Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Base de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Nature ; 627(8003): 445-452, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383785

RESUMEN

Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.


Asunto(s)
Retículo Endoplásmico , Procesamiento Proteico-Postraduccional , Subunidades Ribosómicas Grandes de Eucariotas , Ubiquitina-Proteína Ligasas , Sitios de Unión , Biocatálisis , Microscopía por Crioelectrón , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Membranas Intracelulares/química , Membranas Intracelulares/metabolismo , Membranas Intracelulares/ultraestructura , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Peptidil Transferasas/ultraestructura , Unión Proteica , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , ARN de Transferencia/metabolismo , Especificidad por Sustrato , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura
2.
Nature ; 627(8003): 437-444, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38383789

RESUMEN

Stalled ribosomes at the endoplasmic reticulum (ER) are covalently modified with the ubiquitin-like protein UFM1 on the 60S ribosomal subunit protein RPL26 (also known as uL24)1,2. This modification, which is known as UFMylation, is orchestrated by the UFM1 ribosome E3 ligase (UREL) complex, comprising UFL1, UFBP1 and CDK5RAP3 (ref. 3). However, the catalytic mechanism of UREL and the functional consequences of UFMylation are unclear. Here we present cryo-electron microscopy structures of UREL bound to 60S ribosomes, revealing the basis of its substrate specificity. UREL wraps around the 60S subunit to form a C-shaped clamp architecture that blocks the tRNA-binding sites at one end, and the peptide exit tunnel at the other. A UFL1 loop inserts into and remodels the peptidyl transferase centre. These features of UREL suggest a crucial function for UFMylation in the release and recycling of stalled or terminated ribosomes from the ER membrane. In the absence of functional UREL, 60S-SEC61 translocon complexes accumulate at the ER membrane, demonstrating that UFMylation is necessary for releasing SEC61 from 60S subunits. Notably, this release is facilitated by a functional switch of UREL from a 'writer' to a 'reader' module that recognizes its product-UFMylated 60S ribosomes. Collectively, we identify a fundamental role for UREL in dissociating 60S subunits from the SEC61 translocon and the basis for UFMylation in regulating protein homeostasis at the ER.


Asunto(s)
Retículo Endoplásmico , Procesamiento Proteico-Postraduccional , Subunidades Ribosómicas Grandes de Eucariotas , Ubiquitina-Proteína Ligasas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/ultraestructura , Microscopía por Crioelectrón , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/ultraestructura , Homeostasis , Membranas Intracelulares/metabolismo , Peptidil Transferasas/química , Peptidil Transferasas/metabolismo , Peptidil Transferasas/ultraestructura , Proteínas Ribosómicas/química , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/ultraestructura , ARN de Transferencia/metabolismo , Canales de Translocación SEC/química , Canales de Translocación SEC/metabolismo , Canales de Translocación SEC/ultraestructura , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/ultraestructura , Ubiquitina-Proteína Ligasas/química , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/química , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura
3.
PLoS Genet ; 17(4): e1009366, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33857142

RESUMEN

SEDS family peptidoglycan (PG) glycosyltransferases, RodA and FtsW, require their cognate transpeptidases PBP2 and FtsI (class B penicillin binding proteins) to synthesize PG along the cell cylinder and at the septum, respectively. The activities of these SEDS-bPBPs complexes are tightly regulated to ensure proper cell elongation and division. In Escherichia coli FtsN switches FtsA and FtsQLB to the active forms that synergize to stimulate FtsWI, but the exact mechanism is not well understood. Previously, we isolated an activation mutation in ftsW (M269I) that allows cell division with reduced FtsN function. To try to understand the basis for activation we isolated additional substitutions at this position and found that only the original substitution produced an active mutant whereas drastic changes resulted in an inactive mutant. In another approach we isolated suppressors of an inactive FtsL mutant and obtained FtsWE289G and FtsIK211I and found they bypassed FtsN. Epistatic analysis of these mutations and others confirmed that the FtsN-triggered activation signal goes from FtsQLB to FtsI to FtsW. Mapping these mutations, as well as others affecting the activity of FtsWI, on the RodA-PBP2 structure revealed they are located at the interaction interface between the extracellular loop 4 (ECL4) of FtsW and the pedestal domain of FtsI (PBP3). This supports a model in which the interaction between the ECL4 of SEDS proteins and the pedestal domain of their cognate bPBPs plays a critical role in the activation mechanism.


Asunto(s)
Proteínas Bacterianas/ultraestructura , Proteínas de Escherichia coli/ultraestructura , Proteínas de la Membrana/ultraestructura , Complejos Multiproteicos/ultraestructura , Proteínas de Unión a las Penicilinas/ultraestructura , Peptidoglicano Glicosiltransferasa/ultraestructura , Conformación Proteica , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de la Membrana/química , Proteínas de la Membrana/genética , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Proteínas de Unión a las Penicilinas/química , Proteínas de Unión a las Penicilinas/genética , Peptidoglicano/química , Peptidoglicano/genética , Peptidoglicano/ultraestructura , Peptidoglicano Glicosiltransferasa/química , Peptidoglicano Glicosiltransferasa/genética , Peptidil Transferasas/química , Peptidil Transferasas/genética , Peptidil Transferasas/ultraestructura
4.
Elife ; 82019 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-31115337

RESUMEN

During their final maturation in the cytoplasm, pre-60S ribosomal particles are converted to translation-competent large ribosomal subunits. Here, we present the mechanism of peptidyltransferase centre (PTC) completion that explains how integration of the last ribosomal proteins is coupled to release of the nuclear export adaptor Nmd3. Single-particle cryo-EM reveals that eL40 recruitment stabilises helix 89 to form the uL16 binding site. The loading of uL16 unhooks helix 38 from Nmd3 to adopt its mature conformation. In turn, partial retraction of the L1 stalk is coupled to a conformational switch in Nmd3 that allows the uL16 P-site loop to fully accommodate into the PTC where it competes with Nmd3 for an overlapping binding site (base A2971). Our data reveal how the central functional site of the ribosome is sculpted and suggest how the formation of translation-competent 60S subunits is disrupted in leukaemia-associated ribosomopathies.


Asunto(s)
Peptidil Transferasas/metabolismo , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Microscopía por Crioelectrón , Peptidil Transferasas/ultraestructura , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Saccharomyces cerevisiae/ultraestructura
5.
J Biol Chem ; 266(3): 1898-902, 1991 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-1703157

RESUMEN

Two monoclonal antibodies (mAb), directed toward different epitopes of Escherichia coli ribosomal protein L2, have been used as probes in immune electron microscopy. mAb 5-186 recognizes an epitope within residues 5-186 of protein L2; it is seen to bind to 50 S subunits at or near the peptidyl transferase center, beside the subunit head on the L1 shoulder. mAb 187-272 recognizes an epitope within residues 187-272. This antibody binds to the face of the 50 S subunit, below the head and slightly toward the side with the stalk; this site is near the translocation domain. Both antibodies can bind simultaneously to single subunits. This indicates that protein L2 is elongated, reaching from the peptidyl transferase center to below the subunit head and approaching the translocational domain. The different locations of the two epitopes are consistent with previous biochemical results with the two antibodies (Nag, B., Tewari, D. S., Etchison, J. R., Sommer, A., and Traut, R. R. (1986) J. Biol. Chem. 261, 13892-13897).


Asunto(s)
Escherichia coli/ultraestructura , Proteínas Ribosómicas/inmunología , Ribosomas/ultraestructura , Anticuerpos Monoclonales/inmunología , Complejo Antígeno-Anticuerpo , Epítopos , Microscopía Electrónica , Fragmentos de Péptidos/inmunología , Peptidil Transferasas/ultraestructura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA