Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 176
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
PLoS One ; 19(10): e0310929, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39361671

RESUMEN

Continuous cropping is a common cultivation practice in lavender cultivation, and the structure of the soil microbial community is one of the main reasons affecting the continuous cropping disorder in lavender; however, the relationship between the number of years of cultivation and inter-root microbial composition has not yet been investigated; using Illumina high-throughput sequencing we detected fungal community structure of rhizosphere soil under 1 (L1), 3 (L3), 5 (L5) and 0 (L0) years' of lavender cultivation in Yili, Xinjiang China. The results showed that with the extension of planting years, the physical-chemical characteristics of the soil shifted, and the diversity of the fungal communities shrank, the abundance and richness of species decreased and then increased, and the phylogenetic diversity increased, The structure of the soil fungal communities varied greatly. At phylum level, dominant fungal phyla were Ascomycetes, Basidiomycetes, etc. At genus level, dominant genera were Gibberella, Mortierella, etc, whose absolute abundance all increased with increasing planting years (P < 0.05); redundancy analysis showed that thesoil physicochemical characteristics significantly correlated with dominant bacterial genera. The FUN Guild prediction showed that six groups of plant pathogens and plant saprotrophs changed significantly (P < 0.05), the amount of harmful bacteria in the soil increased while the amount of arbuscular mycorrhizal fungui (AMF) decreased, leading to a continuous cropping obstacle of lavender. The findings of this study provida theoretical foundation for the management of continuous cropping and the prevention fungus-related diseases in lavender.


Asunto(s)
Hongos , Secuenciación de Nucleótidos de Alto Rendimiento , Lavandula , Rizosfera , Microbiología del Suelo , Lavandula/microbiología , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Filogenia , Biodiversidad , China , Micobioma/genética , Raíces de Plantas/microbiología
2.
Environ Microbiol Rep ; 16(4): e13318, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39171931

RESUMEN

Understanding the effects of grapevine rootstock and scion genotypes on arbuscular mycorrhizal fungi (AMF), as well as the roles of these fungi in plant development, could provide new avenues for adapting viticulture to climate change and reducing agrochemical inputs. The root colonization of 10 rootstock/scion combinations was studied using microscopy and metabarcoding approaches and linked to plant development phenotypes. The AMF communities were analysed using 18S rRNA gene sequencing. The 28S rRNA gene was also sequenced for some combinations to evaluate whether the method changed the results. Root colonization indexes measured by microscopy were not significantly different between genotypes. Metabarcoding analyses showed an effect of the rootstock genotype on the ß-diversity and the enrichment of several taxa with both target genes, as well as an effect on the Chao1 index with the 18S rRNA gene. We confirm that rootstocks recruit different AMF communities when subjected to the same pedoclimatic conditions, while the scion has little or no effect. Significant correlations were observed between AMF community composition and grapevine development, suggesting that AMF have a positive effect on plant growth. Given these results, it will be important to define consensus methods for studying the role of these beneficial micro-organisms in vineyards.


Asunto(s)
Micorrizas , Raíces de Plantas , Vitis , Micorrizas/genética , Micorrizas/clasificación , Micorrizas/fisiología , Micorrizas/crecimiento & desarrollo , Vitis/microbiología , Vitis/crecimiento & desarrollo , Raíces de Plantas/microbiología , Microbiología del Suelo , ARN Ribosómico 18S/genética , Genotipo , Micobioma/genética , Filogenia
3.
PLoS One ; 19(7): e0305600, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39018319

RESUMEN

Plants intimately coexist with diverse taxonomically structured microbial communities that influence host health and productivity. The coexistence of plant microbes in the phyllosphere benefits biodiversity maintenance, ecosystem function, and community stability. However, differences in community composition and network structures of phyllosphere epiphytic and endophytic fungi are widely unknown. Using Illumina Miseq sequencing of internal transcribed spacer (ITS) and 28S rRNA gene amplicons, we characterised the epiphytic and endophytic fungal communities associated with cashew phyllosphere (leaf, flower and fruit) from Kwale, Kilifi and Lamu counties in Kenya. The ITS and 28S rRNA gene sequences were clustered into 267 and 108 operational taxonomic units (OTUs) at 97% sequence similarity for both the epiphytes and endophytes. Phylum Ascomycota was abundant followed by Basidiomycota, while class Saccharomycetes was most dominant followed by Dothideomycetes. The major non-ascomycete fungi were associated only with class Tremellales. The fungal communities detected had notable ecological functions as saprotrophs and pathotrophs in class Saccharomyectes and Dothideomycetes. The community composition of epiphytic and endophytic fungi significantly differed between the phyllosphere organs which was statistically confirmed by the Analysis of Similarity test (ANOSIM Statistic R: 0.3273, for 28S rRNA gene and ANOSIM Statistic R: 0.3034 for ITS). The network analysis revealed that epiphytic and endophytic structures were more specialized, modular and had less connectance. Our results comprehensively describe the phyllosphere cashew-associated fungal community and serve as a foundation for understanding the host-specific microbial community structures among cashew trees.


Asunto(s)
Anacardium , Endófitos , Kenia , Anacardium/microbiología , Endófitos/genética , Endófitos/clasificación , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Código de Barras del ADN Taxonómico , ARN Ribosómico 28S/genética , Micobioma/genética , Biodiversidad , Filogenia , Hojas de la Planta/microbiología , ADN de Hongos/genética
4.
Sci Rep ; 14(1): 14122, 2024 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-38898099

RESUMEN

Southern Asian flowers offer honeybees a diversity of nectar. Based on its geographical origin, honey quality varies. Traditional methods are less authentic than DNA-based identification. The origin of honey is determined by pollen, polyphenolic, and macro-microorganisms. In this study, amplicon sequencing targets macro-microorganisms in eDNA using the ITS1 region to explore honey's geographical location and authentication. The variety of honey samples was investigated using ITS1 with Illumina sequencing. For all four honey samples, raw sequence reads showed 979,380 raw ITS1 amplicon reads and 375 ASVs up to the phylum level. The highest total number of 202 ASVs up to phylum level identified Bali honey with 211,189 reads, followed by Banggi honey with 309,207 a total number of 111 ASVs, and Lombok represents only 63 ASVs up to phylum level with several read 458,984. Based on Shannon and Chao1, honey samples from Bali (B2) and (B3) exhibited higher diversity than honey from Lombok (B1) and green honey from Sabah (B4), while the Simpson index showed that Banggi honey (B4) had higher diversity. Honey samples had significant variance in mycobiome taxonomic composition and abundance. Zygosaccharomyces and Aspergillus were the main genera found in Lombok honey, with percentages of 68.81% and 29.76% respectively. Bali honey samples (B2 and B3) were identified as having a significant amount of the genus Aureobasidium, accounting for 40.81% and 25% of the readings, respectively. The microbiome composition of Banggi honey (B4) showed a high presence of Zygosaccharomyces 45.17% and Aureobasidium 35.24%. The ITS1 analysis effectively distinguishes between honey samples of different origins and its potential as a discriminatory tool for honey origin and authentication purposes.


Asunto(s)
Miel , Animales , Asia Sudoriental , Abejas/genética , Abejas/microbiología , ADN Intergénico/genética , Hongos/genética , Hongos/clasificación , Hongos/aislamiento & purificación , Miel/análisis , Islas , Micobioma/genética , Polen
5.
Mol Ecol Resour ; 24(6): e13983, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38840549

RESUMEN

In the face of evolving agricultural practices and climate change, tools towards an integrated biovigilance platform to combat crop diseases, spore sampling, DNA diagnostics and predictive trajectory modelling were optimized. These tools revealed microbial dynamics and were validated by monitoring cereal rust fungal pathogens affecting wheat, oats, barley and rye across four growing seasons (2015-2018) in British Columbia and during the 2018 season in southern Alberta. ITS2 metabarcoding revealed disparity in aeromycobiota diversity and compositional structure across the Canadian Rocky Mountains, suggesting a barrier effect on air flow and pathogen dispersal. A novel bioinformatics classifier and curated cereal rust fungal ITS2 database, corroborated by real-time PCR, enhanced the precision of cereal rust fungal species identification. Random Forest modelling identified crop and land-use diversification as well as atmospheric pressure and moisture as key factors in rust distribution. As a valuable addition to explain observed differences and patterns in rust fungus distribution, trajectory HYSPLIT modelling tracked rust fungal urediniospores' northeastward dispersal from the Pacific Northwest towards southern British Columbia and Alberta, indicating multiple potential origins. Our Canadian case study exemplifies the power of an advanced biovigilance toolbox towards developing an early-warning system for farmers to detect and mitigate impending disease outbreaks.


Asunto(s)
Microbiología del Aire , Basidiomycota , Enfermedades de las Plantas , Enfermedades de las Plantas/microbiología , Basidiomycota/genética , Basidiomycota/clasificación , Basidiomycota/aislamiento & purificación , Colombia Británica , Alberta , Grano Comestible/microbiología , Micobioma/genética , Biología Computacional/métodos , Código de Barras del ADN Taxonómico/métodos , Canadá
6.
Mol Ecol ; 33(15): e17441, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38923648

RESUMEN

Rocky habitats, globally distributed ecosystems, harbour diverse biota, including numerous endemic and endangered species. Vascular plants thriving in these environments face challenging abiotic conditions, requiring diverse morphological and physiological adaptations. Their engagement with the surrounding microbiomes is, however, equally vital for their adaptation, fitness, and long-term survival. Nevertheless, there remains a lack of understanding surrounding this complex interplay within this fascinating biotic ecosystem. Using microscopic observations and metabarcoding analyses, we examined the fungal abundance and diversity in the root system of the rock-dwelling West Carpathian endemic shrub, Daphne arbuscula (Thymelaeaceae). We explored the diversification of root-associated fungal communities in relation to microclimatic variations across the studied sites. We revealed extensive colonization of the Daphne roots by diverse taxonomic fungal groups attributed to different ecological guilds, predominantly plant pathogens, dark septate endophytes (DSE), and arbuscular mycorrhizal fungi (AMF). Notably, differences in taxonomic composition and ecological guilds emerged between colder and warmer microenvironments. Apart from omnipresent AMF, warmer sites exhibited a prevalence of plant pathogens, while colder sites were characterized by a dominance of DSE. This mycobiome diversification, most likely triggered by the environment, suggests that D. arbuscula populations in warmer areas may be more vulnerable to fungal diseases, particularly in the context of global climate change.


Asunto(s)
Daphne , Ecosistema , Micorrizas , Raíces de Plantas , Micorrizas/genética , Micorrizas/clasificación , Raíces de Plantas/microbiología , Daphne/microbiología , Daphne/genética , Micobioma/genética , Hongos/clasificación , Hongos/genética , Endófitos/genética , Adaptación Fisiológica/genética
8.
Fungal Genet Biol ; 173: 103898, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38815692

RESUMEN

The skin and its microbiome function to protect the host from pathogen colonization and environmental stressors. In this study, using the Wisconsin Miniature Swine™ model, we characterize the porcine skin fungal and bacterial microbiomes, identify bacterial isolates displaying antifungal activity, and use whole-genome sequencing to identify biosynthetic gene clusters encoding for secondary metabolites that may be responsible for the antagonistic effects on fungi. Through this comprehensive approach of paired microbiome sequencing with culturomics, we report the discovery of novel species of Corynebacterium and Rothia. Further, this study represents the first comprehensive evaluation of the porcine skin mycobiome and the evaluation of bacterial-fungal interactions on this surface. Several diverse bacterial isolates exhibit potent antifungal properties against opportunistic fungal pathogens in vitro. Genomic analysis of inhibitory species revealed a diverse repertoire of uncharacterized biosynthetic gene clusters suggesting a reservoir of novel chemical and biological diversity. Collectively, the porcine skin microbiome represents a potential unique source of novel antifungals.


Asunto(s)
Hongos , Microbiota , Piel , Animales , Piel/microbiología , Porcinos/microbiología , Microbiota/genética , Hongos/genética , Hongos/efectos de los fármacos , Antifúngicos/farmacología , Antibiosis , Micobioma/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/efectos de los fármacos , Bacterias/aislamiento & purificación , Bacterias/metabolismo , Corynebacterium/genética , Corynebacterium/efectos de los fármacos , Porcinos Enanos/microbiología , Familia de Multigenes , Secuenciación Completa del Genoma , Metabolismo Secundario/genética
9.
BMC Microbiol ; 24(1): 63, 2024 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-38373963

RESUMEN

BACKGROUND: Amplicon-based mycobiome analysis has the potential to identify all fungal species within a sample and hence could provide a valuable diagnostic assay for use in clinical mycology settings. In the last decade, the mycobiome has been increasingly characterised by targeting the internal transcribed spacer (ITS) regions. Although ITS targets give broad coverage and high sensitivity, they fail to provide accurate quantitation as the copy number of ITS regions in fungal genomes is highly variable even within species. To address these issues, this study aimed to develop a novel NGS fungal diagnostic assay using an alternative amplicon target. METHODS: Novel universal primers were designed to amplify a highly diverse single copy and uniformly sized DNA target (Tef1) to enable mycobiome analysis on the Illumina iSeq100 which is a low cost, small footprint and simple to use next-generation sequencing platform. To enable automated analysis and rapid results, a streamlined bioinformatics workflow and sequence database were also developed. Sequencing of mock fungal communities was performed to compare the Tef1 assay and established ITS1-based method. The assay was further evaluated using clinical respiratory samples and the feasibility of using internal spike-in quantitative controls was assessed. RESULTS: The Tef1 assay successfully identified and quantified Aspergillus, Penicillium, Candida, Cryptococcus, Rhizopus, Fusarium and Lomentospora species from mock communities. The Tef1 assay was also capable of differentiating closely related species such as A. fumigatus and A. fischeri. In addition, it outperformed ITS1 at identifying A. fumigatus and other filamentous pathogens in mixed fungal communities (in the presence or absence of background human DNA). The assay could detect as few as 2 haploid genome equivalents of A. fumigatus from clinical respiratory samples. Lastly, spike-in controls were demonstrated to enable semi-quantitation of A. fumigatus load in clinical respiratory samples using sequencing data. CONCLUSIONS: This study has developed and tested a novel metabarcoding target and found the assay outperforms ITS1 at identifying clinically relevant filamentous fungi. The assay is a promising diagnostic candidate that could provide affordable NGS analysis to clinical mycology laboratories.


Asunto(s)
Micobioma , Micosis , Humanos , Micobioma/genética , ADN de Hongos/genética , Hongos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
10.
WIREs Mech Dis ; 16(3): e1641, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38228159

RESUMEN

The fungal component of the microbiota, the mycobiota, has been neglected for a long time due to its poor richness compared to bacteria. Limitations in fungal detection and taxonomic identification arise from using metagenomic approaches, often borrowed from bacteriome analyses. However, the relatively recent discoveries of the ability of fungi to modulate the host immune response and their involvement in human diseases have made mycobiota a fundamental component of the microbial communities inhabiting the human host, deserving some consideration in host-microbe interaction studies and in metagenomics. Here, we reviewed recent data on the identification of yeasts of the Ascomycota phylum across human body districts, focusing on the most representative genera, that is, Saccharomyces and Candida. Then, we explored the key factors involved in shaping the human mycobiota across the lifespan, ranging from host genetics to environment, diet, and lifestyle habits. Finally, we discussed the strengths and weaknesses of culture-dependent and independent methods for mycobiota characterization. Overall, there is still room for some improvements, especially regarding fungal-specific methodological approaches and bioinformatics challenges, which are still critical steps in mycobiota analysis, and to advance our knowledge on the role of the gut mycobiota in human health and disease. This article is categorized under: Immune System Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Environmental Factors Infectious Diseases > Environmental Factors.


Asunto(s)
Ascomicetos , Humanos , Ascomicetos/genética , Micobioma/genética , Microbiota , Metagenómica/métodos , Candida/genética , Candida/aislamiento & purificación , Microbioma Gastrointestinal
11.
Microbiome ; 11(1): 275, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38098063

RESUMEN

BACKGROUND: The accuracy of internal-transcribed-spacer (ITS) and shotgun metagenomics has not been robustly evaluated, and the effect of diet on the composition and function of the bacterial and fungal gut microbiome in a longitudinal setting has been poorly investigated. Here we compared two approaches to study the fungal community (ITS and shotgun metagenomics), proposed an enrichment protocol to perform a reliable mycobiome analysis using a comprehensive in-house fungal database, and correlated dietary data with both bacterial and fungal communities. RESULTS: We found that shotgun DNA sequencing after a new enrichment protocol combined with the most comprehensive and novel fungal databases provided a cost-effective approach to perform gut mycobiome profiling at the species level and to integrate bacterial and fungal community analyses in fecal samples. The mycobiome was significantly more variable than the bacterial community at the compositional and functional levels. Notably, we showed that microbial diversity, composition, and functions were associated with habitual diet composition instead of driven by global dietary changes. Our study indicates a potential competitive inter-kingdom interaction between bacteria and fungi for food foraging. CONCLUSION: Together, our present work proposes an efficient workflow to study the human gut microbiome integrating robustly fungal, bacterial, and dietary data. These findings will further advance our knowledge of the interaction between gut bacteria and fungi and pave the way for future investigations in human mycobiome. Video Abstract.


Asunto(s)
Microbiota , Micobioma , Humanos , Hongos/genética , Micobioma/genética , Bacterias/genética , Metagenómica/métodos , Nutrientes
12.
Microbiome ; 11(1): 217, 2023 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-37779194

RESUMEN

BACKGROUND: Major advances over the past decade in molecular ecology are providing access to soil fungal diversity in forest ecosystems worldwide, but the diverse functions and metabolic capabilities of this microbial community remain largely elusive. We conducted a field survey in montane old-growth broadleaved and conifer forests, to investigate the relationship between soil fungal diversity and functional genetic traits. To assess the extent to which variation in community composition was associated with dominant tree species (oak, spruce, and fir) and environmental variations in the old-growth forests in the Jade Dragon Snow Mountain in Yunnan Province, we applied rDNA metabarcoding. We also assessed fungal gene expression in soil using mRNA sequencing and specifically assessed the expression of genes related to organic matter decomposition and nutrient acquisition in ectomycorrhizal and saprotrophic fungi. RESULTS: Our taxonomic profiling revealed striking shifts in the composition of the saprotrophic and ectomycorrhizal guilds among the oak-, fir-, and spruce-dominated forests. The core fungal microbiome comprised only ~ 20% of the total OTUs across all soil samples, although the overlap between conifer-associated communities was substantial. In contrast, seasonality and soil layer explained only a small proportion of the variation in community structure. However, despite their highly variable taxonomic composition, fungal guilds exhibited remarkably similar functional traits for growth-related and core metabolic pathways across forest associations, suggesting ecological redundancy. However, we found that the expression profiles of genes related to polysaccharide and protein degradation and nutrient transport notably varied between and within the fungal guilds, suggesting niche adaptation. CONCLUSIONS: Overall, our metatranscriptomic analyses revealed the functional potential of soil fungal communities in montane old-growth forests, including a suite of specialized genes and taxa involved in organic matter decomposition. By linking genes to ecological traits, this study provides insights into fungal adaptation strategies to biotic and environmental factors, and sheds light on the importance of understanding functional gene expression patterns in predicting ecosystem functioning. Video Abstract.


Asunto(s)
Microbiota , Micobioma , Ecosistema , Micobioma/genética , Suelo/química , Microbiología del Suelo , China , Bosques , Microbiota/genética , Hongos/genética
13.
Microbiome ; 11(1): 179, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-37563687

RESUMEN

BACKGROUND: The fungal component of the human gut microbiome, also known as the mycobiome, plays a vital role in intestinal ecology and human health. However, the overall structure of the gut mycobiome as well as the inter-individual variations in fungal composition remains largely unknown. In this study, we collected a total of 3363 fungal sequencing samples from 16 cohorts across three continents, including 572 newly profiled samples from China. RESULTS: We identify and characterize four mycobiome enterotypes using ITS profiling of 3363 samples from 16 cohorts. These enterotypes exhibit stability across populations and geographical locations and significant correlation with bacterial enterotypes. Particularly, we notice that fungal enterotypes have a strong age preference, where the enterotype dominated by Candida (i.e., Can_type enterotype) is enriched in the elderly population and confers an increased risk of multiple diseases associated with a compromised intestinal barrier. In addition, bidirectional mediation analysis reveals that the fungi-contributed aerobic respiration pathway associated with the Can_type enterotype might mediate the association between the compromised intestinal barrier and aging. CONCLUSIONS: We show that the human gut mycobiome has stable compositional patterns across individuals and significantly correlates with multiple host factors, such as diseases and host age. Video Abstract.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Micobioma , Humanos , Anciano , Micobioma/genética , Microbioma Gastrointestinal/genética , Candida , Envejecimiento
14.
Am J Vet Res ; 84(10): 1-5, 2023 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-37536686

RESUMEN

OBJECTIVE: To report the density, and constituents, of the mycobiome on the skin surface of normal dogs. ANIMALS: 20 normal dogs were recruited for this study, with informed consent in all cases. METHODS: Flocked swabs were used to sample the skin surface and to sample the skin surface after superficial scraping with a blunted scapula. Both samples were taken within a brass guide with an internal area of 3.5 cm-2. Next-generation DNA sequencing was used to identify and quantify components of the mycobiome. RESULTS: The median density of the mycobiome was 1.1 X 105 cm-2 (IQR, 27,561, 409,572). Cladosporium spp and Vishniacozyma victoriae were found on all 20 dogs. CLINICAL RELEVANCE: Knowledge of the density and the composition of the cutaneous mycobiome will increase our understanding of skin biology and may have relevance to future therapeutic trials.


Asunto(s)
Micobioma , Perros , Animales , Micobioma/genética , Piel , Hongos
15.
PLoS One ; 18(7): e0287990, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37471328

RESUMEN

Eukaryotic hosts harbor tremendously diverse microbiomes that affect host fitness and response to environmental challenges. Fungal endophytes are prominent members of plant microbiomes, but we lack information on the diversity in functional traits affecting their interactions with their host and environment. We used two culturing approaches to isolate fungal endophytes associated with the widespread, dominant prairie grass Andropogon gerardii and characterized their taxonomic diversity using rDNA barcode sequencing. A randomly chosen subset of fungi representing the diversity of each leaf was then evaluated for their use of different carbon compound resources and growth on those resources. Applying community phylogenetic analyses, we discovered that these fungal endophyte communities are comprised of phylogenetically distinct assemblages of slow- and fast-growing fungi that differ in their use and growth on differing carbon substrates. Our results demonstrate previously undescribed and cryptic functional diversity in carbon resource use and growth in fungal endophyte communities of A. gerardii.


Asunto(s)
Hongos no Clasificados , Micobioma , Micobioma/genética , Poaceae , Filogenia , Hongos , Endófitos/fisiología
16.
Sci Total Environ ; 893: 164827, 2023 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-37321490

RESUMEN

Understanding the tripartite consortium of crop, mycobiome, and environment is necessary to advance smart farming. Owing to their life cycle of hundreds of years, tea plants are excellent models for studying these entwined relationships; however, observations on this globally important cash crop with numerous health benefits are still rudimentary. Here, the fungal taxa along the soil-tea plant continuum in tea gardens of different ages in famous high-quality tea-growing regions in China were characterized using DNA metabarcoding. Using machine learning, we dissected the spatiotemporal distribution, co-occurrence patterns, assembly, and their associations in different compartments of tea-plant mycobiomes, and further explored how these potential interactions were driven by environmental factors and tree age, and how they influenced the market prices of tea. The results revealed that Compartment niche differentiation was the key driving force behind variation in the tea-plant mycobiome. The mycobiome of roots had the highest specific proportion and convergence and almost did not overlap with the soil. The enrichment ratio of developing leaves to root mycobiome increased with increasing tree age, while mature leaves showed the highest value in the Laobanzhang (LBZ) tea garden with top market prices and displayed the strongest depletion effect on mycobiome association along the soil-tea plant continuum. The balance between determinism and stochasticity in the assembly process was co-driven by compartment niches and life cycle variation. Fungal guild analysis showed that altitude indirectly affected market prices of tea by mediating the abundance of the plant pathogen. The relative importance of plant pathogen and ectomycorrhizae could be used to assess the age of tea. Biomarkers were mainly distributed in soil compartments, and Clavulinopsis miyabeana, Mortierella longata, and Saitozyma sp. may affect the spatiotemporal dynamics of tea-plant mycobiomes and their ecosystem services. Soil properties (mainly total potassium) and tree age indirectly affected the developing leaves via positively influencing the mycobiome of mature leaves. In contrast, the climate directly and significantly drove the mycobiome composition of the developing leaves. Moreover, the proportion of negative correlations in the co-occurrence network positively regulated tea-plant mycobiome assembly, which significantly affected the market prices of tea in the structural equation model with network complexity as hub. These findings indicate that mycobiome signatures play pivotal roles in the adaptive evolution and fungal disease control of tea plants and can help develop better agricultural practices that focus on both plant health and financial profits, and provide a new strategy for assessing tea quality grade and age.


Asunto(s)
Ecosistema , Micobioma , Hongos , Micobioma/genética , Hojas de la Planta , Raíces de Plantas/microbiología , Plantas , Suelo , Microbiología del Suelo , , Árboles/microbiología
17.
Nat Commun ; 14(1): 3798, 2023 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-37365172

RESUMEN

Despite their role in host nutrition, the anaerobic gut fungal (AGF) component of the herbivorous gut microbiome remains poorly characterized. Here, to examine global patterns and determinants of AGF diversity, we generate and analyze an amplicon dataset from 661 fecal samples from 34 mammalian species, 9 families, and 6 continents. We identify 56 novel genera, greatly expanding AGF diversity beyond current estimates (31 genera and candidate genera). Community structure analysis indicates that host phylogenetic affiliation, not domestication status and biogeography, shapes the community rather than. Fungal-host associations are stronger and more specific in hindgut fermenters than in foregut fermenters. Transcriptomics-enabled phylogenomic and molecular clock analyses of 52 strains from 14 genera indicate that most genera with preferences for hindgut hosts evolved earlier (44-58 Mya) than those with preferences for foregut hosts (22-32 Mya). Our results greatly expand the documented scope of AGF diversity and provide an ecologically and evolutionary-grounded model to explain the observed patterns of AGF diversity in extant animal hosts.


Asunto(s)
Micobioma , Animales , Micobioma/genética , Filogenia , Heces/microbiología , Sistema Digestivo , Evolución Biológica , Mamíferos
19.
Mol Ecol ; 32(13): 3763-3777, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37081579

RESUMEN

Root-associated fungi could play a role in determining both the positive relationship between plant diversity and productivity in experimental grasslands, and its strengthening over time. This hypothesis assumes that specialized pathogenic and mutualistic fungal communities gradually assemble over time, enhancing plant growth more in species-rich than in species-poor plots. To test this hypothesis, we used high-throughput amplicon sequencing to characterize root-associated fungal communities in experimental grasslands of 1 and 15 years of age with varying levels of plant species richness. Specifically, we tested whether the relationship between fungal communities and plant richness and productivity becomes stronger with the age of the experimental plots. Our results showed that fungal diversity increased with plant diversity, but this relationship weakened rather than strengthened over the two time points. Contrastingly, fungal community composition showed increasing associations with plant diversity over time, suggesting a gradual build-up of specific fungal assemblages. Analyses of different fungal guilds showed that these changes were particularly marked in pathogenic fungi, whose shifts in relative abundance are consistent with the pathogen dilution hypothesis in diverse plant communities. Our results suggest that root-associated fungal pathogens play more specific roles in determining the diversity-productivity relationship than other root-associated plant symbionts.


Asunto(s)
Micobioma , Micobioma/genética , Raíces de Plantas/microbiología , Hongos/genética , Plantas , Simbiosis/genética , Microbiología del Suelo
20.
Front Cell Infect Microbiol ; 13: 928353, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36844394

RESUMEN

Introduction: The gut microbiome is an integral partner in host health and plays a role in immune development, altered nutrition, and pathogen prevention. The mycobiome (fungal microbiome) is considered part of the rare biosphere but is still a critical component in health. Next generation sequencing has improved our understanding of fungi in the gut, but methodological challenges remain. Biases are introduced during DNA isolation, primer design and choice, polymerase selection, sequencing platform selection, and data analyses, as fungal reference databases are often incomplete or contain erroneous sequences. Methods: Here, we compared the accuracy of taxonomic identifications and abundances from mycobiome analyses which vary among three commonly selected target gene regions (18S, ITS1, or ITS2) and the reference database (UNITE - ITS1, ITS2 and SILVA - 18S). We analyze multiple communities including individual fungal isolates, a mixed mock community created from five common fungal isolates found in weanling piglet feces, a purchased commercial fungal mock community, and piglet fecal samples. In addition, we calculated gene copy numbers for the 18S, ITS1, and ITS2 regions of each of the five isolates from the piglet fecal mock community to determine whether copy number affects abundance estimates. Finally, we determined the abundance of taxa from several iterations of our in-house fecal community to assess the effects of community composition on taxon abundance. Results: Overall, no marker-database combination consistently outperformed the others. Internal transcribed space markers were slightly superior to 18S in the identification of species in tested communities, but Lichtheimia corymbifera, a common member of piglet gut communities, was not amplified by ITS1 and ITS2 primers. Thus, ITS based abundance estimates of taxa in piglet mock communities were skewed while 18S marker profiles were more accurate. Kazachstania slooffiae displayed the most stable copy numbers (83-85) while L. corymbifera displayed significant variability (90-144) across gene regions. Discussion: This study underscores the importance of preliminary studies to assess primer combinations and database choice for the mycobiome sample of interest and raises questions regarding the validity of fungal abundance estimates.


Asunto(s)
Microbioma Gastrointestinal , Micobioma , Animales , Porcinos , Micobioma/genética , Hongos , Microbioma Gastrointestinal/genética , Heces/microbiología , ADN de Hongos/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA