Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Braz. j. microbiol ; 42(3): 1065-1075, July-Sept. 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-607537

RESUMEN

Crude extracts and fractions of five species of Polygala - P. campestris, P. cyparissias, P. paniculata, P. pulchella and P. sabulosa - were investigated for their in vitro antifungal activity against opportunistic Candida species, Cryptococcus gattii and Sporothrix schenckii with bioautographic and microdilution assays. In the bioautographic assays, the major extracts were active against the fungi tested. In the minimal concentration inhibitory (MIC) assay, the hexane extract of P. paniculata and EtOAc fraction of P. sabulosa showed the best antifungal activity, with MIC values of 60 and 30 µg/mL, respectively, against C. tropicalis, C. gattii and S. schenckii. The compounds isolated from P. sabulosa prenyloxycoumarin and 1,2,3,4,5,6-hexanehexol displayed antifungal activity against S. schenckii (with MICs of 125 µg/mL and 250 µg/mL, respectively) and C. gattii (both with MICs of 250 µg/mL). Rutin and aurapten isolated from P. paniculata showed antifungal activity against C. gattii with MIC values of 60 and 250 µg/mL, respectively. In the antifungal screening, few of the isolated compounds showed good antifungal inhibition. The compound á-spinasterol showed broad activity against the species tested, while rutin had the best activity with the lowest MIC values for the microorganisms tested. These two compounds may be chemically modified by the introduction of a substitute group that would alter several physico-chemical properties of the molecule, such as hydrophobicity, electronic density and steric strain.


Asunto(s)
Técnicas In Vitro , Estructuras de las Plantas , Polygala , Polygalaceae/crecimiento & desarrollo , Rutina/análisis , Plantas
2.
Ann Bot ; 101(9): 1433, 1491-505, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18494144

RESUMEN

BACKGROUND AND AIMS: Molecular phylogenies have suggested a new circumscription for Fabales to include Leguminosae, Quillajaceae, Surianaceae and Polygalaceae. However, recent attempts to reconstruct the interfamilial relationships of the order have resulted in several alternative hypotheses, including a sister relationship between Quillajaceae and Surianaceae, the two species-poor families of Fabales. Here, floral morphology and ontogeny of these two families are investigated to explore evidence of a potential relationship between them. Floral traits are discussed with respect to early radiation in the order. METHODS: Floral buds of representatives of Quillajaceae and Surianaceae were dissected and observed using light microscopy and scanning electron microscopy. KEY RESULTS: Quillajaceae and Surianaceae possess some common traits, such as inflorescence morphology and perianth initiation, but development and organization of their reproductive whorls differ. In Quillaja, initiation of the diplostemonous androecium is unidirectional, overlapping with the petal primordia. In contrast, Suriana is obdiplostemonous, and floral organ initiation is simultaneous. Independent initiation of five carpels is common to both Quillaja and Suriana, but subsequent development differs; the antesepalous carpels of Quillaja become fused proximally and exhibit two rows of ovules, and in Suriana the gynoecium is apocarpous, gynobasic, with antepetalous biovulate carpels. CONCLUSIONS: Differences in the reproductive development and organization of Quillajaceae and Surianaceae cast doubt on their potential sister relationship. Instead, Quillaja resembles Leguminosae in some floral traits, a hypothesis not suggested by molecular-based phylogenies. Despite implicit associations of zygomorphy with species-rich clades and actinomorphy with species-poor families in Fabales, this correlation sometimes fails due to high variation in floral symmetry. Studies considering specific derived clades and reproductive biology could address more precise hypotheses of key innovation and differential diversification in the order.


Asunto(s)
Fabaceae/crecimiento & desarrollo , Magnoliopsida/crecimiento & desarrollo , Polygalaceae/crecimiento & desarrollo , Fabaceae/clasificación , Fabaceae/ultraestructura , Flores/anatomía & histología , Flores/crecimiento & desarrollo , Flores/ultraestructura , Magnoliopsida/clasificación , Magnoliopsida/ultraestructura , Microscopía Electrónica de Rastreo , Polygalaceae/clasificación , Polygalaceae/ultraestructura , Especificidad de la Especie
3.
Ann Bot ; 101(3): 483, 2008 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18251028

RESUMEN

BACKGROUND AND AIMS: Molecular phylogenies have suggested a new circumscription for Fabales to include Leguminosae, Quillajaceae, Surianaceae and Polygalaceae. However, recent attempts to reconstruct the interfamilial relationships of the order have resulted in several alternative hypotheses, including a sister relationship between Quillajaceae and Surianaceae, the two species-poor families of Fabales. Here, floral morphology and ontogeny of these two families are investigated to explore evidence of a potential relationship between them. Floral traits are discussed with respect to early radiation in the order. METHODS: Floral buds of representatives of Quillajaceae and Surianaceae were dissected and observed using light microscopy and scanning electron microscopy. KEY RESULTS: Quillajaceae and Surianaceae possess some common traits, such as inflorescence morphology and perianth initiation, but development and organization of their reproductive whorls differ. In Quillaja, initiation of the diplostemonous androecium is unidirectional, overlapping with the petal primordia. In contrast, Suriana is obdiplostemonous, and floral organ initiation is simultaneous. Independent initiation of five carpels is common to both Quillaja and Suriana, but subsequent development differs; the antesepalous carpels of Quillaja become fused proximally and exhibit two rows of ovules, and in Suriana the gynoecium is apocarpous, gynobasic, with antepetalous biovulate carpels. CONCLUSIONS: Differences in the reproductive development and organization of Quillajaceae and Surianaceae cast doubt on their potential sister relationship. Instead, Quillaja resembles Leguminosae in some floral traits, a hypothesis not suggested by molecular-based phylogenies. Despite implicit associations of zygomorphy with species-rich clades and actinomorphy with species-poor families in Fabales, this correlation sometimes fails due to high variation in floral symmetry. Studies considering specific derived clades and reproductive biology could address more precise hypotheses of key innovation and differential diversification in the order.


Asunto(s)
Fabaceae/crecimiento & desarrollo , Flores/crecimiento & desarrollo , Polygalaceae/crecimiento & desarrollo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA