Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros

Tipo de estudio
País/Región como asunto
Intervalo de año de publicación
1.
Methods Mol Biol ; 2831: 283-299, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39134857

RESUMEN

Mosaic Analysis with Double Markers (MADM) is a powerful genetic method typically used for lineage tracing and to disentangle cell autonomous and tissue-wide roles of candidate genes with single cell resolution. Given the relatively sparse labeling, depending on which of the 19 MADM chromosomes one chooses, the MADM approach represents the perfect opportunity for cell morphology analysis. Various MADM studies include reports of morphological anomalies and phenotypes in the central nervous system (CNS). MADM for any candidate gene can easily incorporate morphological analysis within the experimental workflow. Here, we describe the methods of morphological cell analysis which we developed in the course of diverse recent MADM studies. This chapter will specifically focus on methods to quantify aspects of the morphology of neurons and astrocytes within the CNS, but these methods can broadly be applied to any MADM-labeled cells throughout the entire organism. We will cover two analyses-soma volume and dendrite characterization-of physical characteristics of pyramidal neurons in the somatosensory cortex, and two analyses-volume and Sholl analysis-of astrocyte morphology.


Asunto(s)
Astrocitos , Neuroglía , Neuronas , Animales , Neuronas/citología , Neuronas/metabolismo , Astrocitos/citología , Astrocitos/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Ratones , Mosaicismo , Biomarcadores , Dendritas/metabolismo , Corteza Somatosensorial/citología
2.
Cell Death Dis ; 15(7): 478, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38961086

RESUMEN

A recent approach to promote central nervous system (CNS) regeneration after injury or disease is direct conversion of somatic cells to neurons. This is achieved by transduction of viral vectors that express neurogenic transcription factors. In this work we propose adult human mucosal olfactory ensheathing glia (hmOEG) as a candidate for direct reprogramming to neurons due to its accessibility and to its well-characterized neuroregenerative capacity. After induction of hmOEG with the single neurogenic transcription factor NEUROD1, the cells under study exhibited morphological and immunolabeling neuronal features, fired action potentials and expressed glutamatergic and GABAergic markers. In addition, after engraftment of transduced hmOEG cells in the mouse hippocampus, these cells showed specific neuronal labeling. Thereby, if we add to the neuroregenerative capacity of hmOEG cultures the conversion to neurons of a fraction of their population through reprogramming techniques, the engraftment of hmOEG and hmOEG-induced neurons could be a procedure to enhance neural repair after central nervous system injury.


Asunto(s)
Neuroglía , Neuronas , Humanos , Animales , Neuroglía/metabolismo , Neuroglía/citología , Neuronas/metabolismo , Neuronas/citología , Ratones , Adulto , Mucosa Olfatoria/citología , Mucosa Olfatoria/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Linaje de la Célula , Hipocampo/citología , Hipocampo/metabolismo , Bulbo Olfatorio/citología , Bulbo Olfatorio/metabolismo , Células Cultivadas
3.
Bull Exp Biol Med ; 177(1): 35-38, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38954301

RESUMEN

The features of the participation of Smad3 in the functioning of neural stem cells (NSC), neuronal committed precursors (NCP), and neuroglial elements were studied in vitro. It was found that this intracellular signaling molecule enhances the clonogenic and proliferative activities of NCP and inhibits specialization of neuronal precursors. At the same time, Smad3 does not participate in the realization of the growth potential of NSC. With regard to the secretory function (production of neurotrophic growth factors) of neuroglial cells, the stimulating role of Smad3-mediated signaling was shown. These results indicate the promise of studying the possibility of using Smad3 as a fundamentally new target for neuroregenerative agents.


Asunto(s)
Proliferación Celular , Células-Madre Neurales , Neuroglía , Proteína smad3 , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteína smad3/metabolismo , Proteína smad3/genética , Animales , Neuroglía/metabolismo , Neuroglía/citología , Proliferación Celular/fisiología , Transducción de Señal , Diferenciación Celular/fisiología , Células Cultivadas , Ratas , Neuronas/metabolismo , Neuronas/citología , Ratones
4.
Neural Dev ; 19(1): 10, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38907299

RESUMEN

Nervous systems of bilaterian animals generally consist of two cell types: neurons and glial cells. Despite accumulating data about the many important functions glial cells serve in bilaterian nervous systems, the evolutionary origin of this abundant cell type remains unclear. Current hypotheses regarding glial evolution are mostly based on data from model bilaterians. Non-bilaterian animals have been largely overlooked in glial studies and have been subjected only to morphological analysis. Here, we provide a comprehensive overview of conservation of the bilateral gliogenic genetic repertoire of non-bilaterian phyla (Cnidaria, Placozoa, Ctenophora, and Porifera). We overview molecular and functional features of bilaterian glial cell types and discuss their possible evolutionary history. We then examine which glial features are present in non-bilaterians. Of these, cnidarians show the highest degree of gliogenic program conservation and may therefore be crucial to answer questions about glial evolution.


Asunto(s)
Evolución Biológica , Neuroglía , Animales , Neuroglía/fisiología , Neuroglía/citología , Cnidarios/genética , Cnidarios/citología , Ctenóforos/genética , Ctenóforos/citología , Placozoa/genética , Placozoa/citología
5.
Int J Mol Sci ; 25(12)2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38927995

RESUMEN

Neural precursor cells (NPCs) that persist in the postnatal/adult subventricular zone (SVZ) express connexins that form hemichannels and gap junctions. Gap junctional communication plays a role in NPC proliferation and differentiation during development, but its relevance on postnatal age remains to be elucidated. In this work we aimed to evaluate the effect of the blockade of gap junctional communication on proliferation and cell fate of NPCs obtained from the SVZ of postnatal rats. NPCs were isolated and expanded in culture as neurospheres. Electron microscopy revealed the existence of gap junctions among neurosphere cells. Treatment of cultures with octanol, a broad-spectrum gap junction blocker, or with Gap27, a specific blocker for gap junctions formed by connexin43, produced a significant decrease in bromodeoxyuridine incorporation. Octanol treatment also exerted a dose-dependent antiproliferative effect on glioblastoma cells. To analyze possible actions on NPC fate, cells were seeded in the absence of mitogens. Treatment with octanol led to an increase in the percentage of astrocytes and oligodendrocyte precursors, whereas the percentage of neurons remained unchanged. Gap27 treatment, in contrast, did not modify the differentiation pattern of SVZ NPCs. Our results indicate that general blockade of gap junctions with octanol induces significant effects on the behavior of postnatal SVZ NPCs, by reducing proliferation and promoting glial differentiation.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Uniones Comunicantes , Células-Madre Neurales , Neuroglía , Octanoles , Animales , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Células-Madre Neurales/efectos de los fármacos , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proliferación Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Ratas , Octanoles/farmacología , Neuroglía/efectos de los fármacos , Neuroglía/metabolismo , Neuroglía/citología , Células Cultivadas , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Ventrículos Laterales/efectos de los fármacos , Conexina 43/metabolismo , Ratas Wistar , Astrocitos/efectos de los fármacos , Astrocitos/metabolismo , Astrocitos/citología , Animales Recién Nacidos , Humanos
6.
Elife ; 132024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38905123

RESUMEN

The brain is consisted of diverse neurons arising from a limited number of neural stem cells. Drosophila neural stem cells called neuroblasts (NBs) produces specific neural lineages of various lineage sizes depending on their location in the brain. In the Drosophila visual processing centre - the optic lobes (OLs), medulla NBs derived from the neuroepithelium (NE) give rise to neurons and glia cells of the medulla cortex. The timing and the mechanisms responsible for the cessation of medulla NBs are so far not known. In this study, we show that the termination of medulla NBs during early pupal development is determined by the exhaustion of the NE stem cell pool. Hence, altering NE-NB transition during larval neurogenesis disrupts the timely termination of medulla NBs. Medulla NBs terminate neurogenesis via a combination of apoptosis, terminal symmetric division via Prospero, and a switch to gliogenesis via Glial Cell Missing (Gcm); however, these processes occur independently of each other. We also show that temporal progression of the medulla NBs is mostly not required for their termination. As the Drosophila OL shares a similar mode of division with mammalian neurogenesis, understanding when and how these progenitors cease proliferation during development can have important implications for mammalian brain size determination and regulation of its overall function.


Every cell in the body can be traced back to a stem cell. For instance, most cells in the adult brains of fruit flies come from a type of stem cell known as a neuroblast. This includes neurons and glial cells (which support and protect neurons) in the optic lobe, the part of the brain that processes visual information. The numbers of neurons and glia in the optic lobe are tightly regulated such that when the right numbers are reached, the neuroblasts stop making more and are terminated. But how and when this occurs is poorly understood. To investigate, Nguyen and Cheng studied when neuroblasts disappear in the optic lobe over the course of development. This revealed that the number of neuroblasts dropped drastically 12 to 18 hours after the fruit fly larvae developed in to pupae, and were completely gone by 30 hours in to pupae life. Further experiments revealed that the timing of this decrease is influenced by neuroepithelium cells, the pool of stem cells that generate neuroblasts during the early stages of development. Nguyen and Cheng found that speeding up this transition so that neuroblasts arise from the neuroepithelium earlier, led neuroblasts to disappear faster from the optic lobe; whereas delaying the transition caused neuroblasts to persist for much longer. Thus, the time at which neuroblasts are born determines when they are terminated. Furthermore, Nguyen and Cheng showed that the neuroblasts were lost through a combination of means. This includes dying via a process called apoptosis, dividing to form two mature neurons, or switching to a glial cell fate. These findings provide a deeper understanding of the mechanisms regulating stem cell pools and their conversion to different cell types, a process that is crucial to the proper development of the brain. How cells divide to form the optic lobe of fruit flies is similar to how new neurons arise in the mammalian brain. Understanding how and when stem cells in the fruit fly brain stop proliferating could therefore provide new insights in to the development of the human brain.


Asunto(s)
Apoptosis , Diferenciación Celular , Proteínas de Drosophila , Células-Madre Neurales , Células Neuroepiteliales , Neurogénesis , Animales , Células-Madre Neurales/fisiología , Células-Madre Neurales/citología , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Neurogénesis/fisiología , Células Neuroepiteliales/fisiología , Células Neuroepiteliales/citología , Neuroglía/fisiología , Neuroglía/citología , Drosophila/fisiología , Drosophila melanogaster/crecimiento & desarrollo , Drosophila melanogaster/fisiología , Drosophila melanogaster/citología , Lóbulo Óptico de Animales no Mamíferos/citología , Lóbulo Óptico de Animales no Mamíferos/crecimiento & desarrollo , Pupa/crecimiento & desarrollo , Proteínas de Unión al ADN , Factores de Transcripción
7.
J Neurosci ; 44(28)2024 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-38830761

RESUMEN

The vagal ganglia, comprised of the superior (jugular) and inferior (nodose) ganglia of the vagus nerve, receive somatosensory information from the head and neck or viscerosensory information from the inner organs, respectively. Developmentally, the cranial neural crest gives rise to all vagal glial cells and to neurons of the jugular ganglia, while the epibranchial placode gives rise to neurons of the nodose ganglia. Crest-derived nodose glial progenitors can additionally generate autonomic neurons in the peripheral nervous system, but how these progenitors generate neurons is unknown. Here, we found that some Sox10+ neural crest-derived cells in, and surrounding, the nodose ganglion transiently expressed Phox2b, a master regulator of autonomic nervous system development, during early embryonic life. Our genetic lineage-tracing analysis in mice of either sex revealed that despite their common developmental origin and extreme spatial proximity, a substantial proportion of glial cells in the nodose, but not in the neighboring jugular ganglia, have a history of Phox2b expression. We used single-cell RNA-sequencing to demonstrate that these progenitors give rise to all major glial subtypes in the nodose ganglia, including Schwann cells, satellite glia, and glial precursors, and mapped their spatial distribution by in situ hybridization. Lastly, integration analysis revealed transcriptomic similarities between nodose and dorsal root ganglia glial subtypes and revealed immature nodose glial subtypes. Our work demonstrates that these crest-derived nodose glial progenitors transiently express Phox2b, give rise to the entire complement of nodose glial cells, and display a transcriptional program that may underlie their bipotent nature.


Asunto(s)
Proteínas de Homeodominio , Cresta Neural , Neuroglía , Ganglio Nudoso , Factores de Transcripción , Animales , Ganglio Nudoso/citología , Ganglio Nudoso/metabolismo , Ratones , Neuroglía/metabolismo , Neuroglía/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Cresta Neural/citología , Cresta Neural/metabolismo , Femenino , Masculino , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Ratones Endogámicos C57BL
8.
STAR Protoc ; 5(2): 103057, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38762883

RESUMEN

Here, we present our protocol to culture enteric glial cells from the submucosal and myenteric plexus of neonatal and juvenile pig colons. We describe steps for colon isolation, microdissection, and enzymatic and mechanical dissociation. We include procedures for passaging and analyzing cell yield, freeze/thaw efficiency, and purity. This protocol allows for the generation of primary cultures of enteric glial cells from single-cell suspensions of microdissected layers of the colon wall and can be used to culture enteric glia from human colon specimens. For complete details on the use and execution of this protocol, please refer to Ziegler et al.1.


Asunto(s)
Animales Recién Nacidos , Técnicas de Cultivo de Célula , Colon , Plexo Mientérico , Neuroglía , Animales , Neuroglía/citología , Porcinos , Plexo Mientérico/citología , Colon/citología , Colon/inervación , Técnicas de Cultivo de Célula/métodos , Plexo Submucoso/citología , Células Cultivadas
9.
Nat Commun ; 15(1): 3873, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719882

RESUMEN

Human glial progenitor cells (hGPCs) exhibit diminished expansion competence with age, as well as after recurrent demyelination. Using RNA-sequencing to compare the gene expression of fetal and adult hGPCs, we identify age-related changes in transcription consistent with the repression of genes enabling mitotic expansion, concurrent with the onset of aging-associated transcriptional programs. Adult hGPCs develop a repressive transcription factor network centered on MYC, and regulated by ZNF274, MAX, IKZF3, and E2F6. Individual over-expression of these factors in iPSC-derived hGPCs lead to a loss of proliferative gene expression and an induction of mitotic senescence, replicating the transcriptional changes incurred during glial aging. miRNA profiling identifies the appearance of an adult-selective miRNA signature, imposing further constraints on the expansion competence of aged GPCs. hGPC aging is thus associated with acquisition of a MYC-repressive environment, suggesting that suppression of these repressors of glial expansion may permit the rejuvenation of aged hGPCs.


Asunto(s)
Envejecimiento , MicroARNs , Neuroglía , Factores de Transcripción , Humanos , Neuroglía/metabolismo , Neuroglía/citología , Envejecimiento/genética , Envejecimiento/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , MicroARNs/genética , MicroARNs/metabolismo , Senescencia Celular/genética , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología , Células Madre/metabolismo , Células Madre/citología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Proteínas Proto-Oncogénicas c-myc/genética , Adulto , Redes Reguladoras de Genes , Proliferación Celular/genética , Regulación del Desarrollo de la Expresión Génica , Perfilación de la Expresión Génica
10.
Proc Natl Acad Sci U S A ; 121(20): e2321711121, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38713624

RESUMEN

During development, neural stem cells in the cerebral cortex, also known as radial glial cells (RGCs), generate excitatory neurons, followed by production of cortical macroglia and inhibitory neurons that migrate to the olfactory bulb (OB). Understanding the mechanisms for this lineage switch is fundamental for unraveling how proper numbers of diverse neuronal and glial cell types are controlled. We and others recently showed that Sonic Hedgehog (Shh) signaling promotes the cortical RGC lineage switch to generate cortical oligodendrocytes and OB interneurons. During this process, cortical RGCs generate intermediate progenitor cells that express critical gliogenesis genes Ascl1, Egfr, and Olig2. The increased Ascl1 expression and appearance of Egfr+ and Olig2+ cortical progenitors are concurrent with the switch from excitatory neurogenesis to gliogenesis and OB interneuron neurogenesis in the cortex. While Shh signaling promotes Olig2 expression in the developing spinal cord, the exact mechanism for this transcriptional regulation is not known. Furthermore, the transcriptional regulation of Olig2 and Egfr has not been explored. Here, we show that in cortical progenitor cells, multiple regulatory programs, including Pax6 and Gli3, prevent precocious expression of Olig2, a gene essential for production of cortical oligodendrocytes and astrocytes. We identify multiple enhancers that control Olig2 expression in cortical progenitors and show that the mechanisms for regulating Olig2 expression are conserved between the mouse and human. Our study reveals evolutionarily conserved regulatory logic controlling the lineage switch of cortical neural stem cells.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Corteza Cerebral , Receptores ErbB , Proteínas Hedgehog , Proteínas del Tejido Nervioso , Células-Madre Neurales , Neurogénesis , Factor de Transcripción 2 de los Oligodendrocitos , Factor de Transcripción PAX6 , Animales , Neurogénesis/fisiología , Corteza Cerebral/metabolismo , Corteza Cerebral/citología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Receptores ErbB/metabolismo , Receptores ErbB/genética , Ratones , Factor de Transcripción 2 de los Oligodendrocitos/metabolismo , Factor de Transcripción 2 de los Oligodendrocitos/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/genética , Factor de Transcripción PAX6/metabolismo , Factor de Transcripción PAX6/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Proteínas de Homeodominio/metabolismo , Proteínas de Homeodominio/genética , Proteína Gli3 con Dedos de Zinc/metabolismo , Proteína Gli3 con Dedos de Zinc/genética , Proteínas del Ojo/metabolismo , Proteínas del Ojo/genética , Proteínas Represoras/metabolismo , Proteínas Represoras/genética , Factores de Transcripción Paired Box/metabolismo , Factores de Transcripción Paired Box/genética , Neuroglía/metabolismo , Neuroglía/citología , Regulación del Desarrollo de la Expresión Génica , Transducción de Señal , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/citología , Linaje de la Célula , Humanos
11.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732109

RESUMEN

Adipose-derived mesenchymal stem cells (ASCs) are adult multipotent stem cells, able to differentiate toward neural elements other than cells of mesodermal lineage. The aim of this research was to test ASC neural differentiation using melatonin combined with conditioned media (CM) from glial cells. Isolated from the lipoaspirate of healthy donors, ASCs were expanded in a basal growth medium before undergoing neural differentiation procedures. For this purpose, CM obtained from olfactory ensheathing cells and from Schwann cells were used. In some samples, 1 µM of melatonin was added. After 1 and 7 days of culture, cells were studied using immunocytochemistry and flow cytometry to evaluate neural marker expression (Nestin, MAP2, Synapsin I, GFAP) under different conditions. The results confirmed that a successful neural differentiation was achieved by glial CM, whereas the addition of melatonin alone did not induce appreciable changes. When melatonin was combined with CM, ASC neural differentiation was enhanced, as demonstrated by a further improvement of neuronal marker expression, whereas glial differentiation was attenuated. A dynamic modulation was also observed, testing the expression of melatonin receptors. In conclusion, our data suggest that melatonin's neurogenic differentiation ability can be usefully exploited to obtain neuronal-like differentiated ASCs for potential therapeutic strategies.


Asunto(s)
Diferenciación Celular , Melatonina , Células Madre Mesenquimatosas , Melatonina/farmacología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/efectos de los fármacos , Humanos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Tejido Adiposo/citología , Neuronas/citología , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Medios de Cultivo Condicionados/farmacología , Células de Schwann/citología , Células de Schwann/metabolismo , Células de Schwann/efectos de los fármacos , Neurogénesis/efectos de los fármacos , Adulto , Nestina/metabolismo , Nestina/genética , Proteína Ácida Fibrilar de la Glía/metabolismo , Neuroglía/efectos de los fármacos , Neuroglía/citología , Neuroglía/metabolismo , Sinapsinas/metabolismo
12.
Sci Signal ; 17(838): eadq5728, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38805584
13.
STAR Protoc ; 5(2): 102989, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38568817

RESUMEN

CNS injuries are associated with profound changes in cell organization. This protocol presents a stepwise approach to quantitatively describe the spatiotemporal changes in glial cell rearrangement in the injured murine brain, which is applicable to other biological contexts. Herein, we apply common immunolabeling of neurons and glial cells and wide-field microscopy imaging. Then, we employ computational tools for alignment to the Allen Brain Atlas, unbiased/automatic detection of cells, generation of point patterns, and data analysis. For complete details on the use and execution of this protocol, please refer to Manrique-Castano et al.1.


Asunto(s)
Encéfalo , Neuroglía , Neuronas , Animales , Ratones , Neuronas/citología , Neuronas/metabolismo , Neuroglía/citología , Neuroglía/metabolismo , Encéfalo/citología , Encéfalo/metabolismo , Procesamiento de Imagen Asistido por Computador/métodos
14.
Cell Rep ; 43(4): 114031, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38583153

RESUMEN

Outer radial glia (oRG) emerge as cortical progenitor cells that support the development of an enlarged outer subventricular zone (oSVZ) and the expansion of the neocortex. The in vitro generation of oRG is essential to investigate the underlying mechanisms of human neocortical development and expansion. By activating the STAT3 signaling pathway using leukemia inhibitory factor (LIF), which is not expressed in guided cortical organoids, we define a cortical organoid differentiation method from human pluripotent stem cells (hPSCs) that recapitulates the expansion of a progenitor pool into the oSVZ. The oSVZ comprises progenitor cells expressing specific oRG markers such as GFAP, LIFR, and HOPX, closely matching human fetal oRG. Finally, incorporating neural crest-derived LIF-producing cortical pericytes into cortical organoids recapitulates the effects of LIF treatment. These data indicate that increasing the cellular complexity of the organoid microenvironment promotes the emergence of oRG and supports a platform to study oRG in hPSC-derived brain organoids routinely.


Asunto(s)
Diferenciación Celular , Ventrículos Laterales , Factor Inhibidor de Leucemia , Organoides , Células Madre Pluripotentes , Humanos , Organoides/metabolismo , Organoides/citología , Factor Inhibidor de Leucemia/metabolismo , Factor Inhibidor de Leucemia/farmacología , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Ventrículos Laterales/citología , Ventrículos Laterales/metabolismo , Factor de Transcripción STAT3/metabolismo , Neuroglía/metabolismo , Neuroglía/citología , Transducción de Señal
15.
Dev Cell ; 59(9): 1210-1230.e9, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38569548

RESUMEN

The Drosophila larval ventral nerve cord (VNC) shares many similarities with the spinal cord of vertebrates and has emerged as a major model for understanding the development and function of motor systems. Here, we use high-quality scRNA-seq, validated by anatomical identification, to create a comprehensive census of larval VNC cell types. We show that the neural lineages that comprise the adult VNC are already defined, but quiescent, at the larval stage. Using fluorescence-activated cell sorting (FACS)-enriched populations, we separate all motor neuron bundles and link individual neuron clusters to morphologically characterized known subtypes. We discovered a glutamate receptor subunit required for basal neurotransmission and homeostasis at the larval neuromuscular junction. We describe larval glia and endorse the general view that glia perform consistent activities throughout development. This census represents an extensive resource and a powerful platform for future discoveries of cellular and molecular mechanisms in repair, regeneration, plasticity, homeostasis, and behavioral coordination.


Asunto(s)
Drosophila melanogaster , Larva , Neuronas Motoras , Animales , Larva/genética , Larva/metabolismo , Neuronas Motoras/metabolismo , Neuronas Motoras/citología , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Neuroglía/metabolismo , Neuroglía/citología , Unión Neuromuscular/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , RNA-Seq/métodos , Análisis de Expresión Génica de una Sola Célula
16.
Nature ; 626(8001): 1073-1083, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38355792

RESUMEN

Human cellular models of neurodegeneration require reproducibility and longevity, which is necessary for simulating age-dependent diseases. Such systems are particularly needed for TDP-43 proteinopathies1, which involve human-specific mechanisms2-5 that cannot be directly studied in animal models. Here, to explore the emergence and consequences of TDP-43 pathologies, we generated induced pluripotent stem cell-derived, colony morphology neural stem cells (iCoMoNSCs) via manual selection of neural precursors6. Single-cell transcriptomics and comparison to independent neural stem cells7 showed that iCoMoNSCs are uniquely homogenous and self-renewing. Differentiated iCoMoNSCs formed a self-organized multicellular system consisting of synaptically connected and electrophysiologically active neurons, which matured into long-lived functional networks (which we designate iNets). Neuronal and glial maturation in iNets was similar to that of cortical organoids8. Overexpression of wild-type TDP-43 in a minority of neurons within iNets led to progressive fragmentation and aggregation of the protein, resulting in a partial loss of function and neurotoxicity. Single-cell transcriptomics revealed a novel set of misregulated RNA targets in TDP-43-overexpressing neurons and in patients with TDP-43 proteinopathies exhibiting a loss of nuclear TDP-43. The strongest misregulated target encoded the synaptic protein NPTX2, the levels of which are controlled by TDP-43 binding on its 3' untranslated region. When NPTX2 was overexpressed in iNets, it exhibited neurotoxicity, whereas correcting NPTX2 misregulation partially rescued neurons from TDP-43-induced neurodegeneration. Notably, NPTX2 was consistently misaccumulated in neurons from patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration with TDP-43 pathology. Our work directly links TDP-43 misregulation and NPTX2 accumulation, thereby revealing a TDP-43-dependent pathway of neurotoxicity.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteína C-Reactiva , Proteínas de Unión al ADN , Degeneración Lobar Frontotemporal , Red Nerviosa , Proteínas del Tejido Nervioso , Neuronas , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Proteína C-Reactiva/metabolismo , Proteínas de Unión al ADN/deficiencia , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología , Red Nerviosa/metabolismo , Red Nerviosa/patología , Proteínas del Tejido Nervioso/metabolismo , Células-Madre Neurales/citología , Neuroglía/citología , Neuronas/citología , Neuronas/metabolismo , Reproducibilidad de los Resultados
18.
Biol. Res ; 46(1): 27-32, 2013. ilus, tab
Artículo en Inglés | LILACS | ID: lil-676817

RESUMEN

Axons and glial cells are the main components of white matter. The corpus callosum (CC) is the largest white matter tract in mammals; in rodents, 99% of the cells correspond to glia after postnatal day 5 (P5). The area of the CC varies through life and regional differences related to the number of axons have been previously described. Whether glial cell density varies accordingly is unknown; thus the aim of this study was to estimate glial cell density for the genu, body and splenium -the three main regions of CC-, of P6 and P30 rats. Here we report that the density of CC glial cells reduced by ~10% from P6 to P30. Even so, the density of astrocytes showed a slight increase (+6%), probably due to differentiation of glioblasts. Interestingly, glial cell density decreased for the genu (-21%) and the body (-13%), while for the splenium a minor increase (+5%) was observed. The astrocyte/glia ratio increased (from P6 to P30) for the genu (+27%), body (+17%) and splenium (+4%). Together, our results showed regional differences in glial cell density of the CC. Whether this pattern is modified in some neuropathologies remains to be explored.


Asunto(s)
Animales , Femenino , Ratas , Cuerpo Calloso/citología , Proteína Ácida Fibrilar de la Glía/fisiología , Neuroglía/citología , Factores de Edad , Astrocitos/citología , Recuento de Células , Diferenciación Celular/fisiología , Cuerpo Calloso/crecimiento & desarrollo , Técnica del Anticuerpo Fluorescente Indirecta , Morfogénesis
19.
Invest. clín ; 51(4): 501-518, dic. 2010. ilus, tab
Artículo en Español | LILACS | ID: lil-630908

RESUMEN

Los cultivos neuronales del sistema nervioso central se han venido usando ampliamente para el estudio de los mecanismos que conducen el proceso de diferenciación neuronal, así como también se han empleado como modelos in vitro para evaluar drogas y desarrollar nuevas terapias, de allí la importancia profundizar en la caracterización de dicho proceso. En este estudio, se prepararon cultivos primarios de células del hipocampo para estudiar los tipos celulares desarrollados, el desarrollo de dendritas y axones, la densidad de vesículas sinápticas y el desarrollo de los conos de crecimiento. Mediante inmunofluorescencia usando anticuerpos y marcadores no inmunológicos, se observaron los cambios experimentados por las estructuras de interés durante diferentes estadios temporales (1-21 días). Observamos una mayor proporción de neuronas sobre glias, desarrollo normal de las redes neuronales (conformadas por dendritas y axones), incremento en la longitud de dendritas y el establecimiento de sinapsis. Las vesículas sinápticas también experimentaron un incremento en su densidad a medida que aumentaba el tiempo de cultivo. Finalmente, se estudiaron los cambios morfológicos de los conos de crecimiento observándose que al inicio del cultivo en su mayoría se encontraban cerrados, pero a medida que maduraban las neuronas la proporción de conos de crecimiento abiertos aumentó. Este trabajo representa un avance en la caracterización morfométrica de los cultivos neuronales puesto que recoge de manera simultánea y cuantitativa los principales aspectos que marcan el proceso de diferenciación neuronal. En este estudio, la medición de estas características morfológicas hizo posible establecer parámetros cuantitativos que ayudarán a distinguir las principales etapas de la diferenciación neuronal.


Neuronal cultures of the central nervous system are widely used to study the molecular mechanisms that rule the differentiation process. These cultures have also been used to evaluate drugs and to develop new therapies. From this we can infer the relevance of performing an extended characterization that involves the main aspects driving such process. To carry out such characterization in the present study we prepared primary cultures from hippocampal cells to study cell identity, development of neuronal processes (dendrites and axons), density of synaptic vesicles and development of growth cones. Using immunofluorescence techniques, specific antibodies and non-immunological probes, we studied the changes experienced by the structures under study during different temporal stages (1-21 days). We observed a major proportion of neurons over glia, normal development of neuronal networks (formed by dendrites and axons), increase in the length of dendrites and axons and establishment of synaptic connections. Synaptic vesicles also showed an increase in their densities as long as the time of the culture progressed. Finally, we studied the morphological changes of the growth cones and observed that those were mostly closed at the beginning of the culture period. As neurons matured we observed an increase in the proportion of open growth cones. This work represents an advance in the morphometric characterization of neuronal cultures, since it gathers the main aspects that outline the neuronal differentiation process. In this study, measurement of these morphological features made possible to establish quantitative markers that will allow establishing more precisely the different stages of neuronal differentiation.


Asunto(s)
Animales , Ratas , Hipocampo/citología , Técnicas In Vitro , Neurogénesis , Neuronas/citología , Axones/ultraestructura , Células Cultivadas/citología , Dendritas/ultraestructura , Conos de Crecimiento/ultraestructura , Hipocampo/embriología , Microscopía Fluorescente , Microscopía de Interferencia , Neuroglía/citología , Ratas Sprague-Dawley , Vesículas Sinápticas/ultraestructura
20.
Arq. neuropsiquiatr ; 67(3a): 684-688, Sept. 2009. ilus
Artículo en Inglés | LILACS | ID: lil-523620

RESUMEN

OBJECTIVE: Nestin is temporarily expressed in several tissues during development and it is replaced by other protein types during cell differentiation process. This unique property allows distinguishing between undifferentiated and differentiated cells. This study was delineated to analyze the temporal pattern of nestin expression in cortical radial glial cells of rats during normal development and of rats submitted to recurrent status epilepticus (SE) in early postnatal life (P). METHOD: Experimental rats were submitted to pilocarpine-induced SE on P7-9. The cortical temporal profile of nestin was studied by immunohistochemistry at multiple time points (P9, P10, P12, P16, P30 and P90). RESULTS: We observed delayed nestin down-regulation in experimental rats of P9, P10, P12 and P16 groups. In addition, few radial glial cells were still present only in P21 experimental rats. CONCLUSION: Our results suggested that SE during early postnatal life alters normal maturation during a critical period of brain development.


OBJETIVO: A nestina, temporariamente expressa em diversos tecidos durante o desenvolvimento, é substituída no processo de diferenciação celular, o que permite a distinção entre células diferenciadas e indiferenciadas. O objetivo deste estudo foi verificar o padrão temporal da expressão da nestina nas células da glia radial cortical de ratos durante o desenvolvimento normal e nos ratos submetidos a sucessivos status epilepticus (SE) no periodo pós-natal precoce (P). MÉTODO: Os animais foram submetidos ao SE induzido pela pilocarpina em P7-9. O perfil temporal da nestina foi estudado por imuno-histoquímica em P9, P10, P12, P16, P30 e P90. RESULTADOS: Nos ratos experimentais, observamos atraso no desaparecimento da nestina nos grupos P9, P10, P12 e P16. Ainda, encontramos algumas glias radiais corticais apenas em P21 experimental. CONCLUSÃO: Nossos resultados sugerem que o SE durante o desenvolvimento pós-natal precoce altera o processo de maturação durante um periodo crítico do desenvolvimento encefálico.


Asunto(s)
Animales , Ratas , Corteza Cerebral/citología , Proteínas de Filamentos Intermediarios/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuroglía/metabolismo , Estado Epiléptico/metabolismo , Animales Recién Nacidos , Biomarcadores/metabolismo , Modelos Animales de Enfermedad , Inmunohistoquímica , Proteínas de Filamentos Intermediarios/análisis , Proteínas del Tejido Nervioso/análisis , Neuroglía/citología , Pilocarpina/administración & dosificación , Ratas Wistar , Estado Epiléptico/inducido químicamente
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA