Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 22747, 2024 09 30.
Artículo en Inglés | MEDLINE | ID: mdl-39349517

RESUMEN

Papaver genus, commonly known as popies, is a valuable source of alkaloids used in medicine, including papaverine, morphine, codeine, and thebaine. We isolated six endophytic fungal isolates producing morphinan alkaloids from four Papaver species growing in Kurdistan Province, Iran. To do this, a 1:1 mixture of methanol and chloroform was used to extract fungal cultures. The contents of morphinan alkaloids in the extracts were subsequently determined using phase high-performance liquid chromatography. Among the morphinan alkaloid-producing fungal isolates, IRAN 4653C had the highest yield giving 23.06 (mg/g) morphine and 2.03 (mg/g) codeine when grown in potato dextrose liquid medium. The identity of this isolate was examined and recognized as a new fungal species named as Pithoascus kurdistanesis sp. nov. based on multi-gene phylogenetic analyses of ITS, TEF-1α, and TUB2 sequences data and morphological features. The morphinan-producing endophytic fungus and the isolated Pithoascus species from Papaver are being reported for the first time. Accordingly, this fungus shows promise as a new source of valuable compounds which is illustrated and introduced here as a new Microascaceae member belonging to Pithoascus from Kurdistan Province, Iran. Moreover, the morphinan productivity of P. kurdistanesis was further validated by gas chromatography-mass spectrometry (GC-MS).


Asunto(s)
Endófitos , Morfina , Papaver , Filogenia , Endófitos/metabolismo , Endófitos/genética , Papaver/microbiología , Papaver/metabolismo , Ascomicetos/metabolismo , Ascomicetos/genética , Ascomicetos/aislamiento & purificación , Irán , Alcaloides
2.
Acta Crystallogr D Struct Biol ; 80(Pt 9): 675-685, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39207895

RESUMEN

Several proteins from plant pathogenesis-related family 10 (PR10) are highly abundant in the latex of opium poppy and have recently been shown to play diverse and important roles in the biosynthesis of benzylisoquinoline alkaloids (BIAs). The recent determination of the first crystal structures of PR10-10 showed how large conformational changes in a surface loop and adjacent ß-strand are coupled to the binding of BIA compounds to the central hydrophobic binding pocket. A more detailed analysis of these conformational changes is now reported to further clarify how ligand binding is coupled to the formation and cleavage of an intermolecular disulfide bond that is only sterically allowed when the BIA binding pocket is empty. To decouple ligand binding from disulfide-bond formation, each of the two highly conserved cysteine residues (Cys59 and Cys155) in PR10-10 was replaced with serine using site-directed mutagenesis. Crystal structures of the Cys59Ser mutant were determined in the presence of papaverine and in the absence of exogenous BIA compounds. A crystal structure of the Cys155Ser mutant was also determined in the absence of exogenous BIA compounds. All three of these crystal structures reveal conformations similar to that of wild-type PR10-10 with bound BIA compounds. In the absence of exogenous BIA compounds, the Cys59Ser and Cys155Ser mutants appear to bind an unidentified ligand or mixture of ligands that was presumably introduced during expression of the proteins in Escherichia coli. The analysis of conformational changes triggered by the binding of BIA compounds suggests a molecular mechanism coupling ligand binding to the disruption of an intermolecular disulfide bond. This mechanism may be involved in the regulation of biosynthetic reactions in plants and possibly other organisms.


Asunto(s)
Disulfuros , Látex , Papaver , Proteínas de Plantas , Papaver/metabolismo , Papaver/química , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Disulfuros/química , Disulfuros/metabolismo , Látex/química , Látex/metabolismo , Cristalografía por Rayos X , Ligandos , Conformación Proteica , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Sitios de Unión , Bencilisoquinolinas/metabolismo , Bencilisoquinolinas/química , Unión Proteica
3.
Biochemistry ; 63(15): 1980-1990, 2024 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-39008055

RESUMEN

Aromatic amino acid decarboxylases (AAADs) are pyridoxal-5'-phosphate (PLP)-dependent enzymes that catalyze the decarboxylation of aromatic amino acid l-amino acids. In plants, apart from canonical AAADs that catalyze the straightforward decarboxylation reaction, other members of the AAAD family function as aromatic acetaldehyde synthases (AASs) and catalyze more complex decarboxylation-dependent oxidative deamination. The interconversion between a canonical AAAD and an AAS can be achieved by a single tyrosine-phenylalanine mutation in the large catalytic loop of the enzymes. In this work, we report implicit ligand sampling (ILS) calculations of the canonical l-tyrosine decarboxylase from Papaver somniferum (PsTyDC) that catalyzes l-tyrosine decarboxylation and its Y350F mutant that instead catalyzes the decarboxylation-dependent oxidative deamination of the same substrate. Through comparative analysis of the resulting three-dimensional (3D) O2 free energy profiles, we evaluate the impact of the key tyrosine/phenylalanine mutation on oxygen accessibility to both the wild type and Y350F mutant of PsTyDC. Additionally, using molecular dynamics (MD) simulations of the l-tryptophan decarboxylase from Catharanthus roseus (CrTDC), we further investigate the dynamics of a large catalytic loop known to be indispensable to all AAADs. Results of our ILS and MD calculations shed new light on how key structural elements and loop conformational dynamics underlie the enzymatic functions of different members of the plant AAAD family.


Asunto(s)
Descarboxilasas de Aminoácido-L-Aromático , Dominio Catalítico , Simulación de Dinámica Molecular , Oxígeno , Descarboxilasas de Aminoácido-L-Aromático/metabolismo , Descarboxilasas de Aminoácido-L-Aromático/genética , Descarboxilasas de Aminoácido-L-Aromático/química , Oxígeno/metabolismo , Oxígeno/química , Papaver/enzimología , Papaver/genética , Papaver/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Tirosina/metabolismo , Tirosina/química , Tirosina/genética
4.
BMC Plant Biol ; 24(1): 700, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39048937

RESUMEN

Among plant-derived secondary metabolites are benzylisoquinoline alkaloids (BIAs) that play a vital role in medicine. The most conspicuous BIAs frequently found in opium poppy are morphine, codeine, thebaine, papaverine, sanguinarine, and noscapine. BIAs have provided abundant clinically useful drugs used in the treatment of various diseases and ailments With an increasing demand for these herbal remedies, genetic improvement of poppy plants appears to be essential to live up to the expectations of the pharmaceutical industry. With the advent of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated9 (Cas9), the field of metabolic engineering has undergone a paradigm shift in its approach due to its appealing attributes, such as the transgene-free editing capability, precision, selectivity, robustness, and versatility. The potentiality of the CRISPR system for manipulating metabolic pathways in opium poppy was demonstrated, but further investigations regarding the use of CRISPR in BIA pathway engineering should be undertaken to develop opium poppy into a bioreactor synthesizing BIAs at the industrial-scale levels. In this regard, the recruitment of RNA-guided genome editing for knocking out miRNAs, flower responsible genes, genes involved in competitive pathways, and base editing are described. The approaches presented here have never been suggested or applied in opium poppy so far.


Asunto(s)
Bencilisoquinolinas , Sistemas CRISPR-Cas , Edición Génica , Papaver , Papaver/genética , Papaver/metabolismo , Bencilisoquinolinas/metabolismo , Ingeniería Metabólica/métodos , Genoma de Planta
5.
Biochem J ; 480(23): 2009-2022, 2023 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-38063234

RESUMEN

Protein engineering provides a powerful base for the circumvention of challenges tied with characteristics accountable for enzyme functions. CYP82Y1 introduces a hydroxyl group (-OH) into C1 of N-methylcanadine as the substrate to yield 1-hydroxy-N-methylcanadine. This chemical process has been found to be the gateway to noscapine biosynthesis. Owning to the importance of CYP82Y1 in this biosynthetic pathway, it has been selected as a target for enzyme engineering. The insertion of tags to the N- and C-terminal of CYP82Y1 was assessed for their efficiencies for improvement of the physiological performances of CYP82Y1. Although these attempts achieved some positive results, further strategies are required to dramatically enhance the CYP82Y1 activity. Here methods that have been adopted to achieve a functionally improved CYP82Y1 will be reviewed. In addition, the possibility of recruitment of other techniques having not yet been implemented in CYP82Y1 engineering, including the substitution of the residues located in the substrate recognition site, formation of the synthetic fusion proteins, and construction of the artificial lipid-based scaffold will be discussed. Given the fact that the pace of noscapine synthesis is constrained by the CYP82Y1-catalyzing step, the methods proposed here are capable of accelerating the rate of reaction performed by CYP82Y1 through improving its properties, resulting in the enhancement of noscapine accumulation.


Asunto(s)
Noscapina , Papaver , Noscapina/química , Noscapina/metabolismo , Papaver/genética , Papaver/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Metiltransferasas/metabolismo , Vías Biosintéticas
6.
Plant J ; 116(6): 1804-1824, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37706612

RESUMEN

Whole-genome duplication (WGD) leads to the duplication of both coding and non-coding sequences within an organism's genome, providing an abundant supply of genetic material that can drive evolution, ultimately contributing to plant adaptation and speciation. Although non-coding sequences contain numerous regulatory elements, they have been understudied compared to coding sequences. In order to address this gap, we explored the evolutionary patterns of regulatory sequences, coding sequences and transcriptomes using conserved non-coding elements (CNEs) as regulatory element proxies following the recent WGD event in opium poppy (Papaver somniferum). Our results showed similar evolutionary patterns in subgenomes of regulatory and coding sequences. Specifically, the biased or unbiased retention of coding sequences reflected the same pattern as retention levels in regulatory sequences. Further, the divergence of gene expression patterns mediated by regulatory element variations occurred at a more rapid pace than that of gene coding sequences. However, gene losses were purportedly dependent on relaxed selection pressure in coding sequences. Specifically, the rapid evolution of tissue-specific benzylisoquinoline alkaloid production in P. somniferum was associated with regulatory element changes. The origin of a novel stem-specific ACR, which utilized ancestral cis-elements as templates, is likely to be linked to the evolutionary trajectory behind the transition of the PSMT1-CYP719A21 cluster from high levels of expression solely in P. rhoeas root tissue to its elevated expression in P. somniferum stem tissue. Our findings demonstrate that rapid regulatory element evolution can contribute to the emergence of new phenotypes and provide valuable insights into the high evolvability of regulatory elements.


Asunto(s)
Papaver , Papaver/genética , Papaver/metabolismo , Duplicación de Gen , Genoma , Evolución Molecular
7.
Curr Biol ; 33(11): R530-R542, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-37279687

RESUMEN

Self-incompatibility (SI) plays a pivotal role in whether self-pollen is accepted or rejected. Most SI systems employ two tightly linked loci encoding highly polymorphic pollen (male) and pistil (female) S-determinants that control whether self-pollination is successful or not. In recent years our knowledge of the signalling networks and cellular mechanisms involved has improved considerably, providing an important contribution to our understanding of the diverse mechanisms used by plant cells to recognise each other and elicit responses. Here, we compare and contrast two important SI systems employed in the Brassicaceae and Papaveraceae. Both use 'self-recognition' systems, but their genetic control and S-determinants are quite different. We describe the current knowledge about the receptors and ligands, and the downstream signals and responses utilized to prevent self-seed set. What emerges is a common theme involving the initiation of destructive pathways that block the key processes that are required for compatible pollen-pistil interactions.


Asunto(s)
Brassica , Papaver , Brassica/genética , Papaver/genética , Papaver/metabolismo , Polen/metabolismo , Polinización/fisiología , Transducción de Señal/fisiología , Proteínas de Plantas/metabolismo
8.
Molecules ; 28(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298742

RESUMEN

(S)-Norcoclaurine is synthesized in vivo through a metabolic pathway that ends with (S)-norcoclaurine synthase (NCS). The former constitutes the scaffold for the biosynthesis of all benzylisoquinoline alkaloids (BIAs), including many drugs such as the opiates morphine and codeine and the semi-synthetic opioids oxycodone, hydrocodone, and hydromorphone. Unfortunately, the only source of complex BIAs is the opium poppy, leaving the drug supply dependent on poppy crops. Therefore, the bioproduction of (S)-norcoclaurine in heterologous hosts, such as bacteria or yeast, is an intense area of research nowadays. The efficiency of (S)-norcoclaurine biosynthesis is strongly dependent on the catalytic efficiency of NCS. Therefore, we identified vital NCS rate-enhancing mutations through the rational transition-state macrodipole stabilization method at the Quantum Mechanics/Molecular Mechanics (QM/MM) level. The results are a step forward for obtaining NCS variants able to biosynthesize (S)-norcoclaurine on a large scale.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Ligasas de Carbono-Nitrógeno , Papaver , Alcaloides/metabolismo , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Codeína , Papaver/genética , Papaver/metabolismo
9.
Open Biol ; 13(5): 220355, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37132222

RESUMEN

Papaver somniferum L. (Family: Papaveraceae) is a species well known for its diverse alkaloids (100 different benzylisoquinoline alkaloids (BIAs)). L-tyrosine serves as a precursor of several specific metabolites like BIAs. It has been used as an antitussive and potent analgesic to alleviate mild to extreme pain since ancient times. The extraction of pharmaceutically important alkaloids like morphine and codeine from poppy plant reflects the need for the most suitable and standard methods. Several analytical and extraction techniques have been reported in open literature for morphine, codeine and other important alkaloids which play a vital function in drug development and drug discovery. Many studies suggest that opioids are also responsible for adverse effects or secondary complications like dependence and withdrawal. In recent years, opium consumption and addiction are the most important risk factors. Many evidence-based reviews suggest that opium consumption is directly linked or acts as a risk factor for different cancers. In this review, we highlight significant efforts related to research which have been done over the past 5 decades and the complete information on Papaver somniferum including its phytochemistry, pharmacological actions, biosynthetic pathways and analytical techniques of opium alkaloid extraction and the link between opium consumption and cancer-related updates.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Neoplasias , Papaver , Opio/efectos adversos , Opio/metabolismo , Alcaloides/farmacología , Alcaloides/metabolismo , Bencilisoquinolinas/farmacología , Bencilisoquinolinas/metabolismo , Papaver/metabolismo , Codeína/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/etiología , Derivados de la Morfina/metabolismo
10.
Biol Trace Elem Res ; 201(10): 4697-4709, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36662347

RESUMEN

This study investigated the effect of novel zinc oxide nanoparticles (ZnO NPs) biosynthesized employing Papaver somniferum leaf on oxidative stress, necrosis, and apoptosis in the leukemia cancer THP-1 cell. The obtained ZnO was examined using SEM, AFM, and TEM microscopy, which revealed an irregular spherical morphology with a size ranging from 20 to 30 nm, and the UV-vis absorbance revealed a strong absorption peak in the range of 360-370, nm confirming the production of ZnO NPs. THP-1 cells were subjected to an MTT, an EdU proliferation, a lactate dehydrogenase release tests, a reactive oxygen species (ROS) induction experiment, a DAPI staining detection assay, and a flow cytometric analysis for Annexin V to measure the effects of ZnO NPs on cancer cell growth inhibition, apoptosis, and necrosis. Our results show that ZnO NPs inhibit THP-1 line in a concentration-dependent pattern. It was observed that ZnO NPs triggered necrosis (cell death) and apoptosis in the cell line. ZnO NPs massively improved the formation of intracellular ROS, which is crucial in deactivating the development of leukemic cells. In conclusion, ZnO nanoparticles synthesized using Papaver somniferum extract have the ability to inhibit proliferation leukemic cancer cells, making them potential anticancer agents.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Papaver , Óxido de Zinc , Humanos , Óxido de Zinc/farmacología , Células THP-1 , Especies Reactivas de Oxígeno/metabolismo , Papaver/metabolismo , Estrés Oxidativo , Apoptosis , Necrosis/inducido químicamente
11.
Biomolecules ; 14(1)2023 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-38275743

RESUMEN

REPI is a pivotal point enzyme in plant benzylisoquinoline alkaloid metabolism as it promotes the evolution of the biosynthetic branch of morphinan alkaloids. Experimental studies of its activity led to the identification of two modules (DRS and DRR) that catalyze two sequential steps of the epimerization of (S)- to (R)-reticuline. Recently, special attention has been paid to its genetic characterization and evolutionary history, but no structural analyses of the REPI protein have been conducted to date. We present here a computational structural characterization of REPI with heme and NADP cofactors in the apo state and in three complexes with substrate (S)-reticuline in DRS and intermediate 1,2-dehydroreticuline in DRS and in DRR. Since no experimental structure exists for REPI, we used its AlphaFold model as a scaffold to build up these four systems, which were submitted to all-atom molecular dynamics (MD) simulations. A comparison of MD results for the four systems revealed key dynamic changes associated with cofactor and ligand binding and provided a dynamic picture of the evolution of their structures and interactions. We also explored the possible dynamic occurrence of tunnels and electrostatic highways potentially involved in alternative mechanisms for channeling the intermediate from DRS to DRR.


Asunto(s)
Alcaloides , Papaver , Papaver/genética , Papaver/química , Papaver/metabolismo , Simulación de Dinámica Molecular , Alcaloides/química
12.
Nat Commun ; 13(1): 6768, 2022 11 09.
Artículo en Inglés | MEDLINE | ID: mdl-36351903

RESUMEN

Opium poppy accumulates copious amounts of several benzylisoquinoline alkaloids including morphine, noscapine, and papaverine, in the specialized cytoplasm of laticifers, which compose an internal secretory system associated with phloem throughout the plant. The contiguous latex includes an abundance of related proteins belonging to the pathogenesis-related (PR)10 family known collectively as major latex proteins (MLPs) and representing at least 35% of the total cellular protein content. Two latex MLP/PR10 proteins, thebaine synthase and neopione isomerase, have recently been shown to catalyze late steps in morphine biosynthesis previously assigned as spontaneous reactions. Using a combination of sucrose density-gradient fractionation-coupled proteomics, differential scanning fluorimetry, isothermal titration calorimetry, and X-ray crystallography, we show that the major latex proteins are a family of alkaloid-binding proteins that display altered conformation in the presence of certain ligands. Addition of MLP/PR10 proteins to yeast strains engineered with morphine biosynthetic genes from the plant significantly enhanced the conversion of salutaridine to morphinan alkaloids.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Papaver , Papaver/genética , Papaver/metabolismo , Látex/química , Alcaloides/química , Bencilisoquinolinas/metabolismo , Morfina , Saccharomyces cerevisiae/metabolismo
13.
J Plant Res ; 135(6): 823-852, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36066757

RESUMEN

Plant glutathione S-transferases are an ancient protein superfamily having antioxidant activity. These proteins are primarily involved in diverse plant functions such as plant growth and development, secondary metabolism, signaling pathways and defense against biotic and abiotic stresses. The current study aimed to comprehensively identify and characterize the GST gene family in the medicinally important crop Papaver somniferum. A total of 93 GST proteins were identified belonging to eight GST classes and found to be majorly localized in the cytoplasm. All GST genes were found on eleven opium chromosomes. Gene duplication analysis showed segmental duplication as a key factor for opium GST gene family expansion under strong purifying selection. Phylogenetic analysis with gymnosperm, angiosperm and bryophyte revealed the evolution of GSTs earlier than their division into separate groups and also prior to the divergence of monocot and dicot. The secondary structure prediction showed the dominance of α-helices indicative of PsomGSTs as structurally stable and elastic proteins. Gene architecture showed the conservation of number of exons across the classes. MEME analysis revealed only a few class specific and many across class conserved motifs. Ser was found to be the active site residue of tau, phi, theta and zeta class and Cys was catalytic residue of DHAR, lambda and GHR class. Promoter analyses identified many cis-acting regulatory elements related to hormonal, cellular, stress and light response functions. Ser was the key phosphorylation site. Only three glycosylation sites were found across the 93 PsomGSTs. 3D structure prediction was also performed and was validated. Interactome analyses revealed the correlation of PsomGSTs with glutathione metabolizing proteins. Gene enrichment analysis and KEGG pathway analyzed the involvement of PsomGSTs in three major pathways i.e. glutathione metabolism, tyrosine metabolism and ascorbate metabolism. The outcome revealed high model quality of PsomGSTs. The results of the current study will be of potential significance to understand the functional and structural importance of the GST gene family in opium, a medicinally important crop.


Asunto(s)
Glutatión Transferasa , Papaver , Glutatión Transferasa/genética , Glutatión Transferasa/química , Glutatión Transferasa/metabolismo , Regulación de la Expresión Génica de las Plantas , Papaver/genética , Papaver/metabolismo , Filogenia , Opio , Plantas/genética , Glutatión/metabolismo
14.
New Phytol ; 236(5): 1691-1707, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35775998

RESUMEN

Self-incompatibility (SI) involves specific interactions during pollination to reject incompatible ('self') pollen, preventing inbreeding in angiosperms. A key event observed in pollen undergoing the Papaver rhoeas SI response is the formation of punctate F-actin foci. Pollen tube growth is heavily energy-dependent, yet ATP levels in pollen tubes have not been directly measured during SI. Here we used transgenic Arabidopsis lines expressing the Papaver pollen S-determinant to investigate a possible link between ATP levels, cytosolic pH ([pH]cyt ) and alterations to the actin cytoskeleton. We identify for the first time that SI triggers a rapid and significant ATP depletion in pollen tubes. Artificial depletion of ATP triggered cytosolic acidification and formation of actin aggregates. We also identify in vivo, evidence for a threshold [pH]cyt of 5.8 for actin foci formation. Imaging revealed that SI stimulates acidic cytosolic patches adjacent to the plasma membrane. In conclusion, this study provides evidence that ATP depletion plays a pivotal role in SI upstream of programmed cell death and reveals a link between the cellular energy status, cytosolic acidification and alterations to the actin cytoskeleton in regulating Papaver SI in pollen tubes.


Asunto(s)
Arabidopsis , Papaver , Tubo Polínico , Actinas/metabolismo , Proteínas de Plantas/metabolismo , Papaver/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Concentración de Iones de Hidrógeno , Adenosina Trifosfato/metabolismo
15.
Nat Commun ; 13(1): 3150, 2022 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-35672295

RESUMEN

The STORR gene fusion event is considered essential for the evolution of the promorphinan/morphinan subclass of benzylisoquinoline alkaloids (BIAs) in opium poppy as the resulting bi-modular protein performs the isomerization of (S)- to (R)-reticuline essential for their biosynthesis. Here, we show that of the 12 Papaver species analysed those containing the STORR gene fusion also contain promorphinans/morphinans with one important exception. P. californicum encodes a functionally conserved STORR but does not produce promorphinans/morphinans. We also show that the gene fusion event occurred only once, between 16.8-24.1 million years ago before the separation of P. californicum from other Clade 2 Papaver species. The most abundant BIA in P. californicum is (R)-glaucine, a member of the aporphine subclass of BIAs, raising the possibility that STORR, once evolved, contributes to the biosynthesis of more than just the promorphinan/morphinan subclass of BIAs in the Papaveraceae.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Morfinanos , Papaver , Alcaloides/metabolismo , Bencilisoquinolinas/metabolismo , Fusión Génica , Morfinanos/metabolismo , Papaver/genética , Papaver/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
16.
J Plant Physiol ; 271: 153641, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35240512

RESUMEN

Opium poppy is the only commercial source of the narcotic analgesics morphine and codeine, and semi-synthetic derivatives of the natural opiate precursor thebaine, including oxycodone and the opioid antagonist naloxone. The plant also accumulates the vasodilator and antitussive agents papaverine and noscapine, respectively, which together with morphine, codeine and thebaine comprise the major benzylisoquinoline alkaloids (BIAs) in opium poppy. A majority of enzymes involved in the highly branched BIA metabolism in opium poppy have now been discovered, with many specifically localized to sieve elements of the phloem based on immunofluorescence labeling techniques. Transcripts corresponding to sieve element-localized biosynthetic enzymes were detected in companion cells, as expected. The more recent application of shotgun proteomics has shown that several enzymes operating late in the morphine and noscapine biosynthetic pathways occur primarily in laticifers that are adjacent or proximal to sieve elements. BIA biosynthesis and accumulation in opium poppy involves three phloem cell types and implicates the translocation of key pathway intermediates between sieve elements and laticifers. The recent isolation of uptake transporters associated with laticifers supports an apoplastic rather than a symplastic route for translocation. In spite of the extensive elucidation of BIA biosynthetic enzymes in opium poppy, additional transporters and other auxiliary proteins are clearly necessary to support the complex spatial organization and dynamics involved in product formation and sequestration. In this review, we provide an update of BIA metabolism in opium poppy with a focus on the role of phloem in the biosynthesis of the major alkaloids.


Asunto(s)
Alcaloides , Bencilisoquinolinas , Papaver , Alcaloides/metabolismo , Bencilisoquinolinas/metabolismo , Vías Biosintéticas , Papaver/metabolismo , Floema/metabolismo
17.
Curr Biol ; 32(9): 1909-1923.e5, 2022 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-35316654

RESUMEN

Glycosylphosphatidylinositol-anchored proteins (GPI-APs) are tethered to the outer leaflet of the plasma membrane where they function as key regulators of a plethora of biological processes in eukaryotes. Self-incompatibility (SI) plays a pivotal role regulating fertilization in higher plants through recognition and rejection of "self" pollen. Here, we used Arabidopsis thaliana lines that were engineered to be self-incompatible by expression of Papaver rhoeas SI determinants for an SI suppressor screen. We identify HLD1/AtPGAP1, an ortholog of the human GPI-inositol deacylase PGAP1, as a critical component required for the SI response. Besides a delay in flowering time, no developmental defects were observed in HLD1/AtPGAP1 knockout plants, but SI was completely abolished. We demonstrate that HLD1/AtPGAP1 functions as a GPI-inositol deacylase and that this GPI-remodeling activity is essential for SI. Using GFP-SKU5 as a representative GPI-AP, we show that the HLD1/AtPGAP1 mutation does not affect GPI-AP production and targeting but affects their cleavage and release from membranes in vivo. Our data not only implicate GPI-APs in SI, providing new directions to investigate SI mechanisms, but also identify a key functional role for GPI-AP remodeling by inositol deacylation in planta.


Asunto(s)
Arabidopsis , Papaver , Arabidopsis/metabolismo , Glicosilfosfatidilinositoles/genética , Glicosilfosfatidilinositoles/metabolismo , Humanos , Inositol/metabolismo , Papaver/genética , Papaver/metabolismo , Polen/metabolismo
18.
Sci Rep ; 12(1): 111, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34997061

RESUMEN

Opium poppy (Papaver somniferum) is one of the world's oldest medicinal plants and a versatile model system to study secondary metabolism. However, our knowledge of its genetic diversity is limited, restricting utilization of the available germplasm for research and crop improvement. We used genotyping-by-sequencing to investigate the extent of genetic diversity and population structure in a collection of poppy germplasm consisting of 91 accessions originating in 30 countries of Europe, North Africa, America, and Asia. We identified five genetically distinct subpopulations using discriminate analysis of principal components and STRUCTURE analysis. Most accessions obtained from the same country were grouped together within subpopulations, likely a consequence of the restriction on movement of poppy germplasm. Alkaloid profiles of accessions were highly diverse, with morphine being dominant. Phylogenetic analysis identified genetic groups that were largely consistent with the subpopulations detected and that could be differentiated broadly based on traits such as number of branches and seed weight. These accessions and the associated genotypic data are valuable resources for further genetic diversity analysis, which could include definition of poppy core sets to facilitate genebank management and use of the diversity for genetic improvement of this valuable crop.


Asunto(s)
ADN de Plantas/genética , Genes de Plantas , Variación Genética , Genoma de Planta , Técnicas de Genotipaje , Papaver/genética , Polimorfismo de Nucleótido Simple , Semillas/genética , Análisis de Secuencia de ADN , Alcaloides/metabolismo , Genotipo , Papaver/crecimiento & desarrollo , Papaver/metabolismo , Fenotipo , Filogenia , Semillas/crecimiento & desarrollo , Semillas/metabolismo
19.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830309

RESUMEN

Latex, a sticky emulsion produced by specialized cells called laticifers, is a crucial part of a plant's defense system against herbivory and pathogens. It consists of a broad spectrum of active compounds, which are beneficial not only for plants, but for human health as well, enough to mention the use of morphine or codeine from poppy latex. Here, we reviewed latex's general role in plant physiology and the significance of particular compounds (alkaloids and proteins) to its defense system with the example of Chelidonium majus L. from the poppy family. We further attempt to present latex chemicals used so far in medicine and then focus on functional studies of proteins and other compounds with potential pharmacological activities using modern techniques such as CRISPR/Cas9 gene editing. Despite the centuries-old tradition of using latex-bearing plants in therapies, there are still a lot of promising molecules waiting to be explored.


Asunto(s)
Antiinfecciosos/química , Antineoplásicos/química , Chelidonium/metabolismo , Factores Inmunológicos/química , Látex/química , Alcaloides Opiáceos/química , Papaver/metabolismo , Fitoquímicos/química , Proteínas de Plantas/química , Sistemas CRISPR-Cas , Línea Celular Tumoral , Chelidonium/genética , Descubrimiento de Drogas/métodos , Edición Génica/métodos , Herbivoria/efectos de los fármacos , Humanos , Papaver/genética , Plantas Modificadas Genéticamente
20.
Nat Commun ; 12(1): 6030, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34654815

RESUMEN

For millions of years, plants evolve plenty of structurally diverse secondary metabolites (SM) to support their sessile lifestyles through continuous biochemical pathway innovation. While new genes commonly drive the evolution of plant SM pathway, how a full biosynthetic pathway evolves remains poorly understood. The evolution of pathway involves recruiting new genes along the reaction cascade forwardly, backwardly, or in a patchwork manner. With three chromosome-scale Papaver genome assemblies, we here reveal whole-genome duplications (WGDs) apparently accelerate chromosomal rearrangements with a nonrandom distribution towards SM optimization. A burst of structural variants involving fusions, translocations and duplications within 7.7 million years have assembled nine genes into the benzylisoquinoline alkaloids gene cluster, following a punctuated patchwork model. Biosynthetic gene copies and their total expression matter to morphinan production. Our results demonstrate how new genes have been recruited from a WGD-induced repertoire of unregulated enzymes with promiscuous reactivities to innovate efficient metabolic pathways with spatiotemporal constraint.


Asunto(s)
Vías Biosintéticas , Cromosomas/metabolismo , Morfinanos/metabolismo , Noscapina/metabolismo , Papaver/genética , Papaver/metabolismo , Alcaloides/química , Alcaloides/metabolismo , Bencilisoquinolinas/metabolismo , Vías Biosintéticas/genética , Evolución Molecular , Genoma , Genómica , Familia de Multigenes , Proteínas de Plantas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA