content would cause variations in secondary structure and micropore appearance on the surface of lysinoalanine-containing protein, whereas increasing alkali treatment temperature and time could enlarge the surface particle size of the protein.
Asunto(s)
Fraccionamiento Químico/métodos , Lisinoalanina/química , Oryza/química , Proteínas de Plantas/química , Aminoácidos/análisis , Aminoácidos/química , Lisina/química , Lisinoalanina/análisis , Microscopía de Fuerza Atómica , Microscopía Electrónica de Rastreo , Proteínas de Plantas/aislamiento & purificación , Conformación Proteica , Hidróxido de Sodio/química , Espectroscopía Infrarroja por Transformada de FourierRESUMEN
Chemistry drives many biological interactions between the microbiota and host animals, yet it is often challenging to identify the chemicals involved. This poses a problem, as such small molecules are excellent sources of potential pharmaceuticals, pretested by nature for animal compatibility. We discovered anti-HIV compounds from small, marine tunicates from the Eastern Fields of Papua New Guinea. Tunicates are a reservoir for new bioactive chemicals, yet their small size often impedes identification or even detection of the chemicals within. We solved this problem by combining chemistry, metagenomics, and synthetic biology to directly identify and synthesize the natural products. We show that these anti-HIV compounds, the divamides, are a novel family of lanthipeptides produced by symbiotic bacteria living in the tunicate. Neighboring animal colonies contain structurally related divamides that differ starkly in their biological properties, suggesting a role for biosynthetic plasticity in a native context wherein biological interactions take place.
Asunto(s)
Fármacos Anti-VIH/farmacología , Productos Biológicos/farmacología , Descubrimiento de Drogas , Infecciones por VIH/tratamiento farmacológico , Microbiota , Simbiosis , Animales , Bacterias , ADN/análisis , Evaluación Preclínica de Medicamentos , Genómica , Humanos , Lisinoalanina/química , Metagenoma , Metagenómica , Familia de Multigenes , Péptidos/farmacología , Relación Estructura-Actividad , Biología Sintética , Linfocitos T/efectos de los fármacos , UrocordadosRESUMEN
Some modified glucagon-like-peptide-1 (GLP-1) analogs are highly important for treating type 2 diabetes. Here we investigated whether GLP-1 analogs expressed in Lactococcus lactis could be substrates for modification and export by the nisin dehydratase and transporter enzyme. Subsequently we introduced a lysinoalanine by coupling a formed dehydroalanine with a lysine and investigated the structure and activity of the formed lysinoalanine-bridged GLP-1 analog. Our data show: (i) GLP-1 fused to the nisin leader peptide is very well exported via the nisin transporter NisT, (ii) production of leader-GLP-1 via NisT is higher than via the SEC system, (iii) leader-GLP-1 exported via NisT was more efficiently dehydrated by the nisin dehydratase NisB than when exported via the SEC system, (iv) individual serines and threonines in GLP-1 are dehydrated by NisB to a significantly different extent, (v) an introduced Ser30 is well dehydrated and can be coupled to Lys34 to form a lysinoalanine-bridged GLP-1 analog, (vi) a lysinoalanine(30-34) variant's conformation shifts in the presence of 25% trifluoroethanol towards a higher alpha helix content than observed for wild type GLP-1 under identical condition, (vii) a lysinoalanine(30-34) GLP-1 variant has retained significant activity. Taken together the data extend knowledge on the substrate specificities of NisT and NisB and their combined activity relative to export via the Sec system, and demonstrate that introducing a lysinoalanine bridge is an option for modifying therapeutic peptides.
Asunto(s)
Proteínas Bacterianas/metabolismo , Péptido 1 Similar al Glucagón/análogos & derivados , Péptido 1 Similar al Glucagón/metabolismo , Lactococcus lactis/metabolismo , Lisinoalanina/química , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Alanina/análogos & derivados , Alanina/química , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Péptido 1 Similar al Glucagón/biosíntesis , Péptido 1 Similar al Glucagón/genética , Hidroliasas/química , Lactococcus lactis/genética , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Procesamiento Proteico-Postraduccional , Canales de Translocación SEC/metabolismo , Serina/química , Especificidad por Sustrato , Treonina/químicaRESUMEN
This study evaluated the nutrient property and safety of the rice residue protein isolates (RRPI) product (extracted by different alkali concentrations) by exploring the protein functional, structural properties and lysinoalanine (LAL) formation. The results showed that with the rising of alkali concentration from 0.03M to 0.15M, the solubility, emulsifying and foaming properties of RRPI increased at first and then descended. When the alkali concentration was greater than 0.03M, the RRPI surface hydrophobicity decreased and the content of thiol and disulfide bond, Lys and Cys significantly reduced. By the analysis of HPLC, the content of LAL rose up from 276.08 to 15,198.07mg/kg and decreased to 1340.98mg/kg crude protein when the alkali concentration increased from 0.03 to 0.09M and until to 0.15M. These results indicated that RRPI alkaline extraction concentration above 0.03M may cause severe nutrient or safety problems of protein.
Asunto(s)
Álcalis/química , Lisinoalanina/análisis , Oryza/metabolismo , Extractos Vegetales/química , Proteínas de Plantas/metabolismo , Álcalis/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Lisinoalanina/metabolismo , Extractos Vegetales/metabolismo , SolubilidadRESUMEN
Spirochaetes are bacteria responsible for several serious diseases, including Lyme disease (Borrelia burgdorferi), syphilis (Treponema pallidum) and leptospirosis (Leptospira interrogans), and contribute to periodontal diseases (Treponema denticola)(1). These spirochaetes employ an unusual form of flagella-based motility necessary for pathogenicity; indeed, spirochaete flagella (periplasmic flagella) reside and rotate within the periplasmic space(2-11). The universal joint or hook that links the rotary motor to the filament is composed of â¼120-130 FlgE proteins, which in spirochaetes form an unusually stable, high-molecular-weight complex(9,12-17). In other bacteria, the hook can be readily dissociated by treatments such as heat(18). In contrast, spirochaete hooks are resistant to these treatments, and several lines of evidence indicate that the high-molecular-weight complex is the consequence of covalent crosslinking(12,13,17). Here, we show that T. denticola FlgE self-catalyses an interpeptide crosslinking reaction between conserved lysine and cysteine, resulting in the formation of an unusual lysinoalanine adduct that polymerizes the hook subunits. Lysinoalanine crosslinks are not needed for flagellar assembly, but they are required for cell motility and hence infection. The self-catalytic nature of FlgE crosslinking has important implications for protein engineering, and its sensitivity to chemical inhibitors provides a new avenue for the development of antimicrobials targeting spirochaetes.