Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Environ Sci (China) ; 148: 198-209, 2025 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-39095157

RESUMEN

Norfloxacin is widely used owing to its strong bactericidal effect on Gram-negative bacteria. However, the residual norfloxacin in the environment can be biomagnified via food chain and may damage the human liver and delay the bone development of minors. Present work described a reliable and sensitive smartphone colorimetric sensing system based on cobalt-doped Fe3O4 magnetic nanoparticles (Co-Fe3O4 MNPs) for the visual detection of norfloxacin. Compared with Fe3O4, Co-Fe3O4 MNPs earned more remarkably peroxidase-like activity and TMB (colorless) was rapidly oxidized to oxTMB (blue) with the presence of H2O2. Interestingly, the addition of low concentration of norfloxacin can accelerate the color reaction process of TMB, and blue deepening of the solution can be observed with the naked eye. However, after adding high concentration of norfloxacin, the activity of nanozyme was inhibited, resulting in the gradual fading of the solution. Based on this principle, a colorimetric sensor integrated with smartphone RGB mode was established. The visual sensor exhibited good linearity for norfloxacin monitoring in the range of 0.13-2.51 µmol/L and 17.5-100 µmol/L. The limit of visual detection was 0.08 µmol/L. In the actual water sample analysis, the spiked recoveries of norfloxacin were over the range of 95.7%-104.7 %. These results demonstrated that the visual sensor was a convenient and fast method for the efficient and accurate detection of norfloxacin in water, which may have broad application prospect.


Asunto(s)
Cobalto , Colorimetría , Norfloxacino , Teléfono Inteligente , Contaminantes Químicos del Agua , Norfloxacino/análisis , Colorimetría/métodos , Cobalto/análisis , Cobalto/química , Contaminantes Químicos del Agua/análisis , Antibacterianos/análisis , Peroxidasa , Límite de Detección
2.
J Hazard Mater ; 476: 135116, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39013323

RESUMEN

The Asian clam, Corbicula fluminea, commonly used in engineered wetlands receiving tailwater, affects nitrogen compound transformation in water. This study investigates how a commonly observed antibiotic in tailwater, norfloxacin, impact nitrogen compound transformation in tailwater containing C. fluminea. The clam was exposed to artificial tailwater with norfloxacin (0, 0.2, 20, and 2000 µg/L) for 15 days. Water properties, C. fluminea ecotoxicity responses, microorganism composition and nitrification- or denitrification-related enzyme activities were measured. Results revealed norfloxacin-induced increases and reductions in tailwater NH4+ and NO2- concentrations, respectively, along with antioxidant system inhibition, organ histopathological damage and disruption of water filtering and digestion system. Microorganism composition, especially biodiversity indices, varied with medium (clam organs and exposure water) and norfloxacin concentrations. Norfloxacin reduced NO2- content by lowering the ratio between microbial nitrifying enzyme (decreased hydroxylamine oxidoreductase and nitrite oxidoreductase activity) and denitrifying enzyme (increased nitrate reductase and nitrite reductase activity) in tailwater. Elevated NH4+ content resulted from upregulated ammonification and inhibited nitrification of microorganisms in tailwater, as well as increased ammonia emission from C. fluminea due to organ damage and metabolic disruption of the digestion system. Overall, this study offers insights into using benthic organisms to treat tailwater with antibiotic residues, especially regarding nitrogen treatment.


Asunto(s)
Antibacterianos , Corbicula , Norfloxacino , Contaminantes Químicos del Agua , Norfloxacino/farmacología , Animales , Corbicula/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Antibacterianos/farmacología , Antibacterianos/toxicidad , Nitrificación/efectos de los fármacos , Compuestos de Nitrógeno/toxicidad , Compuestos de Nitrógeno/metabolismo , Desnitrificación/efectos de los fármacos , Nitrógeno/metabolismo
3.
ACS Infect Dis ; 10(8): 2623-2636, 2024 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-38959403

RESUMEN

Antibiotic resistance is a pressing health issue, with the emergence of resistance in bacteria outcompeting the discovery of novel drug candidates. While many studies have used Adaptive Laboratory Evolution (ALE) to understand the determinants of resistance, the influence of the drug dosing profile on the evolutionary trajectory remains understudied. In this study, we employed ALE on Mycobacterium smegmatis exposed to various concentrations of Norfloxacin using both cyclic constant and stepwise increasing drug dosages to examine their impact on the resistance mechanisms selected. Mutations in an efflux pump regulator, LfrR, were found in all of the evolved populations irrespective of the drug profile and population bottleneck, indicating a conserved efflux-based resistance mechanism. This mutation appeared early in the evolutionary trajectory, providing low-level resistance when present alone, with a further increase in resistance resulting from successive accumulation of other mutations. Notably, drug target mutations, similar to those observed in clinical isolates, were only seen above a threshold of greater than 4× the minimum inhibitory concentration (MIC). A combination of three mutations in the genes, lfrR, MSMEG_1959, and MSMEG_5045, was conserved across multiple lineages, leading to high-level resistance and preceding the appearance of drug target mutations. Interestingly, in populations evolved from parental strains lacking the lfrA efflux pump, the primary target of the lfrR regulator, no lfrR gene mutations are selected. Furthermore, evolutional trajectories originating from the ΔlfrA strain displayed early arrest in some lineages and the absence of target gene mutations in those that evolved, albeit delayed. Thus, blocking or inhibiting the expression of efflux pumps can arrest or delay the fixation of drug target mutations, potentially limiting the maximum attainable resistance levels.


Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Pruebas de Sensibilidad Microbiana , Mutación , Mycobacterium smegmatis , Norfloxacino , Norfloxacino/farmacología , Mycobacterium smegmatis/efectos de los fármacos , Mycobacterium smegmatis/genética , Antibacterianos/farmacología , Evolución Molecular , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo
4.
Sci Total Environ ; 947: 174688, 2024 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-38992361

RESUMEN

The concurrent environmental contamination by nanoplastics (NPs) and norfloxacin (NOR) is a burgeoning concern, with significant accumulations in various ecosystems and potential ingress into the human body via the food chain, posing threats to both public health and ecological balance. Despite the gravity of the situation, studies on the co-exposure contamination effects of these substances are limited. Moreover, the response mechanisms of key functional proteins to these pollutants are yet to be fully elucidated. In this work, we conducted a comprehensive assessment of the interaction mechanisms of NPs and NOR with lysozyme under both single and co-exposure condition, utilizing dynamic light scattering, ζ-potential measurements, multi-spectroscopy methods, enzyme activity assays and molecular docking, to obtain a relationship between the compound effects of NPs and NOR. Our results indicate that NPs adsorb NOR on their surface, forming more stable aggregates. These aggregates influence the conformation, secondary structure (α-Helix ratio decreased by 3.1 %) and amino acid residue microenvironment of lysozyme. And changes in structure affect the activity of lysozyme (reduced by 39.9 %) with the influence of composited pollutants exerting stronger changes. Molecular simulation indicated the key residues Asp 52 for protein function located near the docking site, suggesting pollutants preferentially binds to the active center of lysozyme. Through this study, we have found the effect of increased toxicity on lysozyme under the compounded conditions of NPs and NOR, confirming that the increased molecular toxicity of NPs and NOR is predominantly realized through the increase in particle size and stability of the aggregates under weak interactions, as well as induction of protein structural looseness. This study proposes a molecular perspective on the differential effects and mechanisms of NPs-NOR composite pollution, providing new insights into the assessment of in vitro responses to composite pollutant exposure.


Asunto(s)
Simulación del Acoplamiento Molecular , Muramidasa , Norfloxacino , Muramidasa/química , Norfloxacino/toxicidad , Contaminantes Ambientales/toxicidad , Nanopartículas/toxicidad , Antibacterianos/toxicidad
5.
J Mater Chem B ; 12(31): 7626-7634, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39005154

RESUMEN

The achievement of smart pharmaceuticals whose bioactivity can be spatiotemporally controlled by light stimuli is known as photopharmacology, an emerging area aimed at improving the therapeutic outcome and minimizing side effects. This is especially attractive for antibiotics, for which the inevitable development of multidrug resistance and the dwindling of new clinically approved drugs represent the main drawbacks. Here, we show that nitrosation of the fluoroquinolone norfloxacin (NF), a broad-spectrum antibiotic, leads to the nitrosated bioconjugate NF-NO, which is inactive at the typical minimum inhibitory concentration of NF. Irradiation of NF-NO with visible blue light triggers the simultaneous release of NF and nitric oxide (NO). The photouncaging process is accompanied by the revival of the typical fluorescence emission of NF, quenched in NF-NO, which acts as an optical reporter. This permits the real-time monitoring of the photouncaging process, even within bacteria cells where antibacterial activity is switched on exclusively upon light irradiation. The mechanism of photorelease seems to occur through a two-step hopping electron transfer mediated by the lowest triplet state of NF-NO and the phosphate buffer ions or aminoacids such as tyrosine. Considering the well-known role of NO as an "unconventional" antibacterial, the NF-NO conjugate may represent a potential bimodal antibacterial weapon activatable on demand with high spatio-temporal control.


Asunto(s)
Antibacterianos , Óxido Nítrico , Norfloxacino , Antibacterianos/farmacología , Antibacterianos/química , Óxido Nítrico/metabolismo , Norfloxacino/farmacología , Norfloxacino/química , Fluorescencia , Procesos Fotoquímicos , Fluoroquinolonas/química , Fluoroquinolonas/farmacología , Pruebas de Sensibilidad Microbiana , Luz , Estructura Molecular , Escherichia coli/efectos de los fármacos
6.
J Mater Chem B ; 12(31): 7635-7645, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39007591

RESUMEN

Incomplete metabolism and non-biodegradable nature of norfloxacin (NORx) lead to its persistent residues in the environment and food, potentially fostering the emergence of antibiotic resistance and posing a significant threat to public health. Hence, we developed a norfloxacin sensor employing hydrothermally synthesized N-doped carbon dots (N-Ch-CQDs) from chitosan and PEI demonstrated high sensitivity and specificity towards the antibiotic detection. The quantum yield of excitation-dependent emission of N-Ch-CQDs was effectively tuned from 4.6 to 21.5% by varying the concentration of PEI (5-15%). With the enhanced fluorescence in the presence of norfloxacin, N-Ch-CQDs exhibited a linear detection range of 20-1400 nM with a limit of detection (LoD) of 9.3 nM. The high biocompatibility of N-Ch-CQDs was confirmed in the in vitro and in vivo model and showed the environment-friendly nature of the sensor. Detailed study elucidated the formation of strong hydrogen bonds between N-Ch-CQDs and NORx, leading to fluorescence enhancement. The developed sensor's capability to detect NORx was evaluated in water and milk samples. The recovery rate ranged from 98.5% to 103.5%, demonstrating the sensor's practical applicability. Further, the bioimaging potential of N-Ch-CQDs was demonstrated in both the in vitro (L929 cells) and in vivo model (C. elegans). The synergistic influence of the defecation pattern and functioning of intestinal barrier mitigates the translocation of N-Ch-CQDs into the reproductive organ of nematodes. This study revealed the bioimaging and fluorescent sensing ability of N-Ch-CQDs, which holds significant promise for extensive application in the biomedical field.


Asunto(s)
Técnicas Biosensibles , Carbono , Nitrógeno , Norfloxacino , Puntos Cuánticos , Norfloxacino/análisis , Carbono/química , Puntos Cuánticos/química , Técnicas Biosensibles/métodos , Animales , Nitrógeno/química , Caenorhabditis elegans , Antibacterianos/farmacología , Antibacterianos/análisis , Antibacterianos/química , Imagen Óptica , Tamaño de la Partícula , Leche/química , Ratones , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química
7.
Environ Sci Pollut Res Int ; 31(35): 47991-48013, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39017867

RESUMEN

This study investigates the photocatalytic degradation of norfloxacin (NFX) utilizing Fe-doped TiO2 nanocomposite under natural sunlight. TiO2-based photocatalysts were synthesized using chemical precipitation varying Fe-dopant concentration and characterized in detail. Theoretical modelling, centred on density functional theory (DFT), elucidated that Fe ions within the TiO2 lattice are effectively confined, thereby narrowing the wide band gap of TiO2. The findings strongly support that Fe3+ ions augmented the photocatalytic activity of TiO2 by facilitating an intermediate interfacial route for electron and hole transfer, particularly up to an optimal dopant concentration of 1.5 M%. Subsequently, a three-level Box-Behnken design (BBD) was developed to determine the initial pH, optimal catalyst concentration, and drug dosage. High-performance liquid chromatography-mass spectrometry (HPLC-MS) was employed to identify reaction intermediates, thereby establishing a potential degradation pathway. Notably, sustained recyclability was achieved, with 82% degradation efficiency maintained over five cycles. Additionally, the toxicity of degradation intermediates was evaluated through bacterial and phytotoxicity tests, affirming the environmental safety of treated water. In vitro toxicity of the nanomaterial was also examined, emphasizing its environmental implications. Scavenger experiments revealed that hole and hydroxyl radicals were the primary active species in Fe-TiO2-based photocatalysis. Furthermore, the antibacterial potential of the synthesized catalyst was assessed using Escherichia coli and Staphylococcus aureus to observe their respective antibacterial responses.


Asunto(s)
Hierro , Norfloxacino , Luz Solar , Titanio , Norfloxacino/química , Titanio/química , Catálisis , Hierro/química
8.
Environ Sci Pollut Res Int ; 31(35): 48561-48575, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39031314

RESUMEN

In this study, magnetic coconut shell biochar loaded with spherical Fe3O4 and γ-Fe2O3 particles was successfully synthesized using a chemical coprecipitation method. The magnetic biochar exhibited a good magnetic separability and environmental security. The maximum sulfadiazine (SDZ) and norfloxacin (NOR) removal efficiencies were 94.8% and 92.3% at pH 4 and 25 °C with adsorbent dosage of 2.5 g/L, respectively. When antibiotic concentrations ranged from 5 to 50 mg/L, the theoretical maximum adsorption capacities of SDZ and NOR were 16.7 mg/g and 25.8 mg/g, respectively. The Langmuir isotherm and pseudo-second-order kinetic models could better describe the adsorption process of both antibiotics, implying the monolayer chemical adsorption. The thermodynamic analysis indicated that the adsorption process was spontaneous and endothermic. The ionic strength had no significant effect on the adsorption behavior of either antibiotic. Combined with BET, FTIR, and XPS results, the dominant mechanisms for SDZ and NOR adsorption were pore filling, π-π electron-donor-acceptor interaction, hydrogen bonds and surface complexation. Moreover, Lewis acid-base interaction also contributed to SDZ adsorption.


Asunto(s)
Carbón Orgánico , Cocos , Norfloxacino , Sulfadiazina , Contaminantes Químicos del Agua , Norfloxacino/química , Adsorción , Sulfadiazina/química , Carbón Orgánico/química , Cocos/química , Contaminantes Químicos del Agua/química , Cinética
9.
J Environ Manage ; 366: 121857, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39029166

RESUMEN

Fluoroquinolone antibiotics frequently found in environmental matrices (wastewater treatment plants, hospital wastewater, industrial wastewater and surface wastewater) causes potential threat to the environment. Enzymatic treatment for degradation of antibiotics from environmental matrices is a green and sustainable approach. Focusing on this, this study aimed to degrade two frequently found fluroquinolone emergent pollutants, ciprofloxacin and norfloxacin from wastewater. The trinuclear cluster of copper ions present in laccase has the ability to effectively remove organic micropollutants (OMPs). The uniqueness of this study is that it utilizes laccase enzyme extracted from spent mushroom waste (SMW) of P. florida for degradation of ciprofloxacin and norfloxacin and to achieve highest degradation efficiency various parameters were tweaked such as pH (3-6), temperature (30 °C and 50 °C), and ABTS (0.05, 0.6, and 1 mM) concentration. The results showed that the most effective degradation of ciprofloxacin (86.12-75.94%) and norfloxacin (83.27-65.94%) was achieved in 3 h at pH 4.5, temperature 30 °C, and 2,2'-azino-bis 3-ethylbenzothiazoline-6-sulfonic acid (ABTS), 0.05 mM concentration. Nevertheless, achieving degradation at 50 °C for both antibiotics, indicates thermostability nature of laccase (P. florida). Further, the fate of transformed products obtained from laccase mediated degradation was confirmed by liquid chromatography (LC-MS). Both the antibiotics undergo decarboxylation, depiperylyzation, dealkylation and defluorination as a result of laccase-mediated bond breakage. Anti-microbial activity of the biodegraded products was monitored by residual anti-bacterial toxicity test (E. coli and Staphylococcus aureus). The biodegraded products were found to be non-toxic and resulted in the growth of E. coli and Staphylococcus aureus, as determined by the agar-diffusion method. Moreover, the storage stability of laccase was determined for 28-day duration at varying pH (3-10) and temperature (4-50 °C). The maximum storage stability was obtained at pH 4.5 and temperature 30 °C. Therefore, utilizing SMW for the degradation of OMPs from wastewater not only benefits in degradation but also reuses SMW agro waste, shedding light on agro waste management. Thus, SMW is a one-pot solution for both OMPs biodegradation and circularity in the economy.


Asunto(s)
Agaricales , Ciprofloxacina , Lacasa , Norfloxacino , Aguas Residuales , Contaminantes Químicos del Agua , Lacasa/metabolismo , Aguas Residuales/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/toxicidad , Agaricales/enzimología , Ciprofloxacina/química , Biodegradación Ambiental , Antibacterianos/química
10.
Anal Chim Acta ; 1312: 342746, 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38834274

RESUMEN

BACKGROUND: The widespread use and abuse of antibiotics has resulted in the pollution of water sources with antibiotic residues, posing a threat to human health, the environment, and the economy. Therefore, a highly sensitive and selective method is required for their detection in water samples. Herein, advanced ultrasensitive electrochemical sensor platform was developed by integrating gold-silver alloy nanocoral clusters (Au-Ag-ANCCs) with functionalized multi-walled carbon nanotube-carbon paste electrode (f-MWCNT-CPE) and choline chloride (ChCl) nanocomposites for simultaneously determining the residues of antimicrobial drugs, rifampicin (RAMP) and norfloxacin (NFX), in water samples. RESULTS: The developed sensor (Au-Ag-ANCCs/f-MWCNTs-CPE/ChCl) was extensively characterized using several analytical (UV-Vis, FT-IR, XRD, SEM, and EDX) and electrochemical (EIS, CV, and SWV) techniques. It exhibited outstanding performance in a wide linear range, from 14 pM to 115 µM for RAMP, and from 0.9 nM to 200 µM for NFX, with a limit of detection (LOD, 3σ/m, S/N = 3, n = 5) and a limit of quantification (LOQ, 10σ/m, S/N = 3, n = 5) values of 2.7 pM and 8.85 pM for RAMP, and 0.14 nM and 0.47 nM for NFX, respectively. The sensor also exhibited exceptional reproducibility, stability, and resistance to interference. SIGNIFICANCE: The developed sensor was effectively utilized to determine RAMP and NFX residues in hospital wastewater, river, and tap water samples, yielding recoveries within the range of 96.8-103 % and relative standard deviations below 5 %. Generally, the proposed sensor demonstrated remarkable performance in detecting the target analytes, making it an ideal tool and the first of its kind for addressing global antibiotic residue pollutants in water sources.


Asunto(s)
Técnicas Electroquímicas , Norfloxacino , Rifampin , Contaminantes Químicos del Agua , Norfloxacino/análisis , Contaminantes Químicos del Agua/análisis , Rifampin/análisis , Electrodos , Límite de Detección , Antibacterianos/análisis , Nanotubos de Carbono/química
11.
Analyst ; 149(14): 3828-3838, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38855814

RESUMEN

Norfloxacin (NOX), a broad spectrum fluoroquinolone (FQ) antibiotic, is commonly detected in environmental residues, potentially contributing to biological drug resistance. In this paper, an aptamer recognition probe has been used to develop a label-free liquid crystal-based biosensor for simple and robust optical detection of NOX in aqueous solutions. Stimuli-receptive liquid crystals (LCs) have been employed to report aptamer-target binding events at the LC-aqueous interface. The homeotropic alignment of LCs at the aqueous-LC interface is due to the self-assembly of the cationic surfactant cetyltrimethylammonium bromide (CTAB). In the presence of the negatively charged NOX aptamer, the ordering changes to planar/tilted. On addition of NOX, the aptamer-NOX binding causes redistribution of CTAB at the LC-aqueous interface and the homeotropic orientation is restored. This results in a bright-to-dark optical transition under a polarized optical microscope (POM). This optical transition serves as a visual indicator to mark the presence of NOX. The devised aptasensor demonstrates high specificity with a minimum detection limit of 5 nM (1.596 ppb). Moreover, the application of the developed aptasensor for the detection of NOX in freshwater and soil samples underscores its practical utility in environmental monitoring. This proposed LC-based method offers several advantages over conventional detection techniques for a rapid, feasible and convenient way to detect norfloxacin.


Asunto(s)
Aptámeros de Nucleótidos , Técnicas Biosensibles , Lagos , Límite de Detección , Cristales Líquidos , Norfloxacino , Norfloxacino/análisis , Norfloxacino/química , Aptámeros de Nucleótidos/química , Cristales Líquidos/química , Lagos/análisis , Lagos/química , Técnicas Biosensibles/métodos , Suelo/química , Antibacterianos/análisis , Antibacterianos/química , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/química , Cetrimonio/química
12.
Chemosphere ; 361: 142515, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38830460

RESUMEN

The catalytic performance of modified hydroxyapatite nanoparticles, Ca10-xFex-yWy(PO4)6(OH)2, was applied for the degradation of methylene blue (MB), fast green FCF (FG) and norfloxacin (NOR). XPS analysis pointed to the successful partial replacement of Ca by Fe. Under photo-electro-Fenton process, the catalyst Ca4FeII1·92W0·08FeIII4(PO4)6(OH)2 was combined with UVC radiation and electrogenerated H2O2 in a Printex L6 carbon-based gas diffusion electrode. The application of only 10 mA cm-2 resulted in 100% discoloration of MB and FG dyes in 50 min of treatment at pH 2.5, 7.0 and 9.0. The proposed treatment mechanism yielded maximum TOC removal of ∼80% and high mineralization current efficiency of ∼64%. Complete degradation of NOR was obtained in 40 min, and high mineralization of ∼86% was recorded after 240 min of treatment. Responses obtained from LC-ESI-MS/MS are in line with the theoretical Fukui indices and the ECOSAR data. The study enabled us to predict the main degradation route and the acute and chronic toxicity of the by-products formed during the contaminants degradation.


Asunto(s)
Electrodos , Peróxido de Hidrógeno , Hierro , Azul de Metileno , Nanopartículas , Contaminantes Químicos del Agua , Catálisis , Peróxido de Hidrógeno/química , Hierro/química , Azul de Metileno/química , Nanopartículas/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Norfloxacino/química , Durapatita/química , Colorantes/química , Procesos Fotoquímicos , Rayos Ultravioleta
13.
J Hazard Mater ; 474: 134704, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-38810576

RESUMEN

The effects on the adsorption of fluoroquinolone antibiotics of long-term soil heterogeneity induced by land-use were investigated. Three different land use areas with their two organic matter (OM) pools were tested for the adsorption of three antibiotics widely detected in the environment (ciprofloxacin, norfloxacin, ofloxacin). The soils were separated into two size fractions, > 63 µm fraction and < 63 µm fractions for the fast and slow OM pools, respectively. Any effect of land use on adsorption was only observed in the slow pool in the increasing order: arable land, grassland, and forest. The composition of the soil organic matter (SOM) did influence adsorption in the slow pool, but not in the bulk soilsThis was, because: 1) the ratio of the slow pool was low, as in forest, 2) the ratio of the slow pool was high but its adsorption capacity was low due to its SOM composition, as in arable land and grassland. Soils containing a large slow SOM pool fraction with aliphatic dominance were found to be more likely to adsorb micropollutants. It is our contention that the release of contaminated water, sludge, manure or compost into the environment should only be undertaken after taking this into consideration.


Asunto(s)
Antibacterianos , Fluoroquinolonas , Contaminantes del Suelo , Suelo , Adsorción , Contaminantes del Suelo/química , Contaminantes del Suelo/análisis , Antibacterianos/química , Antibacterianos/análisis , Fluoroquinolonas/química , Fluoroquinolonas/análisis , Suelo/química , Ciprofloxacina/química , Ciprofloxacina/análisis , Norfloxacino/química , Norfloxacino/análisis
14.
Environ Res ; 257: 119231, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-38797468

RESUMEN

The persistent water treatment and separation challenge necessitates innovative and sustainable advances to tackle conventional and emerging contaminants in the aquatic environment effectively. Therefore, a unique three-dimensional (3D) network composite film (BNC-KC) comprised of bacterial nanocellulose (BNC) incorporated nano-kaolinite clay particles (KC) was successfully synthesized via an in-situ approach. The microscopic characterization of BNC-KC revealed an effective integration of KC within the 3D matrix of BNC. The investigated mechanical properties of BNC-KC demonstrated a better performance compared to BNC. Thereafter, the sorption performance of BNC-KC films towards basic blue 9 dye (Bb9) and norfloxacin (NFX) antibiotic from water was investigated. The maximum sorption capacities of BNC-KC for Bb9 and NFX were 127.64 and 101.68 mg/g, respectively. Mechanistic studies showed that electrostatic interactions, multi-layered sorption, and 3D structure are pivotal in the NFX/Bb9 sorption process. The intricate architecture of BNC-KC effectively traps molecules within the interlayer spaces, significantly increasing sorption efficiency. The distinctive structural configuration of BNC-KC films effectively addressed the challenges of post-water treatment separation while concurrently mitigating waste generation. The environmental evaluation, engineering, and economic feasibility of BNC-KC are also discussed. The cost estimation assessment of BNC-KC revealed the potential to remove NFX and Bb9 from water at an economically viable cost.


Asunto(s)
Celulosa , Contaminantes Químicos del Agua , Celulosa/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/análisis , Adsorción , Arcilla/química , Purificación del Agua/métodos , Norfloxacino/química , Antibacterianos/química , Silicatos de Aluminio/química , Colorantes/química , Colorantes/aislamiento & purificación
15.
Biomed Mater ; 19(4)2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38740038

RESUMEN

Bacterial infections pose a serious threat to human health, with emerging antibiotic resistance, necessitating the development of new antibacterial agents. Cu2+and Ag+are widely recognized antibacterial agents with a low propensity for inducing bacterial resistance; however, their considerable cytotoxicity constrains their clinical applications. Rare-earth ions, owing to their unique electronic layer structure, hold promise as promising alternatives. However, their antibacterial efficacy and biocompatibility relative to conventional antibacterial agents remain underexplored, and the variations in activity across different rare-earth ions remain unclear. Here, we systematically evaluate the antibacterial activity of five rare-earth ions (Yb3+, Gd3+, Sm3+, Tb3+, and La3+) againstStaphylococcus aureusandPseudomonas aeruginosa, benchmarked against well-established antibacterial agents (Cu2+, Ag+) and the antibiotic norfloxacin. Cytotoxicity is also assessed via live/dead staining of fibroblasts after 24 h rare-earth ion exposure. Our findings reveal that rare-earth ions require higher concentrations to match the antibacterial effects of traditional agents but offer the advantage of significantly lower cytotoxicity. In particular, Gd3+demonstrates potent bactericidal efficacy against both planktonic and biofilm bacteria, while maintaining the lowest cytotoxicity toward mammalian cells. Moreover, the tested rare-earth ions also exhibited excellent antifungal activity againstCandida albicans. This study provides a critical empirical framework to guide the selection of rare-earth ions for biomedical applications, offering a strategic direction for the development of novel antimicrobial agents.


Asunto(s)
Antibacterianos , Biopelículas , Iones , Metales de Tierras Raras , Pruebas de Sensibilidad Microbiana , Plancton , Pseudomonas aeruginosa , Metales de Tierras Raras/química , Metales de Tierras Raras/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Plancton/efectos de los fármacos , Pseudomonas aeruginosa/efectos de los fármacos , Humanos , Staphylococcus aureus/efectos de los fármacos , Animales , Norfloxacino/farmacología , Norfloxacino/química
16.
Chemosphere ; 359: 142258, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38719119

RESUMEN

Iron-containing MOFs have attracted extensive interest as promising Fenton-like catalysts. In this work, magnetic Fe3O4 nanofiber (FNS)/MOFs composites with stable structure, included FNS/MIL-88B, FNS/MIL-88A and FNS/MIL-100, were prepared via the in-situ solvothermal method. The surface of the obtained fibers was covered by a dense and continuous MOFs layer, which could effectively solve the agglomeration problem of MOFs powder and improved the catalytic performance. The adsorption and catalytic properties of FNS/MOFs composites were evaluated by removal of norfloxacin. FNS/MIL-88B showed the best performance with a maximum adsorption capacity up to 214.09 mg/g, and could degrade 99% of NRF in 60 min. Meanwhile, FNS/MIL-88B had a saturation magnetization of 20 emu/g, and could be rapidly separated by an applied magnetic field. The self-supported nanofibers allowed the adequate contact between MOFs and pollutants, and promoted the catalytic activity and high stability. We believe that this work provided a new idea for the design and preparation of Fenton-like catalysts especially MOFs composites.


Asunto(s)
Hierro , Nanofibras , Norfloxacino , Contaminantes Químicos del Agua , Nanofibras/química , Norfloxacino/química , Adsorción , Hierro/química , Contaminantes Químicos del Agua/química , Catálisis , Estructuras Metalorgánicas/química , Peróxido de Hidrógeno/química
17.
J Hazard Mater ; 472: 134521, 2024 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-38718513

RESUMEN

Norfloxacin (NOR) is widely used in medicine and animal husbandry, but its accumulation in the environment poses a substantial threat to ecological and human health. Traditional physical, chemical, and rudimentary biological methods often fall short in mitigating NOR contamination, necessitating innovative biological approaches. This study proposes an engineered bacterial consortium found in marine sediment as a strategy to enhance NOR degradation through inter-strain co-metabolism of diverse substrates. Strategically supplementing the engineered bacterial consortium with exogenous carbon sources and metal ions boosted the activity of key degradation enzymes like laccase, manganese peroxidase, and dehydrogenase. Iron and amino acids demonstrated synergistic effects, resulting in a remarkable 70.8% reduction in NOR levels. The innovative application of molecular docking elucidated enzyme interactions with NOR, uncovering potential biodegradation mechanisms. Quantitative assessment reinforced the efficiency of NOR degradation within the engineered bacterial consortium. Four metabolic routes are herein proposed: acetylation, defluorination, ring scission, and hydroxylation. Notably, this study discloses distinctive, co-operative metabolic pathways for NOR degradation within the specific microbial community. These findings provide new ways of understanding and investigating the bioremediation potential of NOR contaminants, which may lead to the development of more sustainable and effective environmental management strategies.


Asunto(s)
Biodegradación Ambiental , Simulación del Acoplamiento Molecular , Norfloxacino , Norfloxacino/metabolismo , Antibacterianos/metabolismo , Antibacterianos/química , Redes y Vías Metabólicas , Bacterias/metabolismo , Sedimentos Geológicos/microbiología , Sedimentos Geológicos/química , Consorcios Microbianos , Contaminantes Químicos del Agua/metabolismo , Contaminantes Químicos del Agua/química
18.
J Hazard Mater ; 473: 134618, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38761764

RESUMEN

The widespread application of antibiotics and plastic films in agriculture has led to new characteristics of soil pollution. The impacts of combined contamination of microplastics and antibiotics on plant growth and rhizosphere soil bacterial community and metabolisms are still unclear. We conducted a pot experiment to investigate the effects of polyethylene (0.2%) and norfloxacin/doxycycline (5 mg kg-1), as well as the combination of polyethylene and antibiotics, on the growth, rhizosphere soil bacterial community and metabolisms of wheat and maize seedlings. The results showed that combined contamination caused more serious damage to plant growth than individual contamination, and aggravated root oxidative stress responses. The diversity and structure of soil bacterial community were not markedly altered, but the composition of the bacterial community, soil metabolisms and metabolic pathways were altered. The co-occurrence network analysis indicated that combined contamination may inhibit the growth of wheat and maize seedings by simplifying the interrelationships between soil bacteria and metabolites, and altering the relative abundance of specific bacteria genera (e.g. Kosakonia and Sphingomonas) and soil metabolites (including sugars, organic acids and amino acids). The results help to elucidate the potential mechanisms of phytotoxicity of the combination of microplastic and antibiotics.


Asunto(s)
Antibacterianos , Rizosfera , Microbiología del Suelo , Contaminantes del Suelo , Triticum , Zea mays , Zea mays/efectos de los fármacos , Zea mays/metabolismo , Zea mays/crecimiento & desarrollo , Zea mays/microbiología , Triticum/efectos de los fármacos , Triticum/crecimiento & desarrollo , Triticum/metabolismo , Triticum/microbiología , Contaminantes del Suelo/toxicidad , Contaminantes del Suelo/metabolismo , Antibacterianos/farmacología , Antibacterianos/toxicidad , Microplásticos/toxicidad , Microbiota/efectos de los fármacos , Bacterias/efectos de los fármacos , Bacterias/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/microbiología , Norfloxacino/farmacología , Norfloxacino/toxicidad , Polietileno/toxicidad
19.
Molecules ; 29(9)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38731553

RESUMEN

One-step carbonization was explored to prepare biochar using the residue of a traditional Chinese herbal medicine, Atropa belladonna L. (ABL), as the raw material. The resulting biochar, known as ABLB4, was evaluated for its potential as a sustainable material for norfloxacin (NOR) adsorption in water. Subsequently, a comprehensive analysis of adsorption isotherms, kinetics, and thermodynamics was conducted through batch adsorption experiments. The maximum calculated NOR adsorption capacity was 252.0 mg/g at 298 K, and the spontaneous and exothermic adsorption of NOR on ABLB4 could be better suited to a pseudo-first-order kinetic model and Langmuir model. The adsorption process observed is influenced by pore diffusion, π-π interaction, electrostatic interaction, and hydrogen bonding between ABLB4 and NOR molecules. Moreover, the utilization of response surface modeling (RSM) facilitated the optimization of the removal efficiency of NOR, yielding a maximum removal rate of 97.4% at a temperature of 304.8 K, an initial concentration of 67.1 mg/L, and a pH of 7.4. Furthermore, the biochar demonstrated favorable economic advantages, with a payback of 852.5 USD/t. More importantly, even after undergoing five cycles, ABLB4 exhibited a consistently high NOR removal rate, indicating its significant potential for application in NOR adsorption.


Asunto(s)
Carbón Orgánico , Medicamentos Herbarios Chinos , Norfloxacino , Contaminantes Químicos del Agua , Norfloxacino/química , Carbón Orgánico/química , Adsorción , Medicamentos Herbarios Chinos/química , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Cinética , Termodinámica , Purificación del Agua/métodos , Concentración de Iones de Hidrógeno
20.
Langmuir ; 40(17): 9155-9169, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38641555

RESUMEN

A lack of eco-friendly, highly active photocatalyst for peroxymonosulfate (PMS) activation and unclear environmental risks are significant challenges. Herein, we developed a double S-scheme Fe2O3/BiVO4(110)/BiVO4(010)/Fe2O3 photocatalyst to activate PMS and investigated its impact on wheat seed germination. We observed an improvement in charge separation by depositing Fe2O3 on the (010) and (110) surfaces of BiVO4. This enhancement is attributed to the formation of a dual S-scheme charge transfer mechanism at the interfaces of Fe2O3/BiVO4(110) and BiVO4(010)/Fe2O3. By introducing PMS into the system, photogenerated electrons effectively activate PMS, generating reactive oxygen species (ROS) such as hydroxyl radicals (·OH) and sulfate radicals (SO4·-). Among the tested systems, the 20% Fe2O3/BiVO4/Vis/PMS system exhibits the highest catalytic efficiency for norfloxacin (NOR) removal, reaching 95% in 40 min. This is twice the catalytic efficiency of the Fe2O3/BiVO4/PMS system, 1.8 times that of the Fe2O3/BiVO4 system, and 5 times that of the BiVO4 system. Seed germination experiments revealed that Fe2O3/BiVO4 heterojunction was beneficial for wheat seed germination, while PMS had a significant negative effect. This study provides valuable insights into the development of efficient and sustainable photocatalytic systems for the removal of organic pollutants from wastewater.


Asunto(s)
Bismuto , Compuestos Férricos , Luz , Norfloxacino , Peróxidos , Vanadatos , Vanadatos/química , Vanadatos/efectos de la radiación , Bismuto/química , Norfloxacino/química , Norfloxacino/efectos de la radiación , Catálisis/efectos de la radiación , Compuestos Férricos/química , Peróxidos/química , Procesos Fotoquímicos , Triticum/química , Triticum/efectos de la radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA