RESUMEN
Objective: To investigate the changes of directional connections of auditory and non-auditory in patients with noise-induced deafness (NID) by degree centrality (DC) and Granger causality analysis (GCA), and to explore the mode of brain function remodeling after NID. Methods: In October 2023, a total of 58 patients diagnosed with NID by the Occupational Diseases Department of Yantaishan Hospital of Yantai from 2014 to 2022 were collected as case group (NID group), and 42 healthy volunteers matched by gender, age and education level were selected as the control group (HC group). Resting state-functional magnetic resonance imaging (Rs-fMRI) was perfomed and PC analysis was performed. The brain regions with statistically significant differences in DC values between groups and the bilateral Heschl regions were extracted as regions of interest (ROI) for voxel-based whole brain GCA and correlation analysis. Results: Compared with HC group, the SOG.L DC value of NID group was lower, the connectivity values of SFGdor.L to SOG.L was increased, the connectivity value of PCL.L to SOG.L was decreased, the connectivity values of ORBmid.L, PCG.R and CUN. L/R to HES.L were increased, the connectivity value of SFGdor.L to HES.L was decreased, the connectivity value of HES.L to PCUN.L was decreased, the connectivity values of ORBsup.L and PCG.R to HES.R were increased, the connectivity value of HES.R to CUN.L was decreased (P voxel level<0.01, P cluster level<0.05). The connectivity value of PCL.L to SOG.L was negatively correlated with the weighted value of the better whisper frequency (P<0.05) . Conclusion: The NID patients have abnormal directional connectivity activity in multiple brain regions, such as auditory vision, executive control, somatosensory movement, and default mode network. It is suggested that hearing loss may cause complex neural remodeling between auditory and non-auditory centers.
Asunto(s)
Encéfalo , Pérdida Auditiva Provocada por Ruido , Imagen por Resonancia Magnética , Humanos , Masculino , Femenino , Adulto , Encéfalo/diagnóstico por imagen , Encéfalo/fisiopatología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Estudios de Casos y Controles , Persona de Mediana EdadRESUMEN
Most scientists agree that subjective tinnitus is the pathological result of an interaction of damage to the peripheral auditory system and central neuroplastic adaptations. Here we investigate such tinnitus related adaptations in the primary auditory cortex (AC) 7 and 13 days after noise trauma induction of tinnitus by quantifying the density of the extracellular matrix (ECM) in the AC of Mongolian gerbils (Meriones unguiculatus). The ECM density has been shown to be relevant for neuroplastic processes and synaptic stability within the cortex. We utilized a mild monaural acoustic noise trauma in overall 22 gerbils to induce tinnitus and a sham exposure in 16 control (C) animals. Tinnitus was assessed by a behavioral response paradigm. Animals were separated for a presence (T) or absence (NT) of a tinnitus percept by a behavioral task. The ECM density 7 and 13 days after trauma was quantified using immunofluorescence luminance of Wisteria floribunda lectin-fluoresceine-5-isothiocyanate (WFA-FITC) on histological slices of the primary AC, relative to the non-auditory brainstem as a reference area. At both timepoints, we found that the WFA-FITC luminance of the AC of NT animals was not significantly different from that of C animals. However, we found a significant increase of luminance in T animals' ACs compared to NT or C animals' cortices. This effect was found exclusively on the AC side contralateral to the trauma ear. These results point to a hemisphere specific process of stabilization of synaptic connections in primary AC, which may be involved in the chronic manifestation of tinnitus.
Asunto(s)
Corteza Auditiva , Matriz Extracelular , Gerbillinae , Acúfeno , Animales , Corteza Auditiva/patología , Corteza Auditiva/fisiopatología , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Acúfeno/patología , Acúfeno/fisiopatología , Masculino , Modelos Animales de Enfermedad , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Estimulación Acústica , Plasticidad Neuronal/fisiologíaRESUMEN
Offshore windfarms are a key means to produce clean energy as we seek to limit climate change effects. Impulsive pile driving used for their construction in shallow water environments is among the most intense anthropogenic sound sources. There is an increasing understanding that an array of marine invertebrates detects acoustic cues, yet little is known about how pile driving sound could impact their sound detection abilities. We experimentally quantified potential changes in sound sensitivity for an abundant, commercially and ecologically important squid species (Doryteuthis pealeii) exposed to actual in situ pile driving. The pile was 0.3-m diameter and 10-m long; hammer energy reached 16 kJ per strike. Sound detection thresholds were determined using auditory evoked potentials in animals with no exposure, after one 15-min or five repeated 15-min long pile driving sound sequences, corresponding to cumulative sound exposure levels of 110 and 131 dB re (1 µm s-2)2 s for acceleration and 187 and 214 dB re (1 µPa)2 s for pressure. We found no statistical evidence of temporary threshold shifts in any squid exposed to pile driving sound sequences. These results, combined with companion behavioral studies, suggest that squid may be robust to the sound impacts during offshore windfarm construction.
Asunto(s)
Decapodiformes , Potenciales Evocados Auditivos , Animales , Decapodiformes/fisiología , Umbral Auditivo , Sonido , Estimulación Acústica , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/etiologíaRESUMEN
Endolymphatic hydrops, increased endolymphatic fluid within the cochlea, is the key pathologic finding in patients with Meniere's disease, a disease of episodic vertigo, fluctuating hearing loss, tinnitus, and aural fullness. Endolymphatic hydrops also can occur after noise trauma and its presence correlates with cochlear synaptopathy, a form of hearing loss caused by reduced numbers of synapses between hair cells and auditory nerve fibers. Here we tested whether there is a mechanistic link between these two phenomena by using multimodal imaging techniques to analyze the cochleae of transgenic mice exposed to blast and osmotic challenge. In vivo cochlear imaging after blast exposure revealed dynamic increases in endolymph that involved hair cell mechanoelectrical transduction channel block but not the synaptic release of glutamate at the hair cell-auditory nerve synapse. In contrast, ex vivo and in vivo auditory nerve imaging revealed that synaptopathy requires glutamate release from hair cells but not endolymphatic hydrops. Thus, although endolymphatic hydrops and cochlear synaptopathy are both observed after noise exposure, one does not cause the other. They are simply co-existent sequelae that derive from the traumatic stimulation of hair cell stereociliary bundles. Importantly, these data argue that Meniere's disease derives from hair cell transduction channel blockade.
Asunto(s)
Cóclea , Hidropesía Endolinfática , Células Ciliadas Auditivas , Ratones Transgénicos , Ruido , Animales , Hidropesía Endolinfática/metabolismo , Hidropesía Endolinfática/etiología , Hidropesía Endolinfática/patología , Ratones , Ruido/efectos adversos , Cóclea/patología , Cóclea/metabolismo , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas/metabolismo , Sinapsis/metabolismo , Sinapsis/patología , Ácido Glutámico/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Estereocilios/metabolismo , Estereocilios/patología , Nervio Coclear/metabolismo , Nervio Coclear/patología , Enfermedad de Meniere/patología , Enfermedad de Meniere/metabolismo , Enfermedad de Meniere/etiología , Traumatismos por Explosión/patología , Traumatismos por Explosión/metabolismo , Traumatismos por Explosión/complicaciones , Pérdida de Audición OcultaRESUMEN
Noise-induced hearing loss (NIHL) studies have focused on the lemniscal auditory pathway, but little is known about how NIHL impacts different cortical regions. Here we compared response recovery trajectories in the auditory and frontal cortices (AC, FC) of mice following NIHL. We recorded EEG responses from awake mice (male n = 15, female n = 14) before and following NIHL (longitudinal design) to quantify event related potentials and gap-in-noise temporal processing. Hearing loss was verified by measuring the auditory brainstem response (ABR) before and at 1-, 10-, 23-, and 45-days after noise-exposure. Resting EEG, event related potentials (ERP) and auditory steady state responses (ASSR) were recorded at the same time-points after NIHL. The inter-trial phase coherence (ITPC) of the ASSR was measured to quantify the ability of AC and FC to synchronize responses to short gaps embedded in noise. Despite the absence of click-evoked ABRs up to 90 dB SPL and up to 45-days post-exposure, ERPs from the AC and FC showed full recovery in â¼ 50 % of the mice to pre-NIHL levels in both AC and FC. The ASSR ITPC was reduced following NIHL in AC and FC in all the mice on day 1 after NIHL. The AC showed full recovery of ITPC over 45-days. Despite ERP amplitude recovery, the FC does not show recovery of ASSR ITPC. These results indicate post-NIHL plasticity with similar response amplitude recovery across AC and FC, but cortical region-specific trajectories in temporal processing recovery.
Asunto(s)
Corteza Auditiva , Electroencefalografía , Potenciales Evocados Auditivos del Tronco Encefálico , Pérdida Auditiva Provocada por Ruido , Animales , Femenino , Masculino , Pérdida Auditiva Provocada por Ruido/fisiopatología , Corteza Auditiva/fisiopatología , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Estimulación Acústica/métodos , Potenciales Evocados Auditivos/fisiología , Recuperación de la Función/fisiología , Ratones , Lóbulo Frontal/fisiopatología , Percepción Auditiva/fisiología , Modelos Animales de Enfermedad , RuidoRESUMEN
INTRODUCTION: Auditory injuries induced by repeated exposures to blasts reduce the operational performance capability and the life quality of military personnel. The treatment for blast-induced progressive hearing damage is lacking. We have recently investigated the therapeutic function of liraglutide, a glucagon-like peptide-1 receptor agonist, to mitigate blast-induced hearing damage in the animal model of chinchilla, under different blast intensities, wearing earplugs (EPs) or not during blasts, and drug-treatment plan. The goal of this study was to investigate the therapeutical function of liraglutide by comparing the results obtained under different conditions. MATERIALS AND METHODS: Previous studies on chinchillas from two under-blast ear conditions (EP/open), two blast plans (G1: 6 blasts at 3-5 psi or G2:3 blasts at 15-25 psi), and three treatment plans (blast control, pre-blast drug treatment, and post-blast drug treatment) were summarized. The auditory brainstem response (ABR), distortion product otoacoustic emission (DPOAE), and middle latency response (MLR) recorded within 14 days after the blasts were used. Statistical analysis was performed to evaluate the effect of liraglutide under different conditions. RESULTS: ABR threshold shifts indicated that the conditions of the EP and open ears were substantially different. Results from EP chinchillas indicated that the pre-blast treatment reduced the acute ABR threshold elevation on the day of blasts, and the significance of such an effect increased with the blast level. Liraglutide-treated open chinchillas showed lower ABR threshold shifts at the later stage of the experiment regardless of the blast levels. The DPOAE was less damaged after G2 blasts compared to G1 when pre-blast liraglutide was administrated. Lower post-blast MLR amplitudes were observed in the pre-blast treatment groups. CONCLUSIONS: This study indicated that the liraglutide mitigated the blast-induced auditory injuries. In EP ears, the pre-blast administration of liraglutide reduced the severity of blast-induced acute damage in ears with EP protection, especially under G2. In animals with open ears, the effect of liraglutide on the restoration of hearing increased with time. The liraglutide potentially benefits post-blast hearing through multiple approaches with different mechanics.
Asunto(s)
Traumatismos por Explosión , Chinchilla , Modelos Animales de Enfermedad , Liraglutida , Animales , Liraglutida/farmacología , Liraglutida/uso terapéutico , Traumatismos por Explosión/complicaciones , Traumatismos por Explosión/tratamiento farmacológico , Traumatismos por Explosión/fisiopatología , Pérdida Auditiva Provocada por Ruido/tratamiento farmacológico , Pérdida Auditiva Provocada por Ruido/fisiopatología , Potenciales Evocados Auditivos del Tronco Encefálico/efectos de los fármacos , Potenciales Evocados Auditivos del Tronco Encefálico/fisiología , Emisiones Otoacústicas Espontáneas/efectos de los fármacos , Emisiones Otoacústicas Espontáneas/fisiologíaRESUMEN
Several studies suggest that hearing loss results in changes in the balance between inhibition and excitation in the inferior colliculus (IC). The IC is an integral nucleus within the auditory brainstem. The majority of ascending pathways from the lateral lemniscus (LL), superior olivary complex (SOC), and cochlear nucleus (CN) synapse in the IC before projecting to the thalamus and cortex. Many of these ascending projections provide inhibitory innervation to neurons within the IC. However, the nature and the distribution of this inhibitory input have only been partially elucidated in the rat. The inhibitory neurotransmitter, gamma aminobutyric acid (GABA), from the ventral nucleus of the lateral lemniscus (VNLL), provides the primary inhibitory input to the IC of the rat with GABA from other lemniscal and SOC nuclei providing lesser, but prominent innervation. There is evidence that hearing related conditions can result in dysfunction of IC neurons. These changes may be mediated in part by changes in GABA inputs to IC neurons. We have previously used gene micro-arrays in a study of deafness-related changes in gene expression in the IC and found significant changes in GAD as well as the GABA transporters and GABA receptors (Holt 2005). This is consistent with reports of age and trauma related changes in GABA (Bledsoe et al., 1995; Mossop et al., 2000; Salvi et al., 2000). Ototoxic lesions of the cochlea produced a permanent threshold shift. The number, intensity, and density of GABA positive axon terminals in the IC were compared in normal hearing and deafened rats. While the number of GABA immunolabeled puncta was only minimally different between groups, the intensity of labeling was significantly reduced. The ultrastructural localization and distribution of labeling was also examined. In deafened animals, the number of immuno gold particles was reduced by 78 % in axodendritic and 82 % in axosomatic GABAergic puncta. The affected puncta were primarily associated with small IC neurons. These results suggest that reduced inhibition to IC neurons contribute to the increased neuronal excitability observed in the IC following noise or drug induced hearing loss. Whether these deafness diminished inhibitory inputs originate from intrinsic or extrinsic CNIC sources awaits further study.
Asunto(s)
Colículos Inferiores , Ratas Sprague-Dawley , Ácido gamma-Aminobutírico , Animales , Colículos Inferiores/metabolismo , Colículos Inferiores/patología , Ácido gamma-Aminobutírico/metabolismo , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/patología , Ototoxicidad/metabolismo , Ototoxicidad/etiología , Masculino , Vías Auditivas/metabolismo , Vías Auditivas/patología , Vías Auditivas/fisiopatología , Modelos Animales de Enfermedad , Inmunohistoquímica , Ratas , Glutamato Descarboxilasa/metabolismo , Neuronas/metabolismo , Neuronas/patología , Inhibición NeuralRESUMEN
Musicians are at risk of hearing loss and tinnitus due to regular exposure to high levels of noise. This level of risk may have been underestimated previously since damage to the auditory system, such as cochlear synaptopathy, may not be easily detectable using standard clinical measures. Most previous research investigating hearing loss in musicians has involved cross-sectional study designs that may capture only a snapshot of hearing health in relation to noise exposure. The aim of this study was to investigate the effects of cumulative noise exposure on behavioural, electrophysiological, and self-report indices of hearing damage in early-career musicians and non-musicians with normal hearing over a 2-year period. Participants completed an annual test battery consisting of pure tone audiometry, extended high-frequency hearing thresholds, distortion product otoacoustic emissions (DPOAEs), speech perception in noise, auditory brainstem responses, and self-report measures of tinnitus, hyperacusis, and hearing in background noise. Participants also completed the Noise Exposure Structured Interview to estimate cumulative noise exposure across the study period. Linear mixed models assessed changes over time. The longitudinal analysis comprised 64 early-career musicians (female n = 34; age range at T0 = 18-26 years) and 30 non-musicians (female n = 20; age range at T0 = 18-27 years). There were few longitudinal changes as a result of musicianship. Small improvements over time in some measures may be attributable to a practice/test-retest effect. Some measures (e.g., DPOAE indices of outer hair cell function) were associated with noise exposure at each time point, but did not show a significant change over time. A small proportion of participants reported a worsening of their tinnitus symptoms, which participants attributed to noise exposure, or not using hearing protection. Future longitudinal studies should attempt to capture the effects of noise exposure over a longer period, taken at several time points, for a precise measure of how hearing changes over time. Hearing conservation programmes for "at risk" individuals should closely monitor DPOAEs to detect early signs of noise-induced hearing loss when audiometric thresholds are clinically normal.
Asunto(s)
Audiometría de Tonos Puros , Umbral Auditivo , Potenciales Evocados Auditivos del Tronco Encefálico , Pérdida Auditiva Provocada por Ruido , Audición , Música , Exposición Profesional , Emisiones Otoacústicas Espontáneas , Autoinforme , Acúfeno , Humanos , Femenino , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/diagnóstico , Pérdida Auditiva Provocada por Ruido/etiología , Adulto , Acúfeno/diagnóstico , Acúfeno/fisiopatología , Acúfeno/etiología , Estudios Longitudinales , Masculino , Adulto Joven , Adolescente , Exposición Profesional/efectos adversos , Percepción del Habla , Hiperacusia/fisiopatología , Hiperacusia/diagnóstico , Hiperacusia/etiología , Ruido/efectos adversos , Factores de Tiempo , Ruido en el Ambiente de Trabajo/efectos adversos , Enfermedades Profesionales/diagnóstico , Enfermedades Profesionales/fisiopatología , Enfermedades Profesionales/etiología , Factores de Riesgo , Estimulación Acústica , Modelos LinealesRESUMEN
It is well established that hearing loss can lead to widespread plasticity within the central auditory pathway, which is thought to contribute to the pathophysiology of audiological conditions such as tinnitus and hyperacusis. Emerging evidence suggests that hearing loss can also result in plasticity within brain regions involved in higher-level cognitive functioning like the prefrontal cortex; findings which may underlie the association between hearing loss and cognitive impairment documented in epidemiological studies. Using the 40-Hz auditory steady state response to assess sound-evoked gamma oscillations, we previously showed that noise-induced hearing loss results in impaired gamma phase coherence within the prefrontal but not the auditory cortex. To determine whether region-specific structural or molecular changes accompany this differential plasticity following hearing loss, in the present study we utilized Golgi-Cox staining to assess dendritic organization and synaptic density, as well as Western blotting to measure changes in synaptic signaling proteins in these cortical regions. We show that following noise exposure, impaired gamma phase coherence within the prefrontal cortex is accompanied by alterations in pyramidal cell dendritic morphology and decreased expression of proteins involved in GABAergic (GAD65) and glutamatergic (NR2B) neurotransmission; findings that were not observed in the auditory cortex, where gamma phase coherence remained unchanged post-noise exposure. In contrast to the noise-induced effects we observed in the prefrontal cortex, plasticity in the auditory cortex was characterized by an increase in NR2B suggesting increased excitability, as well as increases in the synaptic proteins PSD95 and synaptophysin within the auditory cortex. Overall, our results highlight the disparate effect of noise-induced hearing loss on auditory and higher-level brain regions as well as potential structural and molecular mechanisms by which hearing loss may contribute to impaired cognitive and sensory functions mediated by the prefrontal and auditory cortices.
Asunto(s)
Corteza Auditiva , Pérdida Auditiva Provocada por Ruido , Corteza Prefrontal , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/metabolismo , Corteza Auditiva/metabolismo , Corteza Auditiva/fisiopatología , Corteza Auditiva/patología , Corteza Prefrontal/metabolismo , Corteza Prefrontal/patología , Animales , Masculino , Plasticidad Neuronal/fisiología , Glutamato Descarboxilasa/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Homólogo 4 de la Proteína Discs Large/metabolismo , Dendritas/patología , Dendritas/metabolismo , Ritmo Gamma/fisiología , Células Piramidales/metabolismo , Células Piramidales/patología , RatasRESUMEN
Fear and anxiety among patients are sometimes evoked in dental clinics due to the sound of dental drills. This study aimed to explore the impact of age-related hearing loss in the extended high frequency (EHF) range above 8 kHz on individuals' subjective discomfort towards dental drill noise. After measuring pure-tone audiometric thresholds at both conventional and extended high frequencies, we used a psychoacoustic approach to evaluate subjective impressions of four dental drill sound stimuli, which featured varying frequency components, in 62 participants (aged 12-67 years). We found a significant decrease in hearing sensitivity within the EHF range as age increased, with notable differences in hearing thresholds at 14 kHz between teenage and older adults exceeding 65 dB. Furthermore, significant differences were observed between younger and older (above 40 years) participants in the subjective impressions of dental drill noise, emphasizing age as a critical factor in the perception of high frequency components. Consequently, age may influence the unpleasantness of dental drilling noise. Compared to older individuals, young participants may exhibit increased fear of dental procedures owing to physiological factors. These results underscore the need for age-appropriate noise control strategies in dental clinics to mitigate anxiety and improve patient comfort.
Asunto(s)
Ruido , Humanos , Adulto , Persona de Mediana Edad , Anciano , Masculino , Femenino , Adolescente , Adulto Joven , Niño , Ruido/efectos adversos , Umbral Auditivo/fisiología , Factores de Edad , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/etiología , Audiometría de Tonos PurosRESUMEN
BACKGROUND: Varied noise environments, such as impulse noise and steady-state noise, may induce distinct patterns of hearing impairment among personnel exposed to prolonged noise. However, comparative studies on these effects remain limited. OBJECTIVE: This study aims to delineate the different characteristics of hearing loss in workers exposed to steady-state noise and impulse noise. METHODS: As of December 2020, 96 workers exposed to steady-state noise and 177 workers exposed to impulse noise were assessed. Hearing loss across various frequencies was measured using pure tone audiometry and distortion product otoacoustic emission (DPOAE) audiometry. RESULTS: Both groups of workers exposed to steady-state noise and impulse noise exhibited high frequencies hearing loss. The steady-state noise group displayed significantly greater hearing loss at lower frequencies in the early stages, spanning 1- 5 years of work (Pâ<â0.05). Among individuals exposed to impulse noise for extended periods (over 10 years), the observed hearing loss surpassed that of the steady-state noise group, displaying a statistically significant difference (Pâ<â0.05). CONCLUSION: Hearing loss resulting from both steady-state noise and impulse noise predominantly occurs at high frequencies. Early exposure to steady-state noise induces more pronounced hearing loss at speech frequencies compared to impulse noise.
Asunto(s)
Audiometría de Tonos Puros , Pérdida Auditiva Provocada por Ruido , Ruido en el Ambiente de Trabajo , Humanos , Pérdida Auditiva Provocada por Ruido/etiología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Masculino , Adulto , Ruido en el Ambiente de Trabajo/efectos adversos , Femenino , Persona de Mediana Edad , Emisiones Otoacústicas Espontáneas/fisiología , Exposición Profesional/efectos adversosRESUMEN
Following adult-onset hearing impairment, crossmodal plasticity can occur within various sensory cortices, often characterized by increased neural responses to visual stimulation in not only the auditory cortex, but also in the visual and audiovisual cortices. In the present study, we used an established model of loud noise exposure in rats to examine, for the first time, whether the crossmodal plasticity in the audiovisual cortex that occurs following a relatively mild degree of hearing loss emerges solely from altered intracortical processing or if thalamocortical changes also contribute to the crossmodal effects. Using a combination of an established pharmacological 'cortical silencing' protocol and current source density analysis of the laminar activity recorded across the layers of the audiovisual cortex (i.e., the lateral extrastriate visual cortex, V2L), we observed layer-specific changes post-silencing in the strength of the residual visual, but not auditory, input in the noise exposed rats with mild hearing loss compared to rats with normal hearing. Furthermore, based on a comparison of the laminar profiles pre- versus post-silencing in both groups, we can conclude that noise exposure caused a re-allocation of the strength of visual inputs across the layers of the V2L cortex, including enhanced visual-evoked activity in the granular layer; findings consistent with thalamocortical plasticity. Finally, we confirmed that audiovisual integration within the V2L cortex depends on intact processing within intracortical circuits, and that this form of multisensory processing is vulnerable to disruption by noise-induced hearing loss. Ultimately, the present study furthers our understanding of the contribution of intracortical and thalamocortical processing to crossmodal plasticity as well as to audiovisual integration under both normal and mildly-impaired hearing conditions.
Asunto(s)
Estimulación Acústica , Corteza Auditiva , Modelos Animales de Enfermedad , Potenciales Evocados Visuales , Plasticidad Neuronal , Estimulación Luminosa , Corteza Visual , Animales , Corteza Visual/fisiopatología , Corteza Auditiva/fisiopatología , Masculino , Pérdida Auditiva Provocada por Ruido/fisiopatología , Percepción Visual , Percepción Auditiva , Ruido/efectos adversos , Potenciales Evocados Auditivos , Ratas , Audición , Ratas Sprague-DawleyRESUMEN
Testudines are a highly threatened group facing an array of stressors, including alteration of their sensory environment. Underwater noise pollution has the potential to induce hearing loss and disrupt detection of biologically important acoustic cues and signals. To examine the conditions that induce temporary threshold shifts (TTS) in hearing in the freshwater Eastern painted turtle (Chrysemys picta picta), three individuals were exposed to band limited continuous white noise (50-1000 Hz) of varying durations and amplitudes (sound exposure levels ranged from 151 to 171 dB re 1 µPa2 s). Control and post-exposure auditory thresholds were measured and compared at 400 and 600 Hz using auditory evoked potential methods. TTS occurred in all individuals at both test frequencies, with shifts of 6.1-41.4 dB. While the numbers of TTS occurrences were equal between frequencies, greater shifts were observed at 600 Hz, a frequency of higher auditory sensitivity, compared to 400 Hz. The onset of TTS occurred at 154 dB re 1 µPa2 s for 600 Hz, compared to 158 dB re 1 µPa2 s at 400 Hz. The 400-Hz onset and patterns of TTS growth and recovery were similar to those observed in previously studied Trachemys scripta elegans, suggesting TTS may be comparable across Emydidae species.
Asunto(s)
Estimulación Acústica , Umbral Auditivo , Tortugas , Animales , Tortugas/fisiología , Factores de Tiempo , Ruido/efectos adversos , Potenciales Evocados Auditivos/fisiología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/etiología , Masculino , Femenino , Audición/fisiologíaRESUMEN
Understanding the complex pathologies associated with hearing loss is a significant motivation for conducting inner ear research. Lifelong exposure to loud noise, ototoxic drugs, genetic diversity, sex, and aging collectively contribute to human hearing loss. Replicating this pathology in research animals is challenging because hearing impairment has varied causes and different manifestations. A central aspect, however, is the loss of sensory hair cells and the inability of the mammalian cochlea to replace them. Researching therapeutic strategies to rekindle regenerative cochlear capacity, therefore, requires the generation of animal models in which cochlear hair cells are eliminated. This review discusses different approaches to ablate cochlear hair cells in adult mice. We inventoried the cochlear cyto- and histo-pathology caused by acoustic overstimulation, systemic and locally applied drugs, and various genetic tools. The focus is not to prescribe a perfect damage model but to highlight the limitations and advantages of existing approaches and identify areas for further refinement of damage models for use in regenerative studies.
Asunto(s)
Cóclea , Modelos Animales de Enfermedad , Células Ciliadas Auditivas , Regeneración , Animales , Células Ciliadas Auditivas/patología , Células Ciliadas Auditivas/metabolismo , Ratones , Cóclea/patología , Cóclea/fisiopatología , Humanos , Audición , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva/patología , Pérdida Auditiva/fisiopatología , Estimulación AcústicaRESUMEN
Auditory nerve (AN) function has been hypothesized to deteriorate with age and noise exposure. Here, we perform a systematic review of published studies and find that the evidence for age-related deficits in AN function is largely consistent across the literature, but there are inconsistent findings among studies of noise exposure history. Further, evidence from animal studies suggests that the greatest deficits in AN response amplitudes are found in noise-exposed aged mice, but a test of the interaction between effects of age and noise exposure on AN function has not been conducted in humans. We report a study of our own examining differences in the response amplitude of the compound action potential N1 (CAP N1) between younger and older adults with and without a self-reported history of noise exposure in a large sample of human participants (63 younger adults 18-30 years of age, 103 older adults 50-86 years of age). CAP N1 response amplitudes were smaller in older than younger adults. Noise exposure history did not appear to predict CAP N1 response amplitudes, nor did the effect of noise exposure history interact with age. We then incorporated our results into two meta-analyses of published studies of age and noise exposure history effects on AN response amplitudes in neurotypical human samples. The meta-analyses found that age effects across studies are robust (r = -0.407), but noise exposure effects are weak (r = -0.152). We conclude that noise exposure effects may be highly variable depending on sample characteristics, study design, and statistical approach, and researchers should be cautious when interpreting results. The underlying pathology of age-related and noise-induced changes in AN function are difficult to determine in living humans, creating a need for longitudinal studies of changes in AN function across the lifespan and histological examination of the AN from temporal bones collected post-mortem.
Asunto(s)
Estimulación Acústica , Nervio Coclear , Ruido , Humanos , Ruido/efectos adversos , Anciano , Nervio Coclear/fisiopatología , Persona de Mediana Edad , Adulto , Anciano de 80 o más Años , Factores de Edad , Adulto Joven , Adolescente , Envejecimiento/fisiología , Potenciales Evocados Auditivos , Pérdida Auditiva Provocada por Ruido/fisiopatología , Femenino , Masculino , Animales , Potenciales de AcciónRESUMEN
Cochlear synaptopathy, a form of cochlear deafferentation, has been demonstrated in a number of animal species, including non-human primates. Both age and noise exposure contribute to synaptopathy in animal models, indicating that it may be a common type of auditory dysfunction in humans. Temporal bone and auditory physiological data suggest that age and occupational/military noise exposure also lead to synaptopathy in humans. The predicted perceptual consequences of synaptopathy include tinnitus, hyperacusis, and difficulty with speech-in-noise perception. However, confirming the perceptual impacts of this form of cochlear deafferentation presents a particular challenge because synaptopathy can only be confirmed through post-mortem temporal bone analysis and auditory perception is difficult to evaluate in animals. Animal data suggest that deafferentation leads to increased central gain, signs of tinnitus and abnormal loudness perception, and deficits in temporal processing and signal-in-noise detection. If equivalent changes occur in humans following deafferentation, this would be expected to increase the likelihood of developing tinnitus, hyperacusis, and difficulty with speech-in-noise perception. Physiological data from humans is consistent with the hypothesis that deafferentation is associated with increased central gain and a greater likelihood of tinnitus perception, while human data on the relationship between deafferentation and hyperacusis is extremely limited. Many human studies have investigated the relationship between physiological correlates of deafferentation and difficulty with speech-in-noise perception, with mixed findings. A non-linear relationship between deafferentation and speech perception may have contributed to the mixed results. When differences in sample characteristics and study measurements are considered, the findings may be more consistent.
Asunto(s)
Cóclea , Percepción del Habla , Acúfeno , Humanos , Cóclea/fisiopatología , Acúfeno/fisiopatología , Acúfeno/diagnóstico , Animales , Percepción del Habla/fisiología , Hiperacusia/fisiopatología , Ruido/efectos adversos , Percepción Auditiva/fisiología , Sinapsis/fisiología , Pérdida Auditiva Provocada por Ruido/fisiopatología , Pérdida Auditiva Provocada por Ruido/diagnóstico , Percepción SonoraRESUMEN
Homeostatic plasticity, the ability of neurons to maintain their averaged activity constant around a set point value, is thought to account for the central hyperactivity after hearing loss. Here, we investigated the putative role of GABAergic neurotransmission in this mechanism after a noise-induced hearing loss larger than 50 dB in high frequencies in guinea pigs. The effect of GABAergic inhibition is linked to the normal functioning of K + -Cl- co-transporter isoform 2 (KCC2) which maintains a low intracellular concentration of chloride. The expression of membrane KCC2 were investigated before and after noise trauma in the ventral and dorsal cochlear nucleus (VCN and DCN, respectively) and in the inferior colliculus (IC). Moreover, the effect of gabazine (GBZ), a GABA antagonist, was also studied on the neural activity in IC. We show that KCC2 is downregulated in VCN, DCN and IC 3 days after noise trauma, and in DCN and IC 30 days after the trauma. As expected, GBZ application in the IC of control animals resulted in an increase of spontaneous and stimulus-evoked activity. In the noise exposed animals, on the other hand, GBZ application decreased the stimulus-evoked activity in IC neurons. The functional implications of these central changes are discussed.
Asunto(s)
Pérdida Auditiva Provocada por Ruido , Cotransportadores de K Cl , Simportadores , Ácido gamma-Aminobutírico , Animales , Simportadores/metabolismo , Simportadores/antagonistas & inhibidores , Cobayas , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Ácido gamma-Aminobutírico/metabolismo , Masculino , Núcleo Coclear/metabolismo , Piridazinas/farmacología , Neuronas/metabolismoRESUMEN
OBJECTIVE: To explore the changes in the cerebral microstructure of patients with noise-induced hearing loss (NIHL) using diffusion tensor imaging (DTI). METHOD: Overall, 122 patients with NIHL (mild [MP, n = 79], relatively severe patients [including moderate and severe; RSP, n = 32], and undetermined [lost to follow-up, n = 11]) and 84 healthy controls (HCs) were enrolled. All clinical data, including age, education level, hearing threshold, occupation type, noise exposure time, and some scale scores (including the Mini-Mental State Examination [MMSE], tinnitus handicap inventory [THI], and Hamilton Anxiety Scale [HAMA]), were collected and analyzed. All participants underwent T1WI3DFSPGR and DTI, and tract-based spatial statistics and region of interest (ROI) analysis were used for assessment. RESULTS: The final sample included 71 MP, 28 RSP, and 75 HCs. The HAMA scores of the three groups were significantly different (p < .05). The noise exposure times, hearing thresholds, and HAMA scores of the MP and RSP were significantly different (p < .05). The noise exposure time was positively correlated with the hearing threshold and negatively correlated with the HAMA scores (p < .05), whereas the THI scores were positively correlated with the hearing threshold (p < .05). DTI analysis showed that all DTI parameters (fractional anisotropy [FA], axial diffusivity [AD], mean diffusivity [MD], and radial diffusivity [RD]) were significantly different in the left inferior longitudinal fasciculus (ILF) and left inferior fronto-occipital fasciculus (IFOF) for the three groups (p < .05). In addition, the FA values were significantly lower in the bilateral corticospinal tract (CST), right fronto-pontine tract (FPT), right forceps major, left superior longitudinal fasciculus (temporal part) (SLF), and left cingulum (hippocampus) (C-H) of the MP and RSP than in those of the HCs (p < .05); the AD values showed diverse changes in the bilateral CST, left IFOF, right anterior thalamic radiation, right external capsule (EC), right SLF, and right superior cerebellar peduncle (SCP) of the MP and RSP relative to those of the HC (p < .05). However, there were no significant differences among the bilateral auditory cortex ROIs of the three groups (p > .05). There was a significant negative correlation between the FA and HAMA scores for the left IFOF/ILF, right FPT, left SLF, and left C-H for the three groups (p < .05). There was a significant positive correlation between the AD and HAMA scores for the left IFOF/ILF and right EC of the three groups (p < .05). There were significantly positive correlations between the RD/MD and HAMA scores in the left IFOF/ILF of the three groups (p < .05). There was a significant negative correlation between the AD in the right SCP and noise exposure time of the MP and RSP groups (p < .05). The AD, MD, and RD in the left ROI were significantly positively correlated with hearing threshold in the MP and RSP groups (p < .05), whereas FA in the right ROI was significantly positively correlated with the HAMA scores for the three groups (p < .05). CONCLUSION: The changes in the white matter (WM) microstructure may be related to hearing loss caused by noise exposure, and the WM structural abnormalities in patients with NIHL were mainly located in the syndesmotic fibers of the temporooccipital region, which affected the auditory and language pathways. This confirmed that the auditory pathways have abnormal structural connectivity in patients with NIHL.
Asunto(s)
Imagen de Difusión Tensora , Pérdida Auditiva Provocada por Ruido , Humanos , Masculino , Femenino , Adulto , Persona de Mediana Edad , Pérdida Auditiva Provocada por Ruido/patología , Pérdida Auditiva Provocada por Ruido/diagnóstico por imagen , Pérdida Auditiva Provocada por Ruido/fisiopatología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Blanca/fisiopatología , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/fisiopatologíaRESUMEN
Objective: To explore the mechanism of noise-induced hidden hearing loss by proteomics. Methods: In October 2022, 64 SPF male C57BL/6J mice were divided into control group and noise exposure group with 32 mice in each group according to random sampling method. The noise exposure group was exposed to 100 dB sound pressure level, 2000-16000 Hz broadband noise for 2 h, and the mouse hidden hearing loss model was established. Auditory brainstem response (ABR) was used to test the change of hearing threshold of mice on the 7th day after noise exposure, the damage of basal membrane hair cells was observed by immunofluorescence, and the differentially expressed proteins in the inner ear of mice in each group were identified and analyzed by 4D-Label-free quantitative proteomics, and verified by Western blotting. The results were statistically analyzed by ANOVA and t test. Results: On the 7th day after noise exposure, there was no significant difference in hearing threshold between the control group and the noise exposure group at click and 8000 Hz acoustic stimulation (P>0.05) . The hearing threshold in the noise exposure group was significantly higher than that in the control group under 16000 Hz acoustic stimulation (P<0.05) . Confocal immunofluorescence showed that the basal membrane hair cells of cochlear tissue in noise exposure group were arranged neatly, but the relative expression of C-terminal binding protein 2 antibody of presynaptic membrane in middle gyrus and basal gyrus was significantly lower than that in control group (P<0.05) . GO enrichment analysis showed that the functions of differentially expressed proteins were mainly concentrated in membrane potential regulation, ligand-gated channel activity, and ligand-gated ion channel activity. KEGG pathway enrichment analysis showed that differentially expressed proteins were significantly enriched in phosphatidylinositol 3 kinase-protein kinase B (PI3K-Akt) signaling pathway, NOD-like receptor signaling pathway, calcium signaling pathway, etc. Western blotting showed that the expression of inositol 1, 4, 5-trisphosphate receptor 3 (Itpr3) was increased and the expression of solute carrier family 38 member 2 (Slc38a2) was decreased in the noise exposure group (P<0.05) . Conclusion: Through proteomic analysis, screening and verification of the differential expression proteins Itpr3 and Slc38a2 in the constructed mouse noise-induced hidden hearing loss model, the glutaminergic synaptic related pathways represented by Itpr3 and Slc38a2 may be involved in the occurrence of hidden hearing loss.
Asunto(s)
Potenciales Evocados Auditivos del Tronco Encefálico , Pérdida Auditiva Provocada por Ruido , Ratones Endogámicos C57BL , Ruido , Proteómica , Animales , Ratones , Pérdida Auditiva Provocada por Ruido/metabolismo , Pérdida Auditiva Provocada por Ruido/fisiopatología , Masculino , Ruido/efectos adversos , Modelos Animales de Enfermedad , Umbral Auditivo , Oído Interno/metabolismo , Pérdida de Audición OcultaRESUMEN
Noise-induced hearing deficits are important health problems in the industrialized world. As the underlying physiological dysfunctions are not well understood, research in suitable animal models is urgently needed. Three rodent species (Mongolian gerbil, rat, and mouse) were studied to compare the temporal dynamics of noise-induced hearing loss after identical procedures of noise exposure. Auditory brainstem responses (ABRs) were measured before, during, and up to 8 wk after noise exposure for threshold determination and ABR waveform analysis. Trauma induction with stepwise increasing sound pressure level was interrupted by five interspersed ABR measurements. Comparing short- and long-term dynamics underlying the following noise-induced hearing loss revealed diverging time courses between the three species. Hearing loss occurred early on during noise exposure in all three rodent species at or above trauma frequency. Initial noise level (105 dB SPL) was most effective in rats whereas the delayed level increase to 115 dB SPL affected mice much stronger. Induced temporary threshold shifts in rats and mice were larger in animals with lower pretrauma ABR thresholds. The increase in activity (gain) along the auditory pathway was derived by comparing the amplitudes of short- and long-latency ABR waveform components. Directly after trauma, significant effects were found for rats (decreasing gain) and mice (increasing gain) whereas gerbils revealed high individual variability in gain changes. Taken together, our comparative study revealed pronounced species-specific differences in the development of noise-induced hearing loss and the related processing along the auditory pathway.NEW & NOTEWORTHY We compared deficits after noise trauma in different rodents that are typically used in hearing research (Mongolian gerbil, rat, and mouse). We observed noise-induced threshold changes and alterations in the activity of processing auditory information along the ascending auditory pathway. Our results reveal pronounced differences in the characteristics of trauma-induced damage in these different rodent groups.