Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 564
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Planta ; 260(5): 114, 2024 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-39367989

RESUMEN

MAIN CONCLUSION: PPI analysis deepens our knowledge in critical processes like carbon fixation and nutrient sensing. Moreover, signaling networks, including pathways like MAPK/ERK and TOR, provide valuable information in how microalgae respond to environmental changes and stress. Additionally, species-species interaction networks for microalgae provide a comprehensive understanding of how different species interact within their environments. This review examines recent advancements in the study of biological networks within microalgae, with a focus on the intricate interactions that define these organisms. It emphasizes how network biology, an interdisciplinary field, offers valuable insights into microalgae functions through various methodologies. Crucial approaches, such as protein-protein interaction (PPI) mapping utilizing yeast two-hybrid screening and mass spectrometry, are essential for comprehending cellular processes and optimizing functions, such as photosynthesis and fatty acid biosynthesis. The application of advanced computational methods and information mining has significantly improved PPI analysis, revealing networks involved in critical processes like carbon fixation and nutrient sensing. The review also encompasses transcriptional networks, which play a role in gene regulation and stress responses, as well as metabolic networks represented by genome-scale metabolic models (GEMs), which aid in strain optimization and the prediction of metabolic outcomes. Furthermore, signaling networks, including pathways like MAPK/ERK and TOR, are crucial for understanding how microalgae respond to environmental changes and stress. Additionally, species-species interaction networks for microalgae provide a comprehensive understanding of how different species interact within their environments. The integration of these network biology approaches has deepened our understanding of microalgal interactions, paving the way for more efficient cultivation and new industrial applications.


Asunto(s)
Microalgas , Microalgas/metabolismo , Microalgas/fisiología , Microalgas/genética , Transducción de Señal , Redes y Vías Metabólicas , Redes Reguladoras de Genes , Estrés Fisiológico , Fotosíntesis , Mapas de Interacción de Proteínas
2.
Braz J Biol ; 84: e283432, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39319979

RESUMEN

The papaya (Carica papaya L.) is among the mainly fruit species produced in tropical and subtropical climate. The salinity of water in agricultural areas is considered a limiting factor for the expansion of papaya. This study aimed to evaluate calcium-enriched microalgae extract (EMa-Ca) as an attenuator of saline stress in irrigation water on the growth and physiology of Formosa papaya seedlings, hybrid Tainung. The experiment was conducted in a protected environment, with treatments distributed in a 5 × 2 factorial scheme, comprising five electrical conductivities of irrigation water (0.50; 1.10; 2.50; 3.90 and 4.50 dSm-1) with the presence and absence of EMa-Ca in the substrate. Evaluated characteristics were: plant height, number of leaves, stem diameter, leaf area, dry masses weight of roots, aboveground parts and total. Gas exchanges and chlorophyll indices (a, b and total) were also evaluated. The application of EMa-Ca resulted in an increase of 6.05% in height and 6.33% in trunk diameter. The number of leaves decreased with an increase in electrical conductivity, and the leaf area was reduced by 33%. All seedling dry masses showed greater declines in the absence of EM-Ca. The EMa-Ca increased net photosynthesis, CO2 concentration, transpiration and stomatal conductance by 39.13%, 30.43%, 38.88% and 42.85%, respectively. For chlorophyll without the use of EMa-Ca, a decrease rate of 1.21%, 0.41% and 1.62% was observed for Chla, Chlb and Chlt, respectively. Therefore, the EMa-Ca application (1.0 ml/L) significantly enhance the vegetative development, gas exchanges, and chlorophyll indices of papaya seedlings under saline stress conditions.


Asunto(s)
Calcio , Carica , Microalgas , Plantones , Carica/química , Carica/efectos de los fármacos , Plantones/efectos de los fármacos , Calcio/análisis , Microalgas/efectos de los fármacos , Microalgas/fisiología , Clorofila/análisis , Estrés Salino/efectos de los fármacos , Fotosíntesis/efectos de los fármacos , Salinidad
3.
Sci Total Environ ; 951: 175849, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39209171

RESUMEN

Despite the existing connectivity and heterogeneity of aquatic habitats, the concept of interconnected landscapes has been frequently overlooked in ecotoxicological risk assessment studies. In this study, a novel mesocosm system, the HeMHAS (Heterogeneous Multi-Habitat Assay System), was constructed with the potential to assess structural and functional changes in a community resulting from exposure to contaminants, while also considering the complex ecological scenarios. Fish (Sparus aurata), shrimp (Palaemon varians) and three species of marine microalgae (Isochrysis galbana, Nannochloropsis gaditana and Tetraselmis chuii) were used as test organisms. Other species, such as Artemia sp. and macroalgae were also introduced into the system as environmental enrichment. All the species were distributed in five interconnected mesocosm compartments containing a copper gradient (0, 1, 10, 100 and 250 µg/L). The mobile fish avoided the copper contaminants from 1 µg/L (24 h-AC50: 4.88 µg/L), while the shrimp avoided from 50 µg/L (24 h-AC50: 136.58 µg/L). This finding suggests interspecies interactions influence habitat selection in contaminated environments, potentially jeopardizing population persistence. Among the non-motile organisms, the growth and chlorophyll content of the microalgae were concentration dependent. The growth of I. galbana was more sensitive (growth inhibition of 50 % at the highest concentration) in contrast to N. gaditana (30 % inhibition at the highest concentration) and T. chuii (25 % inhibition at the last two highest concentrations). In summary, the mesocosm HeMHAS showed how contamination-driven responses can be studied at landscape scales, enhancing the ecological relevance of ecotoxicological research.


Asunto(s)
Microalgas , Contaminantes Químicos del Agua , Animales , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/análisis , Microalgas/fisiología , Ecosistema , Monitoreo del Ambiente , Palaemonidae/fisiología , Peces/fisiología , Ecotoxicología , Estrés Fisiológico , Artemia , Medición de Riesgo , Cobre/toxicidad
4.
Ecology ; 105(9): e4388, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39076113

RESUMEN

Contemporary symbioses in extreme environments can give an insight into mechanisms that stabilize species interactions during environmental change. The intertidal sea anemone, Anthopleura elegantissima, engages in a nutritional symbiosis with microalgae similar to tropical coral, but withstands more intense environmental fluctuations during tidal inundations. In this study, we compare baseline symbiotic traits and their sensitivity to thermal stress within and among anemone aggregations across the intertidal using a laboratory-based tank experiment to better understand how fixed genotypic and plastic environmental effects contribute to the successful maintenance of this symbiosis in extreme habitats. High intertidal anemones had lower baseline symbiont-to-host cell ratios under control conditions, but their symbionts had higher baseline photosynthetic efficiency compared to low intertidal anemone symbionts. Symbiont communities were identical across all samples, suggesting that shifts in symbiont density and photosynthetic performance could be an acclimatory mechanism to maintain symbiosis in different environments. Despite lower baseline symbiont-to-host cell ratios, high intertidal anemones maintained greater symbiont-to-host cell ratios under heat stress compared with low intertidal anemones, suggesting greater thermal tolerance of high intertidal holobionts. However, the thermal tolerance of clonal anemones acclimatized to different zones was not explained by tidal height alone, indicating additional environmental variables contribute to physiological differences. Host genotype significantly influenced anemone weight, but only explained a minor proportion of variation among symbiotic traits and their response to thermal stress, further implicating environmental history as the primary driver of holobiont tolerance. These results indicate that this symbiosis is highly plastic and may be able to acclimatize to climate change over ecological timescales, defying the convention that symbiotic organisms are more susceptible to environmental stress.


Asunto(s)
Ecosistema , Anémonas de Mar , Simbiosis , Animales , Anémonas de Mar/fisiología , Aclimatación/fisiología , Termotolerancia , Microalgas/fisiología
5.
Sci Total Environ ; 947: 174636, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992368

RESUMEN

Construct a bacteria-algae symbiotic dynamic sponge bioremediation system to simultaneously remove multiple pollutants under micro-pollution conditions. The average removal efficiencies of NH4+-N, PO43--P, total nitrogen (TN), and Ca2+ were 98.35, 78.74, 95.64, and 84.92 %, respectively. Comparative studies with Auxenochlorella sp. sponge and bacterial sponge bioremediation system confirmed that NH4+-N and TN were mainly removed by bacterial heterotrophic nitrification - aerobic denitrification (HN-AD). PO43--P was removed by algal assimilation and the generation of Ca3(PO4)2 and Ca5(PO4)3OH, and Ca2+ was removed by algal electron transfer formation of precipitates and microbially induced calcium precipitation (MICP) by bacteria. Algae provided an aerobic environment for the bacterial HN-AD process through photosynthesis, while respiration produced CO2 and adsorbed Ca2+ to promote the formation of calcium precipitates. Immobilization of Ca2+ with microalgae via bacterial MICP helped to lift microalgal photoinhibition. The bioremediation system provides theoretical support for research on micropolluted water treatment while increasing phosphorus recovery pathways.


Asunto(s)
Biodegradación Ambiental , Nitrógeno , Fósforo , Contaminantes Químicos del Agua , Fósforo/metabolismo , Contaminantes Químicos del Agua/metabolismo , Nitrógeno/metabolismo , Compuestos de Amonio/metabolismo , Bacterias/metabolismo , Simbiosis , Animales , Poríferos/microbiología , Poríferos/fisiología , Microalgas/metabolismo , Microalgas/fisiología , Eliminación de Residuos Líquidos/métodos , Nitrificación , Desnitrificación
6.
Bioresour Technol ; 407: 131147, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39043276

RESUMEN

In this study, the effects of shear stress and different culture media on the growth of the filamentous microalga Klebsormidium cf. nitens were studied. The microalga's growth, carotenoids and fatty acids were further evaluated in a pump-driven tubular photobioreactor. The results show that this microalga had the ability to withstand high shear stress and the adaptability to grow in a culture medium that lacks certain trace elements. K. cf. nitens grew consistently in the tubular photobioreactor at different average light intensities although it did not grow well in a tall bubble column. The carotenoid analysis revealed that the xanthophyll cycle was activated to protect the cell photosynthetic system. The fatty acids increased with irradiance, with linoleic acid (C18:2n6) making up over 50 % of the total fatty acids. This study supports the potential of employing pump-driven tubular photobioreactors to produce the filamentous microalga K. cf nitens at the large scale.


Asunto(s)
Carotenoides , Ácidos Grasos , Microalgas , Fotobiorreactores , Microalgas/metabolismo , Microalgas/fisiología , Ácidos Grasos/metabolismo , Carotenoides/metabolismo , Estrés Mecánico , Luz , Medios de Cultivo
7.
Phys Rev Lett ; 132(20): 204002, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38829103

RESUMEN

Many eukaryotic microorganisms propelled by multiple flagella can swim very rapidly with distinct gaits. Here, we model a three-dimensional mutiflagellate swimmer, resembling the microalgae. When the flagella are actuated synchronously, the swimming efficiency can be enhanced or reduced by interflagella hydrodynamic interactions (HIs), determined by the intrinsic tilting angle of the flagella. The asynchronous gait with a phase difference between neighboring flagella can reduce oscillatory motion via the basal mechanical coupling. In the presence of a spherical body, simulations taking into account the flagella-body interactions reveal the advantage of anterior configuration compared with posterior configuration, where in the latter case an optimal flagella number arises. Apart from understanding the role of HIs in the multiflagellate microorganisms, this work could also guide laboratory fabrications of novel microswimmers.


Asunto(s)
Flagelos , Hidrodinámica , Modelos Biológicos , Natación , Flagelos/fisiología , Natación/fisiología , Microalgas/fisiología
8.
Harmful Algae ; 136: 102651, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38876529

RESUMEN

Ostreopsis spp. blooms have been occurring in the last two decades in the Mediterranean Sea in association with a variety of biotic and abiotic substrata (macroalgae, seagrasses, benthic invertebrates, sand, pebbles and rocks). Cells proliferate attached to the surfaces through mucilaginous trichocysts, which lump together microalgal cells, and can also be found in the plankton and on floating aggregates: such tychoplanktonic behavior makes the quantitative assessment of blooms more difficult than planktonic or benthic ones. Different techniques have been so far applied for quantifying cell abundances of benthic microalgae for research, monitoring and risk assessment purposes. In this context, the Benthic Dinoflagellates Integrator (BEDI), a non-destructive quantification method for benthic dinoflagellate abundances, was developed and tested within the EU ENPI-CBCMED project M3-HABs. This device allows mechanical detachment of cells without collecting the benthic substrate, providing an integrated assessment of both epiphytic and planktonic cells, i.e. of the number of cells potentially made available in the water volume from "resuspension" which could have harmful effects on other organisms (including humans). The present study confirms the effectiveness of the BEDI sampling device across different environments across the Mediterranean Sea and constitutes the first large-scale study of Ostreopsis spp. blooms magnitude in function of different macro- and meso­habitat features across the basin.


Asunto(s)
Dinoflagelados , Floraciones de Algas Nocivas , Dinoflagelados/fisiología , Mar Mediterráneo , Monitoreo del Ambiente/métodos , Microalgas/fisiología , Agua de Mar
9.
Sci Rep ; 14(1): 13498, 2024 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-38866841

RESUMEN

Aquatic macrophytes form a three dimensional complex structure in the littoral zones of lakes, with many physical, chemical and biological gradients and interactions. This special habitat harbours a unique microalgal assemblage called metaphyton, that differs both from the phytoplankton of the pelagial and from the benthic assemblages whose elements are tightly attached to the substrates. Since metaphytic assemblages significantly contribute to the diversity of lakes' phytoplankton, it is crucial to understand and disentangle those mechanisms that ensure their development. Therefore, we focused on the question of how a single solid physical structure contribute to maintaining metaphytic assemblages. Using a laboratory experiment we studied the floristic and functional differences of microalgal assemblages in microcosms that simulated the conditions that an open water, a complex natural macrophyte stand (Utricularia vulgaris L.), or an artificial substrate (cotton wool) provide for them. We inoculated the systems with a species rich (> 326 species) microalgal assemblage collected from a eutrophic oxbow lake, and studied the diversity, trait and functional group composition of the assemblages in a 24 day long experimental period. We found that both natural and artificial substrates ensured higher species richness than the open water environment. Functional richness in the open water environment was lower than in the aquaria containing natural macrophyte stand but higher than in which cotton wool was placed. This means that the artificial physical structure enhanced functional redundancy of the resident functional groups. Elongation measures of microalgal assemblages showed the highest variation in the microcosms that simulated the open water environment. Our results suggest that assembly of metaphytic algal communities is not a random process, instead a deterministic one driven by the niche characteristics of the complex three dimensional structure created by the stands of aquatic macrophytes.


Asunto(s)
Biodiversidad , Ecosistema , Lagos , Microalgas , Microalgas/crecimiento & desarrollo , Microalgas/fisiología , Fitoplancton/fisiología , Fitoplancton/crecimiento & desarrollo
10.
Funct Plant Biol ; 512024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38902906

RESUMEN

This study reveals a new acclimation mechanism of the eukaryotic unicellular green alga Chlorella vulgaris in terms of the effect of varying atmospheric pressures on the structure and function of its photosynthetic apparatus using fluorescence induction measurements (JIP-test). The results indicate that low (400mbar) and extreme low (2 atmosphere (simulating the Mars atmosphere), reveals that the impact of extremely low atmospheric pressure on PQ mobility within the photosynthetic membrane, coupled with the low density of an almost 100% CO2 Mars-like atmosphere, results to a similar photosynthetic efficiency to that on Earth. These findings pave the way for the identification of novel functional acclimation mechanisms of microalgae to extreme environments that are vastly distinct from those found on Earth.


Asunto(s)
Aclimatación , Presión Atmosférica , Chlorella vulgaris , Marte , Microalgas , Fotosíntesis , Microalgas/fisiología , Chlorella vulgaris/fisiología , Exobiología , Atmósfera/química , Medio Ambiente Extraterrestre
11.
Mar Pollut Bull ; 205: 116640, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38941807

RESUMEN

Although microalgae typically serve as prey for jellyfish ephyrae in marine food webs, this study investigated the potential of harmful microalgae to produce detrimental effects on the moon jellyfish Aurelia aurita. Understanding the biological interactions between Aurelia and microalgal species is crucial, particularly considering their common co-occurrence in coastal waters worldwide. We examined the effects of 11 protist strains, comprising seven species of harmful microalgae and two non-toxic microalgae, on A. aurita ephyrae. The rhythmic pulsation behavior of A. aurita was significantly suppressed when exposed to the raphidophytes Heterosigma akashiwo and Chattonella marina var. ovata and the dinoflagellates Amphidinium carterae, Coolia canariensis, and Pfiesteria piscicida. Notably, the media filtrates of all H. akashiwo strains and C. marina var. ovata killed ephyrae, implying a possible extracellular release of chemicals. This study discovered novel interactions between microalgae and jellyfish ephyrae, implying that harmful algal blooms may suppress mass occurrences of Aurelia medusae.


Asunto(s)
Floraciones de Algas Nocivas , Microalgas , Escifozoos , Microalgas/fisiología , Animales , Escifozoos/fisiología , Dinoflagelados/fisiología , Cadena Alimentaria , Estramenopilos/fisiología
12.
Mar Environ Res ; 199: 106617, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38917659

RESUMEN

Photosymbiosis indicates a long-term association between animals and photosynthetic organisms. It has been mainly investigated in photosymbiotic cnidarians, while other photosymbiotic associations have been largely neglected. The acoel Symsagittifera roscoffensis lives in obligatory symbiosis with the microalgal Tetraselmis convolutae and has recently emerged as alternative model to study photosymbiosis. Here, we investigated the effects of Bisphenol A, a common plastic additive, on two pivotal stages of its lifecycle: aposymbiotic juvenile development and photosymbiogenesis. Based on our results, this pollutant altered the development of the worms and their capacity to engulf algae from the environment at concentrations higher than the levels detected in seawater, yet aligning with those documented in sediments of populated areas. Data provide novel information about the effects of pollutants on photosymbiotic associations and prompt the necessity to monitor their concentrations in marine environmental matrices.


Asunto(s)
Compuestos de Bencidrilo , Fenoles , Simbiosis , Contaminantes Químicos del Agua , Animales , Compuestos de Bencidrilo/toxicidad , Contaminantes Químicos del Agua/toxicidad , Fenoles/toxicidad , Fotosíntesis/efectos de los fármacos , Microalgas/efectos de los fármacos , Microalgas/fisiología , Agua de Mar/química
13.
Sci Total Environ ; 945: 174056, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-38901581

RESUMEN

This study exposed a microalgal consortium formed by Auxenochlorella protothecoides, Tetradesmus obliquus, and Chlamydomonas reinhardtii to six mixed wastewater media containing different proportions of primary (P) or secondary (S) effluents diluted in centrate (C). Algae could grow at centrate concentrations up to 50 %, showing no significant differences between effluents. After acclimation, microalgae cultivated in 50%P-50%C and 50%S-50%C grew at a rate similar to that of control cultures (0.59-0.66 d-1). These results suggest that the consortium acclimated to both sewage streams by modulating the proportion of the species and their metabolism. Acclimation also altered the photosynthetic activity of wastewater-grown samples compared to the control, probably due to partial photoinhibition, changes in consortium composition, and changes in metabolic activity. No major differences were observed between the two streams with respect to biochemical composition, biomass yield, or bioremediation capacity of the cultivated algae but algae grown in the secondary effluent showed qualitatively higher exopolysaccharides (EPS) production than algae grown in primary. Regarding wastewater remediation, microalgae grown in both WW media showed proficient nutrient removal efficiencies (close to 100 %); however, the final pH value (close to 11) would be controversial if the system were upscaled as it is over the legal limit and would cause phosphorus precipitation, so that CO2 addition would be required. The theoretical scale-up of the microalgae system could achieve water treatment costs of 0.109 €·m-3, which was significantly lower than the costs of typical activated sludge systems.


Asunto(s)
Microalgas , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Microalgas/fisiología , Italia , Eliminación de Residuos Líquidos/métodos , Biodegradación Ambiental , Chlorophyta
14.
Sci Total Environ ; 943: 173670, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38838995

RESUMEN

Field observations form the basis of the majority of studies on microphytobenthic algal communities in freshwater ecosystems. Controlled mesocosm experiments data are comparatively uncommon. The few experimental mesocosm studies that have been conducted provide valuable insights into how multiple stressors affect the community structures and photosynthesis-related traits of benthic microalgae. The recovery process after the stressors have subsided, however, has received less attention in mesocosm studies. To close this gap, here we present the results of a riparian mesocosm experiment designed to investigate the effects of reduced flow velocity, increased salinity and increased temperature on microphytobenthic communities. We used a full factorial design with a semi-randomised distribution of treatments consisting of two levels of each stressor (2 × 2 × 2 treatments), with eight replicates making a total of 64 circular mesocosms, allowing a nuanced examination of their individual and combined influences. We aimed to elucidate the responses of microalgae communities seeded from stream water to the applied environmental stressors. Our results showed significant effects of reduced flow velocity and increased temperature on microphytobenthic communities. Recovery after stressor treatment led to a convergence in community composition, with priority effects (hypothesized to reflect competition for substrate between resident and newly arriving immigrant taxa) slowing down community shifts and biomass increase. Our study contributes to the growing body of literature on the ecological dynamics of microphytobenthos and emphasises the importance of rigorous experiments to validate hypotheses. These results encourage further investigation into the nuanced interactions between microphytobenthos and their environment and shed light on the complexity of ecological responses in benthic systems.


Asunto(s)
Ecosistema , Microalgas , Ríos , Microalgas/fisiología , Salinidad , Monitoreo del Ambiente , Estrés Fisiológico
15.
Environ Res ; 252(Pt 4): 119093, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38723991

RESUMEN

Regulating the microalgal initial adhesion in biofilm formation is a key approach to address the challenges of attached microalgae cultivation. As a type of phytohormone, Indole-3-acetic acid (IAA) can promote the growth and metabolism of microalgae. However, limited knowledge has been acquired of how IAA can change the initial adhesion of microalgae in biofilm formation. This study focused on investigating the initial adhesion of microalgae under different IAA concentrations exposure in biofilm formation. The results showed that IAA showed obvious hormesis-like effects on the initial adhesion ability of microalgae biofilm. Under exposure to the low concentration (0.1 mg/L) of IAA, the initial adhesion quantity of microalgae on the surface of the carrier reached the highest value of 7.2 g/m2. However, exposure to the excessively high concentration (10 mg/L) of IAA led to a decrease in the initial adhesion capability of microalgal biofilms. The enhanced adhesion of microalgal biofilms due to IAA was attributed to the upregulation of genes related to the Calvin Cycle, which promoted the synthesis of hydrophobic amino acids, leading to increased protein secretion and altering the surface electron donor characteristics of microalgal biofilms. This, in turn, reduced the energy barrier between the carriers and microalgae. The research findings would provide crucial support for the application of IAA in regulating the operation of microalgal biofilm systems.


Asunto(s)
Biopelículas , Ácidos Indolacéticos , Microalgas , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Biopelículas/efectos de los fármacos , Biopelículas/crecimiento & desarrollo , Microalgas/efectos de los fármacos , Microalgas/fisiología , Reguladores del Crecimiento de las Plantas/farmacología
16.
Physiol Plant ; 176(3): e14337, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38716544

RESUMEN

Microalgae provide a potential new food resource for sustainable human nutrition. Many microalgae species can produce a high content of total protein with a balanced composition of essential amino acids, healthy oils rich in polyunsaturated fatty acids, carotenoids, fibers, and vitamins. These components can be made available via unprocessed microalgae or refined as individual ingredients. In either case, if added to foods, microalgae may affect taste, smell, texture, and appearance. This review focuses on how consumer acceptance of new foods - such as microalgae - can be accessed in the world of sensory science by bringing together examples from recent consumer surveys. The main aim is to obtain an overview of the attitude towards microalgae as a food ingredient in Europe. The overarching finding suggests that European consumers generally find microalgae acceptable as ingredients in food products. However, there is a prevailing preference for keeping inclusion levels low, primarily attributed to the vivid green color that algae impart to food items upon addition. Additionally, consumers tend to favor the taste of freshwater algae over marine species, often finding the latter's pronounced fishy flavor less appealing.


Asunto(s)
Comportamiento del Consumidor , Microalgas , Microalgas/fisiología , Humanos , Gusto/fisiología
17.
Sci Total Environ ; 939: 173643, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-38821282

RESUMEN

Mariculture effluent polishing with microalgal biofilm could realize effective nutrients removal and resolve the microalgae-water separation issue via biofilm scraping or in-situ aquatic animal grazing. Ubiquitous existence of antibiotics in mariculture effluents may affect the remediation performances and arouse ecological risks. The influence of combined antibiotics exposure at environment-relevant concentrations towards attached microalgae suitable for mariculture effluent polishing is currently lack of research. Results from suspended cultures could offer limited guidance since biofilms are richer in extracellular polymeric substances that may protect the cells from antibiotics and alter their transformation pathways. This study, therefore, explored the effects of combined antibiotics exposure at environmental concentrations towards seawater Chlorella sp. biofilm in terms of microalgal growth characteristics, nutrients removal, anti-oxidative responses, and antibiotics removal and transformations. Sulfamethoxazole (SMX), tetracycline (TL), and clarithromycin (CLA) in single, binary, and triple combinations were investigated. SMX + TL displayed toxicity synergism while TL + CLA revealed toxicity antagonism. Phosphorus removal was comparable under all conditions, while nitrogen removal was significantly higher under SMX and TL + CLA exposure. Anti-oxidative responses suggested microalgal acclimation towards SMX, while toxicity antagonism between TL and CLA generated least cellular oxidative damage. Parent antibiotics removal was in the order of TL (74.5-85.2 %) > CLA (60.8-69.5 %) > SMX (13.5-44.1 %), with higher removal efficiencies observed under combined than single antibiotic exposure. Considering the impact of residual parent antibiotics, CLA involved cultures were identified of high ecological risks, while medium risks were indicated in other cultures. Transformation products (TPs) of SMX and CLA displayed negligible aquatic toxicity, the parent antibiotics themselves deserve advanced removal. Four out of eight TPs of TL could generate chronic toxicity, and the elimination of these TPs should be prioritized for TL involved cultures. This study expands the knowledge of combined antibiotics exposure upon microalgal biofilm based mariculture effluent polishing.


Asunto(s)
Antibacterianos , Biopelículas , Chlorella , Agua de Mar , Contaminantes Químicos del Agua , Chlorella/fisiología , Chlorella/efectos de los fármacos , Biopelículas/efectos de los fármacos , Antibacterianos/toxicidad , Contaminantes Químicos del Agua/toxicidad , Agua de Mar/química , Medición de Riesgo , Eliminación de Residuos Líquidos/métodos , Acuicultura , Microalgas/efectos de los fármacos , Microalgas/fisiología
18.
Sci Total Environ ; 934: 173218, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761949

RESUMEN

Micro/nano-plastics, as emerging persistent pollutant, are frequently detected in aquatic environments together with other environmental pollutants. Microalgae are the major primary producers and bear an important responsibility for maintaining the balance of aquatic ecosystems. Numerous studies have been conducted on the influence of micro/nano-plastics on the growth, photosynthesis, oxidative stress, gene expression and metabolites of microalgae in laboratory studies. However, it is difficult to comprehensively evaluate the toxic effects of micro/nano-plastics on microalgae due to different experimental designs. Moreover, there is a lack of effective analysis of the aforementioned multi-omics data and reports on shared biological patterns. Therefore, the purpose of this review is to compare the acute, chronic, pulsed, and combined effect of micro/nano-plastics on microalgae and explore hidden rules in the molecular mechanisms of the interaction between them. Results showed that the effect of micro/nano-plastics on microalgae was related to exposure mode, exposure duration, exposure size, concentration, and type of micro/nano-plastics. Meanwhile, the phenomenon of poisoning and detoxification between micro/nano-plastics and microalgae was found. The inhibitory mechanism of micro/nano-plastics on algal growth was due to the micro/nano-plastics affected the photosynthesis, oxidative phosphorylation, and ribosome pathways of algal cells. This brought the disruption of the functions of chloroplasts, mitochondria, and ribosome, as well as impacted on energy metabolism and translation pathways, eventually leading to impairment of cell function. Besides, algae resisted this inhibitory effect by regulating the alanine, aspartate, and glutamate metabolism and purine metabolism pathways, thereby increasing the chlorophyll synthesis, inhibiting the increase of reactive oxygen species, delaying the process of lipid peroxidation, balancing the osmotic pressure of cell membrane.


Asunto(s)
Microalgas , Contaminantes Químicos del Agua , Microalgas/fisiología , Contaminantes Químicos del Agua/toxicidad , Fotosíntesis/efectos de los fármacos , Microplásticos/toxicidad , Estrés Oxidativo
19.
Harmful Algae ; 134: 102629, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38705615

RESUMEN

Electrophysiological techniques, by measuring bioelectrical signals and ion channel activities in tissues and cells, are now widely utilized to study ion channel-related physiological functions and their underlying mechanisms. Electrophysiological techniques have been extensively employed in the investigation of animals, plants, and microorganisms; however, their application in marine algae lags behind that in other organisms. In this paper, we present an overview of current electrophysiological techniques applicable to algae while reviewing the historical usage of such techniques in this field. Furthermore, we explore the potential specific applications of electrophysiological technology in harmful algal bloom (HAB) research. The application prospects in the studies of stress tolerance, competitive advantage, nutrient absorption, toxin synthesis and secretion by HAB microalgae are discussed and anticipated herein with the aim of providing novel perspectives on HAB investigations.


Asunto(s)
Floraciones de Algas Nocivas , Microalgas , Microalgas/fisiología , Floraciones de Algas Nocivas/fisiología , Fenómenos Electrofisiológicos
20.
Sci Total Environ ; 927: 172141, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580119

RESUMEN

Microalgal-bacterial (MB) consortia create an excellent eco-system for simultaneous COD/BOD and nutrients (N and P) removals in a single step with significant reduction in or complete elimination of aeration and carbonation in the biological wastewater treatment processes. The integration of membrane separation technology with the MB processes has created a new paradigm for research and development. This paper focuses on a comprehensive and critical literature review of recent advances in these emerging processes. Novel membrane process configurations and process conditions affecting the biological performance of these novel systems have been systematically reviewed and discussed. Membrane fouling issues and control of MB biofilm formation and thickness associated with these emerging suspended growth or immobilized biofilm processes are addressed and discussed. The research gaps, challenges, outlooks of these emerging processes are identified and discussed in-depth. The findings from the literature suggest that the membrane-based MB processes are advanced biotechnologies with a significant reduction in energy consumption and process simplification and high process efficiency that are not achievable with current technologies in wastewater treatment. There are endless opportunities for research and development of these novel and emerging membrane-based MB processes.


Asunto(s)
Membranas Artificiales , Microalgas , Eliminación de Residuos Líquidos , Aguas Residuales , Microalgas/fisiología , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/microbiología , Biopelículas , Bacterias , Reactores Biológicos , Purificación del Agua/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA