Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Am J Physiol Heart Circ Physiol ; 320(1): H95-H107, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33064562

RESUMEN

Inositol trisphosphate (IP3) is a Ca2+-mobilizing second messenger shown to modulate atrial muscle contraction and is thought to contribute to atrial fibrillation. Cellular pathways underlying IP3 actions in cardiac tissue remain poorly understood, and the work presented here addresses the question whether IP3-mediated Ca2+ release from the sarcoplasmic reticulum is linked to adenylyl cyclase activity including Ca2+-stimulated adenylyl cyclases (AC1 and AC8) that are selectively expressed in atria and sinoatrial node (SAN). Immunocytochemistry in guinea pig atrial myocytes identified colocalization of type 2 IP3 receptors with AC8, while AC1 was located in close vicinity. Intracellular photorelease of IP3 by UV light significantly enhanced the amplitude of the Ca2+ transient (CaT) evoked by electrical stimulation of atrial myocytes (31 ± 6% increase 60 s after photorelease, n = 16). The increase in CaT amplitude was abolished by inhibitors of adenylyl cyclases (MDL-12,330) or protein kinase A (H89), showing that cAMP signaling is required for this effect of photoreleased IP3. In mouse, spontaneously beating right atrial preparations, phenylephrine, an α-adrenoceptor agonist with effects that depend on IP3-mediated Ca2+ release, increased the maximum beating rate by 14.7 ± 0.5%, n = 10. This effect was substantially reduced by 2.5 µmol/L 2-aminoethyl diphenylborinate and abolished by a low dose of MDL-12,330, observations which are again consistent with a functional interaction between IP3 and cAMP signaling involving Ca2+ stimulation of adenylyl cyclases in the SAN pacemaker. Understanding the interaction between IP3 receptor pathways and Ca2+-stimulated adenylyl cyclases provides important insights concerning acute mechanisms for initiation of atrial arrhythmias.NEW & NOTEWORTHY This study provides evidence supporting the proposal that IP3 signaling in cardiac atria and sinoatrial node involves stimulation of Ca2+-activated adenylyl cyclases (AC1 and AC8) by IP3-evoked Ca2+ release from junctional sarcoplasmic reticulum. AC8 and IP3 receptors are shown to be located close together, while AC1 is nearby. Greater understanding of these novel aspects of the IP3 signal transduction mechanism is important for future study in atrial physiology and pathophysiology, particularly atrial fibrillation.


Asunto(s)
Adenilil Ciclasas/metabolismo , Relojes Biológicos , Señalización del Calcio , Atrios Cardíacos/enzimología , Frecuencia Cardíaca , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Miocitos Cardíacos/enzimología , Nodo Sinoatrial/enzimología , Potenciales de Acción , Animales , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Cobayas , Atrios Cardíacos/citología , Isoenzimas , Masculino , Ratones , Retículo Sarcoplasmático/enzimología , Factores de Tiempo
2.
Circ Arrhythm Electrophysiol ; 11(6): e005896, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29880528

RESUMEN

BACKGROUND: Spontaneous firing of sinoatrial node cells (SANCs) is regulated by cAMP-mediated, PKA (protein kinase A)-dependent (cAMP/PKA) local subsarcolemmal Ca2+ releases (LCRs) from RyRs (ryanodine receptors). LCRs occur during diastolic depolarization and activate an inward Na+/Ca2+ exchange current that accelerates diastolic depolarization rate prompting the next action potential. PDEs (phosphodiesterases) regulate cAMP-mediated signaling; PDE3/PDE4 represent major PDE activities in SANC, but how they modulate LCRs and basal spontaneous SANC firing remains unknown. METHODS: Real-time polymerase chain reaction, Western blot, immunostaining, cellular perforated patch clamping, and confocal microscopy were used to elucidate mechanisms of PDE-dependent regulation of cardiac pacemaking. RESULTS: PDE3A, PDE4B, and PDE4D were the major PDE subtypes expressed in rabbit SANC, and PDE3A was colocalized with α-actinin, PDE4D, SERCA (sarcoplasmic reticulum Ca2+ ATP-ase), and PLB (phospholamban) in Z-lines. Inhibition of PDE3 (cilostamide) or PDE4 (rolipram) alone increased spontaneous SANC firing by ≈20% (P<0.05) and ≈5% (P>0.05), respectively, but concurrent PDE3+PDE4 inhibition increased spontaneous firing by ≈45% (P<0.01), indicating synergistic effect. Inhibition of PDE3 or PDE4 alone increased L-type Ca2+ current (ICa,L) by ≈60% (P<0.01) or ≈5% (P>0.05), respectively, and PLB phosphorylation by ≈20% (P>0.05) each, but dual PDE3+PDE4 inhibition increased ICa,L by ≈100% (P<0.01) and PLB phosphorylation by ≈110% (P<0.05). Dual PDE3+PDE4 inhibition increased the LCR number and size (P<0.01) and reduced the SR (sarcoplasmic reticulum) Ca2+ refilling time (P<0.01) and the LCR period (time from action potential-induced Ca2+ transient to subsequent LCR; P<0.01), leading to decrease in spontaneous SANC cycle length (P<0.01). When RyRs were disabled by ryanodine and LCRs ceased, dual PDE3+PDE4 inhibition failed to increase spontaneous SANC firing. CONCLUSIONS: Basal cardiac pacemaker function is regulated by concurrent PDE3+PDE4 activation which operates in a synergistic manner via decrease in cAMP/PKA phosphorylation, suppression of LCR parameters, and prolongation of the LCR period and spontaneous SANC cycle length.


Asunto(s)
Potenciales de Acción , Relojes Biológicos , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/metabolismo , Frecuencia Cardíaca , Nodo Sinoatrial/enzimología , Potenciales de Acción/efectos de los fármacos , Animales , Señalización del Calcio , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 3/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 4/genética , Activación Enzimática , Frecuencia Cardíaca/efectos de los fármacos , Cinética , Inhibidores de Fosfodiesterasa 3/farmacología , Inhibidores de Fosfodiesterasa 4/farmacología , Conejos , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos
3.
Cardiovasc Res ; 113(10): 1186-1197, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28899000

RESUMEN

AIMS: RHOA-ROCK signalling regulates cell migration, proliferation, differentiation, and transcription. RHOA is expressed in the developing cardiac conduction system in chicken and mice. In early development, the entire sinus venosus myocardium, including both the transient left-sided and the definitive sinoatrial node (SAN), has pacemaker potential. Later, pacemaker potential is restricted to the right-sided SAN. Disruption of RHOA expression in adult mice causes arrhythmias including bradycardia and atrial fibrillation, the mechanism of which is unknown but presumed to affect the SAN. The aim of this study is to assess the role of RHOA-ROCK signalling in SAN development in the chicken heart. METHODS AND RESULTS: ROCK signalling was inhibited chemically in embryonic chicken hearts using Y-27632. This prolonged the immature state of the sinus venosus myocardium, evidenced by up-regulation of the transcription factor ISL1, wide distribution of pacemaker potential, and significantly reduced heart rate. Furthermore ROCK inhibition caused aberrant expression of typical SAN genes: ROCK1, ROCK2, SHOX2, TBX3, TBX5, ISL1, HCN4, CX40, CAV3.1, and NKX2.5 and left-right asymmetry genes: PITX2C and NODAL. Anatomical abnormalities in pulmonary vein development were also observed. Patch clamp electrophysiology confirmed the immature phenotype of the SAN cells and a residual left-sided sinus venosus myocardium pacemaker-like potential. CONCLUSIONS: RHOA-ROCK signalling is involved in establishing the right-sided SAN as the definitive pacemaker of the heart and restricts typical pacemaker gene expression to the right side of the sinus venosus myocardium.


Asunto(s)
Relojes Biológicos , Diferenciación Celular , Transducción de Señal , Nodo Sinoatrial/enzimología , Quinasas Asociadas a rho/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Potenciales de Acción , Animales , Arritmias Cardíacas/enzimología , Arritmias Cardíacas/genética , Arritmias Cardíacas/fisiopatología , Relojes Biológicos/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Cardiopatías Congénitas/enzimología , Cardiopatías Congénitas/genética , Cardiopatías Congénitas/fisiopatología , Frecuencia Cardíaca , Morfogénesis , Miocitos Cardíacos/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/embriología , Nodo Sinoatrial/fisiopatología , Factores de Tiempo , Quinasas Asociadas a rho/antagonistas & inhibidores , Quinasas Asociadas a rho/genética , Proteína de Unión al GTP rhoA/genética
4.
Am J Physiol Heart Circ Physiol ; 310(9): H1259-66, 2016 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-26945074

RESUMEN

Cardiac pacemaker cell function is regulated by a coupled-clock system that integrates molecular cues on the cell-membrane surface (i.e., membrane clock) and on the sarcoplasmic reticulum (SR) (i.e., Ca(2+) clock). A recent study has shown that cotransfection of spontaneous beating cells (HEK293 cells and neonatal rat myocytes) with R524Q-mutant human hyperpolarization-activated cyclic nucleotide-gated molecules (the dominant component of funny channels) increases the funny channel's sensitivity to cAMP and leads to a decrease in spontaneous action potential (AP) cycle length (i.e., tachycardia). We hypothesize that in rabbit pacemaker cells, the same behavior is expected, and because of the coupled-clock system, the resultant steady-state decrease in AP cycle length will embody contributions from both clocks: the initial decrease in the spontaneous AP beating interval, arising from increased sensitivity of the f-channel to cAMP, will be accompanied by an increase in the adenylyl cyclase (AC)-cAMP-PKA-dependent phosphorylation activity, which will further decrease this interval. To test our hypothesis, we used the recently developed Yaniv-Lakatta pacemaker cell numerical model. This model predicts the cAMP signaling dynamics, as well as the kinetics and magnitude of protein phosphorylation in both normal and mutant pacemaker cells. We found that R524Q-mutant pacemaker cells have a shorter AP firing rate than that of wild-type cells and that gain in pacemaker function is the net effect of the R514Q mutation on the functioning of the coupled-clock system. Specifically, our results directly support the hypothesis that changes in Ca(2+)-activated AC-cAMP-PKA signaling are involved in the development of tachycardia in R524Q-mutant pacemaker cells.


Asunto(s)
Relojes Biológicos , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Frecuencia Cardíaca , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Modelos Cardiovasculares , Fosforilación , Sistemas de Mensajero Secundario , Nodo Sinoatrial/enzimología , Taquicardia/enzimología , Potenciales de Acción , Adenilil Ciclasas/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Simulación por Computador , AMP Cíclico/metabolismo , Predisposición Genética a la Enfermedad , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Cinética , Mutación , Análisis Numérico Asistido por Computador , Fenotipo , Conejos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Nodo Sinoatrial/citología , Taquicardia/genética , Taquicardia/fisiopatología
5.
Exp Biol Med (Maywood) ; 241(3): 331-9, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26341471

RESUMEN

The expression of hyperpolarization-activated cyclic nucleotide-gated cation (HCN) channel isoforms varies among species, cardiac tissues, developmental stages, and disease generation. However, alterations in the HCN channels during aging remain unclear. We investigated the protein expressions of HCN channel isoforms, HCN1-HCN4, in the sinoatrial nodes (SANs) from young (1-month-old), adult (4-month-old), and aged (30-month-old) rats. We found that HCN2 and HCN4 proteins were present in rat SAN using immunohistochemistry; therefore, we quantitatively analyzed their expression by Western blot. Aim to correlate protein expression and pacemaking function, specific blockade of HCN channels with 3 µmol/L ivabradine prolonged the cycle length in the intact rat heart. During the senescent process, the HCN2 and HCN4 protein levels declined, which was accompanied with a decreased effect of ivabradine on rat SAN automaticity. These results indicated the age-associated expression and relative function of HCN channel isoforms.


Asunto(s)
Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/biosíntesis , Nodo Sinoatrial/enzimología , Factores de Edad , Animales , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/química , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/genética , Masculino , Isoformas de Proteínas/biosíntesis , Isoformas de Proteínas/genética , Ratas Sprague-Dawley
6.
J Cardiovasc Pharmacol ; 63(6): 533-43, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24566462

RESUMEN

One of the main strategies for cancer therapy is to use tyrosine kinase inhibitors for inhibiting tumor proliferation. Increasing evidence has demonstrated the potential risks of cardiac arrhythmias (such as prolonged QT interval) of these drugs. We report here that a widely used selective inhibitor of Src tyrosine kinases, 4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine (PP2), can inhibit and prevent ß-adrenergic stimulation of cardiac pacemaker activity. First, in dissected rat sinus node, PP2 inhibited and prevented the isoproterenol-induced increase of spontaneous beating rate. Second, in isolated rat sinus node myocytes, PP2 suppressed the hyperpolarization-activated "funny" current (traditionally called cardiac pacemaker current, I(f)) by negatively shifting the activation curve and decelerating activation kinetics. Third, in isolated rat sinus node myocytes, PP2 decreased the Src kinase activity, the cell surface expression, and tyrosine phosphorylation of hyperpolarization-activated, cyclic nucleotide-modulated channel 4 (HCN4) channel proteins. Finally, in human embryonic kidney 293 cells overexpressing recombinant human HCN4 channels, PP2 reversed the enhancement of HCN4 channels by isoproterenol and inhibited 573x, a cyclic adenosine momophosphate-insensitive human HCN4 mutant. These results demonstrated that inhibition of Src kinase activity in heart by PP2 decreased and prevented ß-adrenergic stimulation of cardiac pacemaker activity. These effects are mediated, at least partially, by a cAMP-independent attenuation of channel activity and cell surface expression of HCN4, the main channel protein that controls the heart rate.


Asunto(s)
Agonistas Adrenérgicos beta/farmacología , Pirimidinas/farmacología , Nodo Sinoatrial/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores , Animales , Células Cultivadas , Células HEK293 , Humanos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/biosíntesis , Proteínas Musculares/biosíntesis , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/enzimología , Canales de Potasio/biosíntesis , Ratas , Ratas Sprague-Dawley , Nodo Sinoatrial/enzimología , Familia-src Quinasas/metabolismo
7.
PLoS One ; 8(2): e57079, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23459256

RESUMEN

UNLABELLED: : Ca(2+)-activated basal adenylate cyclase (AC) in rabbit sinoatrial node cells (SANC) guarantees, via basal cAMP/PKA-calmodulin/CaMKII-dependent protein phosphorylation, the occurrence of rhythmic, sarcoplasmic-reticulum generated, sub-membrane Ca(2+) releases that prompt rhythmic, spontaneous action potentials (APs). This high-throughput signaling consumes ATP. AIMS: We have previously demonstrated that basal AC-cAMP/PKA signaling directly, and Ca(2+) indirectly, regulate mitochondrial ATP production. While, clearly, Ca(2+)-calmodulin-CaMKII activity regulates ATP consumption, whether it has a role in the control of ATP production is unknown. METHODS AND RESULTS: We superfused single, isolated rabbit SANC at 37°C with physiological saline containing CaMKII inhibitors, (KN-93 or autocamtide-2 Related Inhibitory Peptide (AIP)), or a calmodulin inhibitor (W-7) and measured cytosolic Ca(2+), flavoprotein fluorescence and spontaneous AP firing rate. We measured cAMP, ATP and O2 consumption in cell suspensions. Graded reductions in basal CaMKII activity by KN-93 (0.5-3 µmol/L) or AIP (2-10 µmol/L) markedly slow the kinetics of intracellular Ca(2+) cycling, decrease the spontaneous AP firing rate, decrease cAMP, and reduce O2 consumption and flavoprotein fluorescence. In this context of graded reductions in ATP demand, however, ATP also becomes depleted, indicating reduced ATP production. CONCLUSIONS: CaMKII signaling, a crucial element of normal automaticity in rabbit SANC, is also involved in SANC bioenergetics.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Calcio/metabolismo , Metabolismo Energético , Nodo Sinoatrial/citología , Nodo Sinoatrial/enzimología , Potenciales de Acción/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Bencilaminas/farmacología , Señalización del Calcio/efectos de los fármacos , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , AMP Cíclico/metabolismo , Metabolismo Energético/efectos de los fármacos , Isoquinolinas/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Inhibidores de Proteínas Quinasas/farmacología , Conejos , Sulfonamidas/farmacología
8.
J Clin Invest ; 123(3): 1262-74, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23426181

RESUMEN

Diabetes increases oxidant stress and doubles the risk of dying after myocardial infarction, but the mechanisms underlying increased mortality are unknown. Mice with streptozotocin-induced diabetes developed profound heart rate slowing and doubled mortality compared with controls after myocardial infarction. Oxidized Ca(2+)/calmodulin-dependent protein kinase II (ox-CaMKII) was significantly increased in pacemaker tissues from diabetic patients compared with that in nondiabetic patients after myocardial infarction. Streptozotocin-treated mice had increased pacemaker cell ox-CaMKII and apoptosis, which were further enhanced by myocardial infarction. We developed a knockin mouse model of oxidation-resistant CaMKIIδ (MM-VV), the isoform associated with cardiovascular disease. Streptozotocin-treated MM-VV mice and WT mice infused with MitoTEMPO, a mitochondrial targeted antioxidant, expressed significantly less ox-CaMKII, exhibited increased pacemaker cell survival, maintained normal heart rates, and were resistant to diabetes-attributable mortality after myocardial infarction. Our findings suggest that activation of a mitochondrial/ox-CaMKII pathway contributes to increased sudden death in diabetic patients after myocardial infarction.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Diabetes Mellitus Experimental/enzimología , Infarto del Miocardio/enzimología , Nodo Sinoatrial/enzimología , Animales , Apoptosis , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Gasto Cardíaco , Células Cultivadas , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/mortalidad , Femenino , Fibrosis , Frecuencia Cardíaca , Humanos , Técnicas In Vitro , Masculino , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias Cardíacas/metabolismo , Infarto del Miocardio/etiología , Infarto del Miocardio/mortalidad , Miocardio/enzimología , Miocardio/patología , Oxidación-Reducción , Estrés Oxidativo , Péptidos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Nodo Sinoatrial/patología , Nodo Sinoatrial/fisiopatología
9.
J Gen Physiol ; 136(3): 247-58, 2010 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-20713547

RESUMEN

The sympathetic nervous system increases heart rate by activating beta adrenergic receptors and increasing cAMP levels in myocytes in the sinoatrial node. The molecular basis for this response is not well understood; however, the cardiac funny current (I(f)) is thought to be among the end effectors for cAMP signaling in sinoatrial myocytes. I(f) is produced by hyperpolarization-activated cyclic nucleotide-sensitive (HCN4) channels, which can be potentiated by direct binding of cAMP to a conserved cyclic nucleotide binding domain in the C terminus of the channels. beta Adrenergic regulation of I(f) in the sinoatrial node is thought to occur via this direct binding mechanism, independent of phosphorylation. Here, we have investigated whether the cAMP-activated protein kinase (PKA) can also regulate sinoatrial HCN4 channels. We found that inhibition of PKA significantly reduced the ability of beta adrenergic agonists to shift the voltage dependence of I(f) in isolated sinoatrial myocytes from mice. PKA also shifted the voltage dependence of activation to more positive potentials for heterologously expressed HCN4 channels. In vitro phosphorylation assays and mass spectrometry revealed that PKA can directly phosphorylate at least 13 sites on HCN4, including at least three residues in the N terminus and at least 10 in the C terminus. Functional analysis of truncated and alanine-substituted HCN4 channels identified a PKA regulatory site in the distal C terminus of HCN4, which is required for PKA modulation of I(f). Collectively, these data show that native and expressed HCN4 channels can be regulated by PKA, and raise the possibility that this mechanism could contribute to sympathetic regulation of heart rate.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Canales Catiónicos Regulados por Nucleótidos Cíclicos/metabolismo , Frecuencia Cardíaca , Activación del Canal Iónico , Nodo Sinoatrial/enzimología , Sistema Nervioso Simpático/fisiología , Agonistas Adrenérgicos beta/farmacología , Secuencia de Aminoácidos , Animales , Células CHO , Clonación Molecular , Cricetinae , Cricetulus , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Canales Catiónicos Regulados por Nucleótidos Cíclicos/química , Canales Catiónicos Regulados por Nucleótidos Cíclicos/efectos de los fármacos , Canales Catiónicos Regulados por Nucleótidos Cíclicos/genética , Frecuencia Cardíaca/efectos de los fármacos , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización , Activación del Canal Iónico/efectos de los fármacos , Masculino , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Datos de Secuencia Molecular , Mutación , Técnicas de Placa-Clamp , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/inervación , Espectrometría de Masas en Tándem , Factores de Tiempo , Transfección
11.
Circ Res ; 107(6): 767-75, 2010 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-20651285

RESUMEN

RATIONALE: Sinoatrial node cells (SANCs) generate local, subsarcolemmal Ca(2+) releases (LCRs) from sarcoplasmic reticulum (SR) during late diastolic depolarization. LCRs activate an inward Na(+)-Ca(2+) exchange current (I(NCX)), which accelerates diastolic depolarization rate, prompting the next action potential (AP). The LCR period, ie, a delay between AP-induced Ca(2+) transient and LCR appearance, defines the time of late diastolic depolarization I(NCX) activation. Mechanisms that control the LCR period, however, are still unidentified. OBJECTIVE: To determine dependence of the LCR period on SR Ca(2+) refilling kinetics and establish links between regulation of SR Ca(2+) replenishment, LCR period, and spontaneous cycle length. METHODS AND RESULTS: Spontaneous APs and SR luminal or cytosolic Ca(2+) were recorded using perforated patch and confocal microscopy, respectively. Time to 90% replenishment of SR Ca(2+) following AP-induced Ca(2+) transient was highly correlated with the time to 90% decay of cytosolic Ca(2+) transient (T-90(C)). Local SR Ca(2+) depletions mirror their cytosolic counterparts, LCRs, and occur following SR Ca(2+) refilling. Inhibition of SR Ca(2+) pump by cyclopiazonic acid dose-dependently suppressed spontaneous SANCs firing up to ≈50%. Cyclopiazonic acid and graded changes in phospholamban phosphorylation produced by ß-adrenergic receptor stimulation, phosphodiesterase or protein kinase A inhibition shifted T-90(C) and proportionally shifted the LCR period and spontaneous cycle length (R(2)=0.98). CONCLUSIONS: The LCR period, a critical determinant of the spontaneous SANC cycle length, is defined by the rate of SR Ca(2+) replenishment, which is critically dependent on SR pumping rate, Ca(2+) available for pumping, supplied by L-type Ca(2+) channel, and ryanodine receptor Ca(2+) release flux, each of which is modulated by cAMP-mediated protein kinase A-dependent phosphorylation.


Asunto(s)
Relojes Biológicos/fisiología , Señalización del Calcio/fisiología , Frecuencia Cardíaca/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Retículo Sarcoplasmático/enzimología , Nodo Sinoatrial/enzimología , Potenciales de Acción/efectos de los fármacos , Animales , Relojes Biológicos/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , Frecuencia Cardíaca/efectos de los fármacos , Conejos , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/fisiología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/fisiología , Nodo Sinoatrial/citología , Nodo Sinoatrial/metabolismo , Nodo Sinoatrial/fisiología , Factores de Tiempo
12.
J Mol Cell Cardiol ; 47(4): 456-74, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19573534

RESUMEN

Decades of intensive research of primary cardiac pacemaker, the sinoatrial node, have established potential roles of specific membrane channels in the generation of the diastolic depolarization, the major mechanism allowing sinoatrial node cells to generate spontaneous beating. During the last three decades, multiple studies made either in the isolated sinoatrial node or sinoatrial node cells have demonstrated a pivotal role of Ca(2+) and, specifically Ca(2+) release from sarcoplasmic reticulum, for spontaneous beating of cardiac pacemaker. Recently, spontaneous, rhythmic local subsarcolemmal Ca(2+) releases from ryanodine receptors during late half of the diastolic depolarization have been implicated as a vital factor in the generation of sinoatrial node cell spontaneous firing. Local Ca(2+) releases are driven by a unique combination of high basal cAMP production by adenylyl cyclases, high basal cAMP degradation by phosphodiesterases and a high level of cAMP-mediated PKA-dependent phosphorylation. These local Ca(2+) releases activate an inward Na(+)-Ca(2+) exchange current which accelerates the terminal diastolic depolarization rate and, thus, controls the spontaneous pacemaker firing. Both the basal primary pacemaker beating rate and its modulation via beta-adrenergic receptor stimulation appear to be critically dependent upon intact RyR function and local subsarcolemmal sarcoplasmic reticulum generated Ca(2+) releases. This review aspires to integrate the traditional viewpoint that has emphasized the supremacy of the ensemble of surface membrane ion channels in spontaneous firing of the primary cardiac pacemaker, and these novel perspectives of cAMP-mediated PKA-dependent Ca(2+) cycling in regulation of the heart pacemaker clock, both in the basal state and during beta-adrenergic receptor stimulation.


Asunto(s)
Canales de Calcio/metabolismo , Señalización del Calcio , Membrana Celular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Nodo Sinoatrial/citología , Nodo Sinoatrial/enzimología , Animales , Humanos , Receptores Adrenérgicos beta/metabolismo
13.
Am J Physiol Heart Circ Physiol ; 296(3): H594-615, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19136600

RESUMEN

Recent experimental studies have demonstrated that sinoatrial node cells (SANC) generate spontaneous, rhythmic, local subsarcolemmal Ca(2+) releases (Ca(2+) clock), which occur during late diastolic depolarization (DD) and interact with the classic sarcolemmal voltage oscillator (membrane clock) by activating Na(+)-Ca(2+) exchanger current (I(NCX)). This and other interactions between clocks, however, are not captured by existing essentially membrane-delimited cardiac pacemaker cell numerical models. Using wide-scale parametric analysis of classic formulations of membrane clock and Ca(2+) cycling, we have constructed and initially explored a prototype rabbit SANC model featuring both clocks. Our coupled oscillator system exhibits greater robustness and flexibility than membrane clock operating alone. Rhythmic spontaneous Ca(2+) releases of sarcoplasmic reticulum (SR)-based Ca(2+) clock ignite rhythmic action potentials via late DD I(NCX) over much broader ranges of membrane clock parameters [e.g., L-type Ca(2+) current (I(CaL)) and/or hyperpolarization-activated ("funny") current (I(f)) conductances]. The system Ca(2+) clock includes SR and sarcolemmal Ca(2+) fluxes, which optimize cell Ca(2+) balance to increase amplitudes of both SR Ca(2+) release and late DD I(NCX) as SR Ca(2+) pumping rate increases, resulting in a broad pacemaker rate modulation (1.8-4.6 Hz). In contrast, the rate modulation range via membrane clock parameters is substantially smaller when Ca(2+) clock is unchanged or lacking. When Ca(2+) clock is disabled, the system parametric space for fail-safe SANC operation considerably shrinks: without rhythmic late DD I(NCX) ignition signals membrane clock substantially slows, becomes dysrhythmic, or halts. In conclusion, the Ca(2+) clock is a new critical dimension in SANC function. A synergism of the coupled function of Ca(2+) and membrane clocks confers fail-safe SANC operation at greatly varying rates.


Asunto(s)
Relojes Biológicos , Señalización del Calcio , Simulación por Computador , Frecuencia Cardíaca , Modelos Cardiovasculares , Sarcolema/metabolismo , Nodo Sinoatrial/metabolismo , Potenciales de Acción , Animales , Relojes Biológicos/efectos de los fármacos , Señalización del Calcio/efectos de los fármacos , ATPasas Transportadoras de Calcio/antagonistas & inhibidores , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Inhibidores Enzimáticos/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Cinética , Contracción Miocárdica , Miocitos Cardíacos/metabolismo , Oscilometría , Conejos , Reproducibilidad de los Resultados , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Sarcolema/efectos de los fármacos , Sarcolema/enzimología , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/enzimología , Intercambiador de Sodio-Calcio/metabolismo
14.
Auton Neurosci ; 145(1-2): 93-8, 2009 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-19106038

RESUMEN

Nitric oxide and carbon monoxide are diffusible gas messengers, synthesized by nitric oxide synthase or heme oxygenase 2, respectively, that can activate soluble guanylyl cyclase in adjacent cells. Nitric oxide and carbon monoxide neuromodulation in cardiac ganglia has been demonstrated. However, identification of nitric oxide or carbon monoxide in human cardiac ganglia needs to be confirmed as suggested from animal model studies. Immunohistochemistry was used to demonstrate neuronal nitric oxide synthase, heme oxygenase 2, and soluble guanylyl cyclase immunoreactivity within neurons of adult human cardiac ganglia. Nitric oxide synthase immunoreactivity was present in 37% of neurons within cardiac ganglia, heme oxygenase 2 immunoreactivity in 79%, and soluble guanylyl cyclase in 53%. Our findings support the hypothesis that nitric oxide and carbon monoxide are modulators of neurotransmission in cardiac ganglia and in neural control of the adult human heart.


Asunto(s)
Monóxido de Carbono/metabolismo , Ganglios Parasimpáticos/enzimología , Guanilato Ciclasa/biosíntesis , Neuronas/enzimología , Óxido Nítrico/biosíntesis , Receptores Citoplasmáticos y Nucleares/biosíntesis , Adulto , Anciano , Nodo Atrioventricular/enzimología , Nodo Atrioventricular/metabolismo , Monóxido de Carbono/análisis , Células Cultivadas , Femenino , Ganglios Parasimpáticos/metabolismo , Guanilato Ciclasa/análisis , Hemo Oxigenasa (Desciclizante)/análisis , Hemo Oxigenasa (Desciclizante)/biosíntesis , Humanos , Masculino , Persona de Mediana Edad , Neuronas/metabolismo , Óxido Nítrico/análisis , Óxido Nítrico Sintasa de Tipo I/análisis , Óxido Nítrico Sintasa de Tipo I/biosíntesis , Receptores Citoplasmáticos y Nucleares/análisis , Nodo Sinoatrial/enzimología , Nodo Sinoatrial/metabolismo , Guanilil Ciclasa Soluble , Adulto Joven
15.
J Biol Chem ; 283(21): 14461-8, 2008 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-18356168

RESUMEN

Spontaneous, rhythmic subsarcolemmal local Ca(2+) releases driven by cAMP-mediated, protein kinase A (PKA)-dependent phosphorylation are crucial for normal pacemaker function of sinoatrial nodal cells (SANC). Because local Ca(2+) releases occur beneath the cell surface membrane, near to where adenylyl cyclases (ACs) reside, we hypothesized that the dual Ca(2+) and cAMP/PKA regulatory components of automaticity are coupled via Ca(2+) activation of AC activity within membrane microdomains. Here we show by quantitative reverse transcriptase PCR that SANC express Ca(2+)-activated AC isoforms 1 and 8, in addition to AC type 2, 5, and 6 transcripts. Immunolabeling of cell fractions, isolated by sucrose gradient ultracentrifugation, confirmed that ACs localize to membrane lipid microdomains. AC activity within these lipid microdomains is activated by Ca(2+) over the entire physiological Ca(2+) range. In intact SANC, the high basal AC activity produces a high level of cAMP that is further elevated by phosphodiesterase inhibition. cAMP and cAMP-mediated PKA-dependent activation of ion channels and Ca(2+) cycling proteins drive sarcoplasmic reticulum Ca(2+) releases, which, in turn, activate ACs. This feed forward "fail safe" system, kept in check by a high basal phosphodiesterase activity, is central to the generation of normal rhythmic, spontaneous action potentials by pacemaker cells.


Asunto(s)
Adenilil Ciclasas/metabolismo , Calcio/farmacología , Lípidos de la Membrana/metabolismo , Microdominios de Membrana/enzimología , Nodo Sinoatrial/citología , Nodo Sinoatrial/enzimología , Adenilil Ciclasas/genética , Animales , Calcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Activación Enzimática , Regulación de la Expresión Génica , Isoenzimas/genética , Isoenzimas/metabolismo , Microdominios de Membrana/efectos de los fármacos , ARN Mensajero/genética , Conejos
16.
Circ Res ; 101(12): 1274-82, 2007 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-17975110

RESUMEN

Ablation of the enzyme phosphoinositide 3-kinase (PI3K)gamma (PI3Kgamma(-/-)) in mice increases cardiac contractility by elevating intracellular cAMP and enhancing sarcoplasmic reticulum Ca(2+) handling. Because cAMP is a critical determinant of heart rate, we investigated whether heart rate is altered in mice lacking PI3Kgamma. Heart rate was similar in anesthetized PI3Kgamma(-/-) and wild-type (PI3Kgamma(+/+)) mice. However, IP injection of atropine (1 mg/kg), propranolol (1 mg/kg), or both drugs in combination unmasked elevated heart rates in PI3Kgamma(-/-) mice, suggesting altered sinoatrial node (SAN) function. Indeed, spontaneous action potential frequency was approximately 35% greater in SAN myocytes isolated from PI3Kgamma(-/-) mice compared with PI3Kgamma(+/+) mice. These differences in action potential frequency were abolished by intracellular dialysis with the cAMP/protein kinase A antagonist Rp-cAMP but were unaffected by treatment with ryanodine to inhibit sarcoplasmic reticulum Ca(2+) release. Voltage-clamp experiments demonstrated that elevated action potential frequencies in PI3Kgamma(-/-) SAN myocytes were more strongly associated with cAMP-dependent increases in L-type Ca(2+) current (I(Ca,L)) than elevated hyperpolarization-activated current (I(f)). In contrast, I(Ca,L) was not increased in working atrial myocytes, suggesting distinct subcellular regulation of L-type Ca(2+) channels by PI3Kgamma in the SAN compared with the working myocardium. In summary, PI3Kgamma regulates heart rate by the cAMP-dependent modulation of SAN function. The effects of PI3Kgamma ablation in the SAN are unique from those in the working myocardium.


Asunto(s)
AMP Cíclico/fisiología , Frecuencia Cardíaca/genética , Fosfatidilinositol 3-Quinasas/deficiencia , Nodo Sinoatrial/enzimología , Nodo Sinoatrial/fisiopatología , Potenciales de Acción/genética , Animales , Fosfatidilinositol 3-Quinasa Clase Ib , Isoenzimas/biosíntesis , Isoenzimas/deficiencia , Isoenzimas/genética , Masculino , Ratones , Ratones Noqueados , Miocitos Cardíacos/enzimología , Miocitos Cardíacos/patología , Miocitos Cardíacos/fisiología , Fosfatidilinositol 3-Quinasas/biosíntesis , Fosfatidilinositol 3-Quinasas/genética
17.
J Physiol ; 582(Pt 3): 1195-203, 2007 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-17540702

RESUMEN

Ca(2+)-stimulated adenylyl cyclases (AC) are known to play important roles in neurons but have not previously been reported in the heart. Here we present the first evidence for selective expression of Ca(2+)-stimulated AC in the sino-atrial node (SAN) but not in ventricular muscle of the guinea-pig heart. The AC1 isoform of Ca(2+)-stimulated AC was shown to be present in SAN, both as mRNA using RT-PCR and as protein using immuno-blotting with a specific antibody. Confocal immuno-fluorescence studies detected membrane localization of AC1 in SAN cells, but no AC1 in ventricular muscle. Ca(2+)-stimulated AC8 may also be present in SAN. The functional importance of AC activity was investigated by monitoring activation of I(f) (gated by hyperpolarization and regulated by cAMP, which shifts activation to more depolarized voltages). Basal activity of AC in isolated SAN myocytes was demonstrated by the observations that an inhibitor of AC activity (MDL 12330A, 10 microm) shifted activation in the hyperpolarizing direction, while inhibition of phosphodiesterases (IBMX, 100 microm) shifted I(f) activation in the depolarizing direction. Buffering cytosolic Ca(2+) with the Ca(2+) chelator BAPTA (by exposure to BAPTA-AM) shifted activation of I(f) in the hyperpolarizing direction, and under these conditions the AC inhibitor MDL had little or no further effect. The actions of BAPTA were overcome by exposure to forskolin (10 microm), a direct stimulator of all AC isoforms, to restore cAMP levels. These effects are consistent with the functional importance of Ca(2+)-stimulated AC, which is expected to be fundamental to initiation and regulation of the heartbeat.


Asunto(s)
Adenilil Ciclasas/metabolismo , Relojes Biológicos/fisiología , Calcio/farmacología , Nodo Sinoatrial/enzimología , Adenilil Ciclasas/genética , Animales , Colforsina/farmacología , Cartilla de ADN , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Electrofisiología , Cobayas , Isoenzimas/metabolismo , Masculino , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nodo Sinoatrial/efectos de los fármacos
18.
Clin Exp Pharmacol Physiol ; 33(8): 757-62, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16895552

RESUMEN

1. Decreasing heart rate during development is known to be the result of parasympathetic nervous system maturation that depresses the pacemaker current (If) by acetylcholine (ACh). However, a direct effect of ACh on If has been ruled out and the involvement of other secondary messengers, such as cAMP, was verified in previous studies. Therefore, we hypothesized that reduced basal cAMP production in sinoatrial (SA) nodal cells may contribute to the slowing of heart rate after birth. 2. The electrocardiogram and heart rate variability (HRV) were documented and measured in vivo and in vitro (in isolated perfused Langendorff preparations) for rabbits aged 2, 4, 6, 8 and 12 weeks. Sinoatrial node action potential (AP) recording and perforated patch-clamp analyses were used to investigate the spontaneous depolarization rate and pacemaker If currents. Concentrations of cAMP in SA nodal tissues were determined by radioimmunoassay. Relative expression of adenylate cyclases (ADCY1, 5) and phosphodiesterases (PDE1A, 4A and 8A) were quantified by real-time reverse transcription-polymerase chain reaction. 3. Significantly reduced heart rate, but unchanged HRV, was observed in perfused hearts in the older age groups, accompanied with a slowed phase 4 spontaneous depolarization rate (90.5 +/- 4.7 vs 49.6 +/- 2.6 mV/s for 2 week vs 4 week hearts, respectively; n = 5; P < 0.05), a negative shift of the If threshold potential (-45.5 +/- 3.0 vs -51.1 +/- 6.0 mV for 2 week vs 4 week hearts, respectively; n = 9; P < 0.05) and decreasing basal levels of SA nodal cAMP (0.31 +/- 0.05 vs 0.025 +/- 0.002 micromol/L for 2 week vs 4 week hearts, respectively; n = 6; P < 0.05). Gene expression levels of PDE1A, 4A and 8A were increased in the 12 week group compared with the 2 week group 1.5-, 2- and 1.8-fold, respectively (P < 0.05), with little change in ADCY1 and 5. 4. These data suggest that, in addition to autonomic innervation, slowing of heart rate during postnatal maturation can be attributed to a negative shift of the If activation caused by diminished baseline cAMP content in SA nodal cells.


Asunto(s)
AMP Cíclico/metabolismo , Sistema de Conducción Cardíaco/fisiología , Frecuencia Cardíaca , Nodo Sinoatrial/enzimología , Potenciales de Acción , Adenilil Ciclasas/genética , Adenilil Ciclasas/metabolismo , Factores de Edad , Animales , Bucladesina/farmacología , Electrocardiografía , Sistema de Conducción Cardíaco/crecimiento & desarrollo , Técnicas de Placa-Clamp , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , ARN Mensajero/metabolismo , Conejos , Nodo Sinoatrial/citología , Nodo Sinoatrial/efectos de los fármacos
19.
Neurosci Lett ; 179(1-2): 123-6, 1994 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-7531309

RESUMEN

Recently, we observed that atrial natriuretic peptide (ANP) immunoreactivity (IR) was present not only in the Purkinje fibres, but also in nerve fibre varicosities in the conduction system of the bovine heart. These findings and previous observations that ANP is able to influence autonomic neurotransmission in the heart, lead us to elucidate the possible occurrence of ANP in the sympathetic and/or parasympathetic nervous systems and/or in various types of peptidergic innervation in the conduction system. The different parts of the conduction system of bovine hearts were dissected out and processed for immunohistochemistry including double-staining, using antisera against ANP, tyrosine hydroxylase and different neuropeptides. We observed that some of the nerve fibre varicosities exhibiting ANP-IR showed substance P-IR and that ANP was present as scattered immunoreactive granules in intracardial, presumably parasympathetic, ganglionic cells. The study shows that ANP is likely to be present in parasympathetic innervation and in afferent nerve endings in the bovine heart conduction system.


Asunto(s)
Factor Natriurético Atrial/metabolismo , Sistema Nervioso Autónomo/metabolismo , Sistema de Conducción Cardíaco/metabolismo , Sustancia P/metabolismo , Animales , Nodo Atrioventricular/enzimología , Nodo Atrioventricular/metabolismo , Sistema Nervioso Autónomo/enzimología , Bovinos , Ganglios Autónomos/citología , Ganglios Autónomos/enzimología , Sistema de Conducción Cardíaco/enzimología , Inmunohistoquímica , Técnicas In Vitro , NADH Tetrazolio Reductasa/metabolismo , Fibras Nerviosas/enzimología , Neuronas Aferentes/enzimología , Neuronas Aferentes/fisiología , Neuropéptidos/metabolismo , Nodo Sinoatrial/enzimología , Nodo Sinoatrial/metabolismo
20.
Br J Pharmacol ; 111(2): 465-8, 1994 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-8004391

RESUMEN

1. We have characterized alpha 1-adrenoceptor in the conduction systems of the rat heart by quantitative autoradiography. 2. Consecutive 20 micron thick sections from a single rat heart containing the sinoatrial (SA) node and atrioventricular (AV) node were incubated with increasing concentrations of [3H]-prazosin with or without 10 microM phentolamine. After exposure to 3H-Ultrofilm, optical densities corresponding to the SA node and AV node were determined by computerized densitometry after comparison with 3H standards. 3. The SA node and AV node were stained heavily for cholinesterase and they contained a higher concentration of alpha 1-adrenoceptors than the adjacent myocardium without a significant change in the affinity. 4. These results support the hypothesis that alpha 1-adrenoceptors may play an important role not only in inotropism but also in chronotropism of rat hearts.


Asunto(s)
Sistema de Conducción Cardíaco/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Animales , Nodo Atrioventricular/efectos de los fármacos , Nodo Atrioventricular/enzimología , Nodo Atrioventricular/metabolismo , Autorradiografía , Colinesterasas/metabolismo , Sistema de Conducción Cardíaco/efectos de los fármacos , Sistema de Conducción Cardíaco/enzimología , Procesamiento de Imagen Asistido por Computador , Técnicas In Vitro , Masculino , Prazosina/farmacocinética , Ratas , Ratas Wistar , Receptores Adrenérgicos alfa 1/efectos de los fármacos , Nodo Sinoatrial/efectos de los fármacos , Nodo Sinoatrial/enzimología , Nodo Sinoatrial/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA