RESUMEN
Introduction: Photodynamic therapy (PDT) has attracted increasing attention in the clinical treatment of epidermal and luminal tumors. However, the PDT efficacy in practice is severely impeded by tumor hypoxia and the adverse factors associated with hydrophobic photosensitizers (PSs), including low delivery capacity, poor photoactivity and limited ROS diffusion. In this study, Pt nanozymes decorated two-dimensional (2D) porphyrin metal-organic framework (MOF) nanosheets (PMOF@HA) were fabricated and investigated to conquer the obstacles of PDT against hypoxic tumors. Materials and Methods: PMOF@HA was synthesized by the coordination of transition metal iron (Zr4+) and PS (TCPP), in situ generation of Pt nanozyme and surface modification with hyaluronic acid (HA). The abilities of hypoxic relief and ROS generation were evaluated by detecting the changes of O2 and 1O2 concentration. The cellular uptake was investigated using flow cytometry and confocal laser scanning microscopy. The SMMC-7721 cells and the subcutaneous tumor-bearing mice were used to demonstrate the PDT efficacy of PMOF@HA in vitro and in vivo, respectively. Results: Benefiting from the 2D structure and inherent properties of MOF materials, the prepared PMOF@HA could not only serve as nano-PS with high PS loading but also ensure the rational distance between PS molecules to avoid aggregation-induced quenching, enhance the photosensitive activity and promote the rapid diffusion of generated radical oxide species (ROS). Meanwhile, Pt nanozymes with catalase-like activity effectively catalyzed intratumoral overproduced H2O2 into O2 to alleviate tumor hypoxia. Additionally, PMOF@HA, with the help of externally coated HA, significantly improved the stability and increased the cell uptake by CD44 overexpressed tumor cells to strengthen O2 self-supply and PDT efficacy. Conclusion: This study provided a new strategy of integrating 2D porphyrin MOF nanosheets with nanozymes to conquer the obstacles of PDT against hypoxic tumors.
Asunto(s)
Ácido Hialurónico , Estructuras Metalorgánicas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Hipoxia Tumoral , Fotoquimioterapia/métodos , Estructuras Metalorgánicas/química , Estructuras Metalorgánicas/farmacología , Animales , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/administración & dosificación , Línea Celular Tumoral , Humanos , Hipoxia Tumoral/efectos de los fármacos , Ácido Hialurónico/química , Ácido Hialurónico/farmacología , Porfirinas/química , Porfirinas/farmacología , Porfirinas/farmacocinética , Porfirinas/administración & dosificación , Especies Reactivas de Oxígeno/metabolismo , Platino (Metal)/química , Platino (Metal)/farmacología , Nanoestructuras/química , Ratones Endogámicos BALB C , Ratones Desnudos , Neoplasias/tratamiento farmacológico , Supervivencia Celular/efectos de los fármacosRESUMEN
Introduction: Cell death regulation holds a unique value in the field of cancer therapy. Recently, disulfidptosis has garnered substantial scientific attention. Previous studies have reported that sonodynamic therapy (SDT) based on reactive oxygen species (ROS) can regulate cancer cell death, achieving an limited anti-cancer effect. However, the integration of SDT with disulfidptosis as an anti-cancer strategy has not been extensively developed. In this study, we constructed an artificial membrane disulfidptosis sonosensitizer, specifically, a nanoliposome (SC@lip) coated with a combination of the chemotherapy medicine Sorafenib (Sora) and sonosensitizer Chlorin e6 (Ce6), to realize a one-stop enhanced SDT effect that induces disulfidptosis-like cancer cell death. Methods: Sorafenib and Ce6 were co-encapsulated into PEG-modified liposomes, and SC@Lip was constructed using a simple rotary evaporation phacoemulsification method. The cell phagocytosis, ROS generation ability, glutathione (GSH) depletion ability, lipid peroxidation (LPO), and disulfidptosis-like death mediated by SC@Lip under ultrasound (US) irradiation were evaluated. Based on a 4T1 subcutaneous tumor model, both the in vivo biological safety assessment and the efficacy of SDT were assessed. Results: SC@Lip exhibits high efficiency in cellular phagocytosis. After being endocytosed by 4T1 cells, abundant ROS were produced under SDT activation, and the cell survival rates were below 5%. When applied to a 4T1 subcutaneous tumor model, the enhanced SDT mediated by SC@Lip inhibited tumor growth and prolonged the survival time of mice. In vitro and in vivo experiments show that SC@Lip can enhance the SDT effect and trigger disulfidptosis-like cancer cell death, thus achieving anti-tumor efficacy both in vitro and in vivo. Conclusion: SC@Lip is a multifunctional nanoplatform with an artificial membrane, which can integrate the functions of sonosensitization and GSH depletion into a biocompatible nanoplatform, and can be used to enhance the SDT effect and promote disulfidptosis-like cancer cell death.
Asunto(s)
Clorofilidas , Peroxidación de Lípido , Liposomas , Porfirinas , Especies Reactivas de Oxígeno , Sorafenib , Terapia por Ultrasonido , Animales , Liposomas/química , Peroxidación de Lípido/efectos de los fármacos , Sorafenib/farmacología , Sorafenib/química , Terapia por Ultrasonido/métodos , Ratones , Línea Celular Tumoral , Especies Reactivas de Oxígeno/metabolismo , Porfirinas/química , Porfirinas/farmacología , Porfirinas/administración & dosificación , Femenino , Ratones Endogámicos BALB C , Nanopartículas/química , Humanos , Antineoplásicos/farmacología , Antineoplásicos/química , Glutatión/metabolismo , Muerte Celular/efectos de los fármacosRESUMEN
Background: The combination of nanoplatform-based chemotherapy and photodynamic therapy (PDT) is a promising way to treat cancer. Celastrol (Cela) exhibits highly effective anti-hepatoma activity with low water solubility, poor bioavailability, non-tumor targeting, and toxic side effects. The combination of Cela-based chemotherapy and PDT via hepatoma-targeting and reactive oxygen species (ROS)-responsive polymeric micelles (PMs) could solve the application problem of Cela and further enhance antitumor efficacy. Methods: In this study, Cela and photosensitizer chlorin e6 (Ce6) co-loaded glycyrrhetinic acid-modified carboxymethyl chitosan-thioketal-rhein (GCTR) PMs (Cela/Ce6/GCTR PMs) were prepared and characterized. The safety, ROS-sensitive drug release, and intracellular ROS production were evaluated. Furthermore, the in vitro anti-hepatoma effect and cellular uptaken in HepG2 and BEL-7402 cells, and in vivo pharmacokinetic, tissue distribution, and antitumor efficacy of Cela/Ce6/GCTR PMs in H22 tumor-bearing mice were then investigated. Results: Cela/Ce6/GCTR PMs were successfully prepared with nanometer-scale particle size, favorable drug loading capacity, and encapsulation efficiency. Cela/Ce6/GCTR PMs exhibited a strong safety profile and better hemocompatibility, exhibiting less damage to normal tissues. Compared with Cela-loaded GCTR PMs, the ROS-responsiveness of Cela/Ce6/GCTR PMs was increased, and the release of Cela was accelerated after combination with PDT. Cela/Ce6/GCTR PMs can efficiently target liver tumor cells by uptake and have a high cell-killing effect in response to ROS. The combination of GCTR PM-based chemotherapy and PDT resulted in increased bioavailability of Cela and Ce6, improved liver tumor targeting, and better anti-hepatoma effects in vivo. Conclusion: Hepatoma-targeting and ROS-responsive GCTR PMs co-loaded with Cela and Ce6 combined with PDT exhibited improved primary hepatic carcinoma therapeutic effects with lower toxicity to normal tissues, overcoming the limitations of monotherapy and providing new strategies for tumor treatment.
Asunto(s)
Carcinoma Hepatocelular , Quitosano , Clorofilidas , Neoplasias Hepáticas , Micelas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Especies Reactivas de Oxígeno , Animales , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Humanos , Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Ratones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacocinética , Fármacos Fotosensibilizantes/administración & dosificación , Células Hep G2 , Porfirinas/química , Porfirinas/farmacocinética , Porfirinas/farmacología , Porfirinas/administración & dosificación , Quitosano/química , Quitosano/análogos & derivados , Línea Celular Tumoral , Triterpenos Pentacíclicos/farmacología , Triterpenos Pentacíclicos/farmacocinética , Triterpenos/química , Triterpenos/farmacología , Triterpenos/farmacocinética , Ácido Glicirretínico/química , Ácido Glicirretínico/farmacología , Ácido Glicirretínico/farmacocinética , Ácido Glicirretínico/análogos & derivados , Polímeros/química , Distribución Tisular , Liberación de Fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/farmacocinética , Masculino , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinéticaRESUMEN
Photodynamic therapy (PDT) has emerged as a promising treatment for malignant tumours in recent decades due to its impressive spatiotemporal selectivity, minimal invasiveness, and few adverse effects. Despite these advancements, there remain significant challenges in effectively delivering photosensitizers to tumours and overcoming tumour hypoxia to maximize the therapeutic benefits of PDT. Ongoing research efforts are focused on developing innovative strategies to overcome the above-mentioned challenges, such as nanoplatforms and combination therapy approaches. Hence, reactive oxygen species (ROS)-responsive polymeric micelles are promising candidates to enhance the distribution and retention of photosensitizers within tumours. Additionally, efforts to alleviate tumour hypoxia may further improve the anti-tumour effects of PDT. In this study, we designed ROS-responsive polymeric micelles (TC@PTP) co-loaded with a Tapp-COF, a porphyrin derivative, and capsaicin for PDT of melanoma. These ROS-responsive nanocarriers, constructed from thioketal (TK)-linked amphiphilic di-block copolymers (PEG5K-TK-PLGA5K), could accumulate in the tumor microenvironment and release drugs under the action of ROS. Capsaicin, acting as a biogenic respiratory inhibitor, suppressed mitochondrial respiration and the hypoxia-inducible factor 1 (HIF-1) signaling pathway, thereby increasing oxygen levels at the tumour site. These PDT-triggered ROS-responsive nanoparticles effectively alleviated the tumour hypoxic microenvironment and enhanced anti-tumour efficacy. With superior biocompatibility and tumour-targeting abilities, the platform holds great promise for advancing anti-tumour combination therapy.
Asunto(s)
Micelas , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Especies Reactivas de Oxígeno , Especies Reactivas de Oxígeno/metabolismo , Animales , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/administración & dosificación , Nanopartículas/química , Ratones , Línea Celular Tumoral , Humanos , Hipoxia Tumoral/efectos de los fármacos , Portadores de Fármacos/química , Porfirinas/química , Porfirinas/farmacología , Porfirinas/administración & dosificación , Microambiente Tumoral/efectos de los fármacos , Polímeros/química , Polímeros/farmacologíaRESUMEN
At present, chemotherapy combined with photodynamic therapy is exerting satisfactory therapeutic effects in the treatment of tumors. Chlorin e6 (Ce6) is a photosensitizer with high efficiency and low dark toxicity. At the same time, elemene (ELE) contains high-efficiency and low-toxicity anti-cancer active ingredients, which can effectively penetrate tumor tissue and inhibit its recovery and proliferation. Due to the poor water solubility of these two drugs, we prepared ELE/Ce6 co-loaded liposomes (Lipo-ELE/Ce6) to improve their water solubility, thereby enhancing the anti-tumor effect. The characterization of Lipo-ELE/Ce6 showed that Lipo-ELE/Ce6 had suitable encapsulation efficiency (EE), particle size, polydispersity (PDI), zeta potential, and good photo-controlled release properties. In vitro, Lipo-ELE/Ce6 effectively inhibited the growth of T24 cells and induced apoptosis, and more importantly, in vivo experiments showed that Lipo-ELE/Ce6 had significant anti-tumor effects, which was significantly better than free drugs. The above results suggest that Lipo-ELE/Ce6 can significantly enhance the induction of apoptosis of non-muscle invasive bladder cancer (NMIBC) by light-controlled release and ROS response.
Asunto(s)
Apoptosis , Clorofilidas , Preparaciones de Acción Retardada , Liposomas , Fármacos Fotosensibilizantes , Porfirinas , Especies Reactivas de Oxígeno , Apoptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Animales , Humanos , Línea Celular Tumoral , Porfirinas/farmacología , Porfirinas/química , Porfirinas/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Sesquiterpenos/farmacología , Sesquiterpenos/química , Fotoquimioterapia/métodos , Ratones Desnudos , Ratones , Liberación de Fármacos , Ratones Endogámicos BALB C , Tamaño de la Partícula , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/patología , Solubilidad , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/administración & dosificación , Proliferación Celular/efectos de los fármacos , Neoplasias Vesicales sin Invasión MuscularRESUMEN
Photodynamic therapy (PDT) is a noninvasive therapeutic approach that is effective in killing primary tumors with minimal surgical trauma, but its usage in metastatic lesions of melanoma is restricted by spatial limitations. Recently, stimulator of interferon genes (STING) agoinst-mediated innate immunity can activate the STING pathway and further promote dendritic cell (DC) maturation, tumor-specific cytotoxic T lymphocyte, and natural killer cell infiltration and has emerged as a promising approach for cancer therapy. Herein, the authors intriduce facile nanoparticles named HTCS, which can co-deliver STING agonist (2'3'-cGAMP) and a mitochondrial targeting modified photosensitizer (TPP-PEI-Ce6). While HTCS were intravenously injected to mice, they were endocytosed into tumor cells through hyaluronic acid-mediated active targeting. Thereafter, TPP-PEI-Ce6 was delivered to mitochondria to generate a large variety of reactive oxygen species and killed tumor cells effectively. Then the tumor cell debris further gave rise to immunogenic cell death, which played a role in immunosuppression. Furthermore, 2'3'-cGAMP contained in cell debris activated the STING pathway to promote the release of inflammatory cytokines and the maturation of DCs. As a consequence, the HTCS could achieve photodynamic multiple immunotherapy for melanoma. This work demonstrates multifunctional nanoparticles that efficiently inhibit tumors by PDT and reversing their immunosuppression to realize a versatile therapeutic strategy.
Asunto(s)
Clorofilidas , Melanoma , Proteínas de la Membrana , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Animales , Nanopartículas/química , Ratones , Porfirinas/química , Porfirinas/farmacología , Porfirinas/administración & dosificación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Melanoma/tratamiento farmacológico , Melanoma/patología , Proteínas de la Membrana/agonistas , Proteínas de la Membrana/metabolismo , Tamaño de la Partícula , Ensayo de Materiales , Ratones Endogámicos C57BL , Ensayos de Selección de Medicamentos Antitumorales , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Antineoplásicos/química , Antineoplásicos/farmacología , Humanos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Proliferación Celular/efectos de los fármacosRESUMEN
BACKGROUND: Intraoperative photodynamic diagnosis (PDD) using 5-aminolevulinic acid (5-ALA) is a widely adopted technique to enhance the extent of resection during high-grade glioma (HGG) surgery. Recent updates to the package insert for 5-ALA in Japan now allow its use in combination with drugs that may induce photosensitivity, such as talaporfin sodium (TS). TS is employed in intraoperative photodynamic therapy (PDT) and has been shown to improve overall survival. The combination of 5-ALA with TS is expected to offer further benefits. However, the safety of this combination had not been established. This study reports on the safety of 5-ALA-PDD with TS-PDT in the treatment of recurrent HGG. METHODS: 7 patients with recurrent HGG underwent tumor resection using a combination of 5-ALA-PDD and TS-PDT. The incidence of photosensitivity as an adverse effect associated with 5-ALA and TS was evaluated as described in the package insert. Adverse events were assessed according to the Common Terminology Criteria for Adverse Events (CTCAE) version 5.0. RESULTS: Tumor-specific fluorescence intensity was strong in 4 cases and weak in 3. Photosensitivity occurred in only 1 patient (14.3%). Three patients exhibited CTCAE grade 1 or 2 abnormal liver function, and 1 patient experienced CTCAE grade 1 γ-GTP elevation. All abnormalities improved during follow-up. CONCLUSIONS: The combined use of 5-ALA-PDD and TS-PDT for HGG surgery did not increase the risk of serious adverse events in our study. Further investigations with a larger number of cases are needed for a more accurate assessment of its safety and efficacy.
Asunto(s)
Ácido Aminolevulínico , Neoplasias Encefálicas , Glioma , Recurrencia Local de Neoplasia , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Humanos , Ácido Aminolevulínico/uso terapéutico , Masculino , Femenino , Persona de Mediana Edad , Fotoquimioterapia/métodos , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/cirugía , Glioma/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/efectos adversos , Anciano , Porfirinas/uso terapéutico , Porfirinas/administración & dosificación , AdultoRESUMEN
Stem cell-based therapies offer promising avenues for treating inflammatory diseases owing to their immunomodulatory properties. However, challenges persist regarding their survival and efficacy in inflamed tissues. Our study introduces a novel approach by engineering adipose-derived stem cells (ADSCs) to enhance their viability in inflammatory environments and boost the secretion of paracrine factors for treating inflammatory bowel disease (IBD). An arginine-glycine-aspartate peptide-poly (ethylene glycol)-chlorin e6 conjugate (RPC) was synthesized and coupled with ADSCs, resulting in RPC-labeled ADSCs (ARPC). This conjugation strategy employed RGD-integrin interaction to shield stem cells and allowed visualization and tracking using chlorin e6. The engineered ARPC demonstrated enhanced viability and secretion of paracrine factors upon light irradiation, regulating the inflammatory microenvironment. RNA-sequencing analysis unveiled pathways favoring angiogenesis, DNA repair, and exosome secretion in ARPC(+) while downregulating inflammatory pathways. In in vivo models of acute and chronic IBD, ARPC(+) treatment led to reduced inflammation, preserved colon structure, and increased populations of regulatory T cells, highlighting its therapeutic potential. ARPC(+) selectively homed to inflammatory sites, demonstrating its targeted effect. Overall, ARPC(+) exhibits promise as an effective and safe therapeutic strategy for managing inflammatory diseases like IBD by modulating immune responses and creating an anti-inflammatory microenvironment.
Asunto(s)
Tejido Adiposo , Enfermedades Inflamatorias del Intestino , Células Madre , Animales , Enfermedades Inflamatorias del Intestino/terapia , Tejido Adiposo/citología , Polietilenglicoles/química , Humanos , Porfirinas/administración & dosificación , Ratones Endogámicos C57BL , Antiinflamatorios/administración & dosificación , Antiinflamatorios/farmacología , Oligopéptidos , Ratones , Supervivencia Celular/efectos de los fármacos , FemeninoRESUMEN
Background: Challenges such as poor drug selectivity, non-target reactivity, and the development of drug resistance continue to pose significant obstacles in the clinical application of cancer therapeutic drugs. To overcome the limitations of drug resistance in chemotherapy, a viable treatment strategy involves designing multifunctional nano-platforms that exploit the unique physicochemical properties of tumor microenvironment (TME). Methods: Herein, layer-by-layer nanoparticles with polyporous CuS as delivery vehicles, loaded with a sonosensitizer (tetra-(4-aminophenyl) porphyrin, TAPP) and sequentially functionalized with pH-responsive CaCO3, targeting group hyaluronic acid (HA) were designed and synthesized for synergistic treatment involving chemodynamic therapy (CDT), sonodynamic therapy (SDT), photothermal therapy (PTT), and calcium overload. Upon cleavage in an acidic environment, CaCO3 nanoparticles released TAPP and Ca2+, with TAPP generating 1O2 under ultrasound trigger. Exposed CuS produced highly cytotoxic ·OH in response to H2O2 and also exhibited a strong PTT effect. Results: CuS@TAPP-CaCO3/HA (CTCH) delivered an enhanced ability to release more Ca2+ under acidic conditions with a pH value of 6.5, which in situ causes damage to HeLa mitochondria. In vitro and in vivo experiments both demonstrated that mitochondrial dysfunction greatly amplified the damage caused by reactive oxygen species (ROS) to tumor, which strongly confirms the synergistic effect between calcium overload and reactive oxygen therapy. Conclusion: Collectively, the development of CTCH presents a novel therapeutic strategy for tumor treatment by effectively responding to the acidic TME, thus holding significant clinical implications.
Asunto(s)
Carbonato de Calcio , Calcio , Nanopartículas , Microambiente Tumoral , Humanos , Animales , Nanopartículas/química , Calcio/química , Carbonato de Calcio/química , Carbonato de Calcio/farmacología , Microambiente Tumoral/efectos de los fármacos , Células HeLa , Especies Reactivas de Oxígeno/metabolismo , Ratones , Ácido Hialurónico/química , Porfirinas/química , Porfirinas/farmacología , Porfirinas/farmacocinética , Porfirinas/administración & dosificación , Terapia Fototérmica/métodos , Concentración de Iones de Hidrógeno , Terapia por Ultrasonido/métodos , Neoplasias/terapia , Neoplasias/tratamiento farmacológico , Mitocondrias/efectos de los fármacos , Antineoplásicos/química , Antineoplásicos/farmacología , Ratones Endogámicos BALB C , Ratones Desnudos , Nanopartículas Capa por CapaRESUMEN
Biofilms, particularly those formed by multiple bacterial species, pose significant economic and environmental challenges, especially in the context of medical implants. Addressing the urgent need for effective treatment strategies that do not exacerbate drug resistance, we developed a novel nanoformulation, Ce6&PMb@BPN, based on black phosphorus nanosheets (BPN) for targeted treatment of mixed-species biofilms formed by Acinetobacter baumannii (A. baumannii) and methicillin-resistant Staphylococcus aureus (MRSA).The formulation leverages polymyxin B (PMb) for bacterial targeting and chlorin e6 (Ce6) for photodynamic action. Upon near-infrared (NIR) irradiation, Ce6&PMb@BPN efficiently eliminates biofilms by combining chemotherapy, photodynamic therapy (PDT) and photothermal therapy (PTT), reducing biofilm biomass significantly within 30 min. In vivo studies on mice infected with mixed-species biofilm-coated catheters demonstrated the formulation's potent antibacterial and biofilm ablation effects. Moreover, comprehensive biosafety evaluations confirmed the excellent biocompatibility of Ce6&PMb@BPN. Taken together, this intelligently designed nanoformulation holds potential for effectively treating biofilm-associated infections, addressing the urgent need for strategies to combat antibiotic-resistant biofilms, particularly mixed-species biofilm, in medical settings.
Asunto(s)
Acinetobacter baumannii , Antibacterianos , Biopelículas , Staphylococcus aureus Resistente a Meticilina , Nanoestructuras , Fósforo , Fotoquimioterapia , Polimixina B , Porfirinas , Animales , Biopelículas/efectos de los fármacos , Polimixina B/administración & dosificación , Polimixina B/farmacología , Fósforo/química , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Antibacterianos/administración & dosificación , Antibacterianos/farmacología , Antibacterianos/química , Fotoquimioterapia/métodos , Acinetobacter baumannii/efectos de los fármacos , Nanoestructuras/química , Porfirinas/administración & dosificación , Porfirinas/química , Porfirinas/farmacología , Clorofilidas , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Ratones , Femenino , Terapia Fototérmica/métodos , Ratones Endogámicos BALB C , Farmacorresistencia Bacteriana , Infecciones Estafilocócicas/tratamiento farmacológicoRESUMEN
AIM: To construct a novel nano-carrier with dual ligands to achieve superior anti-tumour efficacy and lower toxic side effects. METHODS: Liposomes were prepared by thin film hydration method. Ultraviolet, high performance liquid chromatography, nano-size analyser, ultrafiltration centrifugation, dialysis, transmission electron microscope, flow cytometry, Cell Counting Kit-8, confocal laser scanning microscopy, transwell, and tumorsphere assay were used to study the characterisations, cytotoxicity, and in vitro targeting of dg-Bcan targeting peptide (BTP-7)/pHA-temozolomide (TMZ)/tetra(4-carboxyphenyl)porphyrin (TCPP)-Lip. RESULTS: BTP-7/pHA-TMZ/TCPP-Lip was a spheroid with a mean diameters of 143 ± 3.214 nm, a polydispersity index of 0.203 ± 0.025 and a surface charge of -22.8 ± 0.425 mV. The drug loadings (TMZ and TCPP) are 7.40 ± 0.23% and 2.05 ± 0.03% (mg/mg); and the encapsulation efficiencies are 81.43 ± 0.51% and 84.28 ± 1.64% (mg/mg). The results showed that BTP-7/pHA-TMZ/TCPP-Lip presented enhanced targeting and cytotoxicity. CONCLUSION: BTP-7/pHA-TMZ/TCPP-Lip can specifically target the tumour cells to achieve efficient drug delivery, and improve the anti-tumour efficacy and reduces the systemic toxicity.
Asunto(s)
Glioblastoma , Liposomas , Temozolomida , Glioblastoma/tratamiento farmacológico , Humanos , Línea Celular Tumoral , Temozolomida/farmacología , Temozolomida/administración & dosificación , Temozolomida/farmacocinética , Temozolomida/química , Porfirinas/química , Porfirinas/administración & dosificación , Porfirinas/farmacología , Sistemas de Liberación de Medicamentos , Neoplasias Encefálicas/tratamiento farmacológico , Péptidos/química , Péptidos/farmacologíaRESUMEN
Chemo-photodynamic synergistic therapy (CPST) holds tremendous promise for treating cancers. Unfortunately, existing CPST applications suffer from complex synthetic procedures, low drug co-loading efficiency, and carrier-related toxicity. To address these issues, we have developed a supramolecular carrier-free self-sensitized nanoassemblies by co-assembling podophyllotoxin (PTOX) and chlorin e6 (Ce6) to enhance CPST efficiency against tumors. The nanoassemblies show stable co-assembly performance in simulative vivo neural environment (â¼150 nm), with high co-loading ability for PTOX (72.2 wt%) and Ce6 (27.8 wt%). In vivo, the nanoassemblies demonstrate a remarkable ability to accumulate at tumor sites by leveraging the enhanced permeability and retention (EPR) effect. The disintegration of nanoassemblies following photosensitizer bioactivation triggered by the acidic tumor environment effectively resolves the challenge of aggregation-caused quenching (ACQ) effect. Upon exposure to external light stimulation, the disintegrated nanoassemblies not only illuminate cancer cells synergistically but also exert a more potent antitumor effect when compared with PTOX and Ce6 administered alone. This self-sensitized strategy represents a significant step forward in CPST, offering a unique co-delivery paradigm for clinic cancer treatment.
Asunto(s)
Clorofilidas , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Podofilotoxina , Porfirinas , Fotoquimioterapia/métodos , Porfirinas/administración & dosificación , Porfirinas/química , Animales , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacocinética , Humanos , Línea Celular Tumoral , Nanopartículas/química , Podofilotoxina/administración & dosificación , Podofilotoxina/química , Neoplasias/tratamiento farmacológico , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , FemeninoRESUMEN
Antitumor agents often lack effective penetration and accumulation to achieve high therapeutic efficacy in treating solid tumors. Nanomotor-based nanomaterials offer a potential solution to address this obstacle. Among them, nitric oxide (NO) based nanomotors have garnered attention for their potential applications in nanomedicine. However, there widespread clinical adoption has been hindered by their complex preparation processes. To address this limitation, we have developed a NO-driven nanomotor utilizing a convenient and scalable nanogel preparation procedure. These nanomotors, loaded with the fluorescent probe / sonosensitizer chlorin e6 (Ce6), were specifically engineered for sonodynamic therapy. Through comprehensive in vitro investigations using both 2D and 3D cell models, as well as in vivo analysis of Ce6 fluorescent signal distribution in solid tumor models, we observed that the self-propulsion of these nanomotors significantly enhances cellular uptake and tumor penetration, particularly in solid tumors. This phenomenon enables efficient access to challenging tumor regions and, in some cases, results in complete tumor coverage. Notably, our nanomotors have demonstrated long-term in vivo biosafety. This study presents an effective approach to enhancing drug penetration and improving therapeutic efficacy in tumor treatment, with potential clinical relevance for future applications.
Asunto(s)
Clorofilidas , Nanogeles , Neoplasias , Óxido Nítrico , Porfirinas , Animales , Óxido Nítrico/administración & dosificación , Óxido Nítrico/metabolismo , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Neoplasias/metabolismo , Porfirinas/administración & dosificación , Porfirinas/farmacocinética , Línea Celular Tumoral , Nanogeles/química , Antineoplásicos/administración & dosificación , Antineoplásicos/farmacocinética , Polietilenglicoles/química , Ratones Desnudos , Polietileneimina/química , Ratones Endogámicos BALB C , Colorantes Fluorescentes/química , Colorantes Fluorescentes/administración & dosificación , Femenino , Ratones , Terapia por Ultrasonido/métodos , Nanoestructuras/administración & dosificaciónRESUMEN
Stimulation of the innate immune stimulator of interferon genes (STING) pathway has been shown to boost anti-tumour immunity. Nevertheless, the systemic delivery of STING agonists to the tumour presents challenges. Therefore, we designed a cyclic dinucleotide (CDN)-based drug delivery system (DDS) combined photothermal therapy (PTT)/photodynamic therapy (PDT)/immunotherapy for cutaneous melanoma. We coencapsulated a reactive oxygen species (ROS)-responsive prodrug thioketone-linked CDN (TK-CDN), and photoresponsive agents chlorin E6 (Y6) within mitochondria-targeting reagent triphenylphosphonium (TPP)-modified liposomes (Lipo/TK-CDN/TPP/Y6). Lipo/TK-CDN/TPP/Y6 exhibited a photothermal effect similar to Y6, along with a superior cellular uptake rate. Upon endocytosis by B16F10 cells, Lipo/TK-CDN/TPP/Y6 generated large amounts of ROS under laser irradiation for PDT. Mice bearing B16F10 tumours were intravenously injected with Lipo/TK-CDN/TPP/Y6 and exposed to irradiation, resulting in a substantial inhibition of tumour growth. Exploration of the mechanism of anti-tumour action showed that Lipo/TK-CDN/TPP/Y6 had a stronger stimulation of STING activation and anti-tumour immune cell infiltration compared to other groups. Hence, the Lipo/TK-CDN/TPP/Y6 nanoparticles offer great potential as a DDS for targeted and on-demand drug release at tumour sites. These nanoparticles exhibit promise as a candidate for precise and controllable combination therapy in the treatment of tumours.
Asunto(s)
Clorofilidas , Liposomas , Melanoma Experimental , Nanopartículas , Fotoquimioterapia , Porfirinas , Profármacos , Especies Reactivas de Oxígeno , Neoplasias Cutáneas , Animales , Ratones , Nanopartículas/química , Fotoquimioterapia/métodos , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/patología , Especies Reactivas de Oxígeno/metabolismo , Profármacos/farmacología , Profármacos/administración & dosificación , Profármacos/química , Melanoma Experimental/tratamiento farmacológico , Porfirinas/farmacología , Porfirinas/administración & dosificación , Porfirinas/química , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/administración & dosificación , Terapia Fototérmica/métodos , Ratones Endogámicos C57BL , Inmunoterapia/métodos , Melanoma/tratamiento farmacológico , Melanoma/patología , Sistemas de Liberación de Medicamentos , Humanos , Melanoma Cutáneo MalignoRESUMEN
Triggering pyroptosis is a major new weathervane for activating tumor immune response. However, biodegradable pyroptosis inducers for the safe and efficient treatment of tumors are still scarce. Herein, a novel tumor microenvironment (TME)-responsive activation nanoneedle for pyroptosis induction, copper-tannic acid (CuTA), was synthesized and combined with the sonosensitizer Chlorin e6 (Ce6) to form a pyroptosis amplifier (CuTA-Ce6) for dual activation and amplification of pyroptosis by exogenous ultrasound (US) and TME. It was demonstrated that Ce6-triggered sonodynamic therapy (SDT) further enhanced the cellular pyroptosis caused by CuTA, activating the body to develop a powerful anti-tumor immune response. Concretely, CuTA nanoneedles with quadruple mimetic enzyme activity could be activated to an "active" state in the TME, destroying the antioxidant defense system of the tumor cells through self-destructive degradation, breaking the "immunosilent" TME, and thus realizing the pyroptosis-mediated immunotherapy with fewer systemic side effects. Considering the outstanding oxygen-producing capacity of CuTA and the distinctive advantages of US, the sonosensitizer Ce6 was attached to CuTA via an amide reaction, which further amplified the pyroptosis and sensitized pyroptosis-induced immunotherapy with the two-pronged strategy of CuTA enzyme-catalyzed cascade and US-driven SDT pathway to generate a "reactive oxygen species (ROS) storm". Conclusively, this work provided a representative paradigm for achieving safe, reliable and efficient pyroptosis, which was further enhanced by SDT for more robust immunotherapy.
Asunto(s)
Clorofilidas , Cobre , Inmunoterapia , Ratones Endogámicos BALB C , Porfirinas , Piroptosis , Especies Reactivas de Oxígeno , Microambiente Tumoral , Piroptosis/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Porfirinas/administración & dosificación , Inmunoterapia/métodos , Animales , Cobre/administración & dosificación , Línea Celular Tumoral , Humanos , Femenino , Terapia por Ultrasonido/métodos , Neoplasias/terapia , Neoplasias/inmunología , Neoplasias/tratamiento farmacológico , RatonesRESUMEN
Background: Chemo-photodynamic combination therapy has demonstrated significant potential in the treatment of cancer. Triptolide (TPL), a naturally derived anticancer agent, when combined with the photosensitizer Chlorin e6 (Ce6), has shown to provide enhanced anti-tumor benefits. However, the development of stimuli-responsive nanovehicles for the co-delivery of TPL and Ce6 could further enhance the efficacy of this combination therapy. Methods: In this study, we synthesized a pH/ROS dual-responsive mPEG-TK-PBAE copolymer, which contains a pH-sensitive PBAE moiety and a ROS-sensitive thioketal (TK) linkage. Through a self-assembly process, TPL and Ce6 were successfully co-loaded into mPEG-TK-PBAE nanoparticles, hereafter referred to as TPL/Ce6 NPs. We evaluated the pH- and ROS-sensitive drug release and particle size changes. Furthermore, we investigated both the in vitro suppression of cellular proliferation and induction of apoptosis in HepG2 cells, as well as the in vivo anti-tumor efficacy of TPL/Ce6 NPs in H22 xenograft nude mice. Results: The mPEG-TK-PBAE copolymer was synthesized through a one-pot Michael-addition reaction and successfully co-encapsulated both TPL and Ce6 by self-assembly. Upon exposure to acid pH values and high ROS levels, the payloads in TPL/Ce6 NPs were rapidly released. Notably, the abundant ROS generated by the released Ce6 under laser irradiation further accelerated the degradation of the nanosystem, thereby amplifying the tumor microenvironment-responsive drug release and enhancing anticancer efficacy. Consequently, TPL/Ce6 NPs significantly increased PDT-induced oxidative stress and augmented TPL-induced apoptosis in HepG2 cells, leading to synergistic anticancer effects in vitro. Moreover, administering TPL/Ce6 NPs (containing 0.3 mg/kg of TPL and 4 mg/kg of Ce6) seven times, accompanied by 650 nm laser irradiation, efficiently inhibited tumor growth in H22 tumor-bearing mice, while exhibiting lower systemic toxicity. Conclusion: Overall, we have developed a tumor microenvironment-responsive nanosystem for the co-delivery of TPL and Ce6, demonstrating amplified synergistic effects of chemo-photodynamic therapy (chemo-PDT) for hepatocellular carcinoma (HCC) treatment.
Asunto(s)
Apoptosis , Clorofilidas , Diterpenos , Neoplasias Hepáticas , Ratones Desnudos , Fenantrenos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Porfirinas , Especies Reactivas de Oxígeno , Animales , Humanos , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Células Hep G2 , Neoplasias Hepáticas/tratamiento farmacológico , Porfirinas/química , Porfirinas/farmacología , Porfirinas/administración & dosificación , Porfirinas/farmacocinética , Diterpenos/química , Diterpenos/farmacología , Diterpenos/farmacocinética , Diterpenos/administración & dosificación , Concentración de Iones de Hidrógeno , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/administración & dosificación , Apoptosis/efectos de los fármacos , Ratones , Carcinoma Hepatocelular/tratamiento farmacológico , Compuestos Epoxi/química , Compuestos Epoxi/farmacología , Compuestos Epoxi/administración & dosificación , Nanopartículas/química , Ensayos Antitumor por Modelo de Xenoinjerto , Antineoplásicos/química , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Liberación de Fármacos , Proliferación Celular/efectos de los fármacos , Polietilenglicoles/química , Terapia CombinadaRESUMEN
The high glutathione (GSH) level of the tumor microenvironment severely affects the efficacy of photodynamic therapy (PDT). The current GSH depletion strategies have difficulty meeting the dual needs of security and efficiency. In this study, we report a photosensitizer Chlorin e6 (Ce6) and hypoxia-activated prodrug tirapazamine (TPZ) coloaded cross-linked multifunctional polymersome (TPZ/Ce6@SSPS) with GSH-triggered continuous GSH depletion for enhanced photodynamic therapy and hypoxia-activated chemotherapy. At tumor sites, the disulfide bonds of TPZ/Ce6@SSPS react with GSH to realize decross-linking for on-demand drug release. Meanwhile, the generated highly reactive quinone methide (QM) can further deplete GSH. This continuous GSH depletion will amplify tumor oxidative stress, enhancing the PDT effect of Ce6. Aggravated tumor hypoxia induced by PDT activates the prodrug TPZ, resulting in an enhanced combination of PDT and hypoxia-activated chemotherapy. Both in vitro and in vivo results demonstrate the efficient GSH depletion and potent antitumor activities by TPZ/Ce6@SSPS. This work provides a strategy for the design of a continuous GSH depletion platform, which holds great promise for enhanced combination tumor therapy.
Asunto(s)
Clorofilidas , Glutatión , Fotoquimioterapia , Fármacos Fotosensibilizantes , Profármacos , Tirapazamina , Glutatión/metabolismo , Fotoquimioterapia/métodos , Tirapazamina/farmacología , Animales , Ratones , Humanos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Profármacos/farmacología , Porfirinas/farmacología , Porfirinas/administración & dosificación , Porfirinas/farmacocinética , Antineoplásicos/farmacología , Antineoplásicos/administración & dosificación , Línea Celular Tumoral , Microambiente Tumoral/efectos de los fármacosRESUMEN
Cryotherapy leverages controlled freezing temperature interventions to engender a cascade of tumor-suppressing effects. However, its bottleneck lies in the standalone ineffectiveness. A promising strategy is using nanoparticle therapeutics to augment the efficacy of cryotherapy. Here, a cold-responsive nanoplatform composed of upconversion nanoparticles coated with silica - chlorin e6 - hyaluronic acid (UCNPs@SiO2-Ce6-HA) is designed. This nanoplatform is employed to integrate cryotherapy with photodynamic therapy (PDT) in order to improve skin cancer treatment efficacy in a synergistic manner. The cryotherapy appeared to enhance the upconversion brightness by suppressing the thermal quenching. The low-temperature treatment afforded a 2.45-fold enhancement in the luminescence of UCNPs and a 3.15-fold increase in the photodynamic efficacy of UCNPs@SiO2-Ce6-HA nanoplatforms. Ex vivo tests with porcine skins and the subsequent validation in mouse tumor tissues revealed the effective HA-mediated transdermal delivery of designed nanoplatforms to deep tumor tissues. After transdermal delivery, in vivo photodynamic therapy using the UCNPs@SiO2-Ce6-HA nanoplatforms resulted in the optimized efficacy of 79% in combination with cryotherapy. These findings underscore the Cryo-PDT as a truly promising integrated treatment paradigm and warrant further exploring the synergistic interplay between cryotherapy and PDT with bright upconversion to unlock their full potential in cancer therapy.
Asunto(s)
Ácido Hialurónico , Nanopartículas , Fotoquimioterapia , Animales , Fotoquimioterapia/métodos , Ratones , Ácido Hialurónico/química , Nanopartículas/química , Neoplasias Cutáneas/terapia , Neoplasias Cutáneas/tratamiento farmacológico , Crioterapia/métodos , Clorofilidas , Porfirinas/química , Porfirinas/administración & dosificación , Modelos Animales de Enfermedad , Fármacos Fotosensibilizantes/administración & dosificación , Administración Cutánea , Dióxido de Silicio/química , PorcinosRESUMEN
Therapeutic approaches for triple-negative breast cancer (TNBC) have been continuously advancing, but inadequate control over release behavior, insufficient tumor selectivity, and limited drug availability continue to impede therapeutic outcomes in nanodrug systems. In this study, we propose a general hydrophobic antineoplastic delivery system, termed spatiotemporally-controlled hydrophobic antineoplastic delivery system (SCHADS) for enhanced TNBC treatment. The key feature of SCHADS is the formation of metastable photosensitive-antineoplastic complexes (PACs) through the self-assembly of hydrophobic drugs driven by photosensitive molecules. With the further decoration of tumor-targeting peptides coupled with the EPR effect, the PACs tend to accumulate in the tumor site tremendously, promoting drug delivery efficiency. Meanwhile, the disassembly behavior of the metastable PACs could be driven by light on demand to achieve in situ drug release, thus promoting chemotherapeutics availability. Furthermore, the abundant ROS generated by the photosensitizer could effectively kill tumor cells, ultimately realizing an effective combination of photodynamic and chemotherapeutic therapy. As an exemplary presentation, chlorin e6 has been chosen to drive the formation of PACs with the system xc- inhibitor sorafenib. Compared with pure drug treatment, the PACs with the above-described preponderances exhibit superior therapeutic effects both in vitro and in vivo and circumvent the side effects due to off-target. By manipulating the laser irradiation, the PACs-treated cell death mechanism could be dynamically regulated, thus providing the potential to remedy intrinsic/acquired resistance of tumor. Collectively, this SCHADS achieves spatio-temporal control of the drug that greatly enhances the availability of anticarcinogen and realizes synergistic antitumor effect in TNBC treatment, even ultimately being extended to the treatment of other types of tumors.
Asunto(s)
Antineoplásicos , Sistemas de Liberación de Medicamentos , Interacciones Hidrofóbicas e Hidrofílicas , Fármacos Fotosensibilizantes , Porfirinas , Neoplasias de la Mama Triple Negativas , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/farmacología , Femenino , Animales , Humanos , Antineoplásicos/administración & dosificación , Antineoplásicos/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Porfirinas/administración & dosificación , Porfirinas/química , Clorofilidas , Ratones Desnudos , Ratones Endogámicos BALB C , Fotoquimioterapia/métodos , Sorafenib/administración & dosificación , Sorafenib/farmacología , Sorafenib/química , Liberación de FármacosRESUMEN
BACKGROUND: To the best of our knowledge, no studies have been performed to determine the optimal parameters of photodynamic therapy (PDT) combined with subconjunctival injection of bevacizumab for corneal neovascularization. This study aimed to compare the effect of photodynamic therapy with two different sets of parameters combined with subconjunctival injection of bevacizumab for corneal neovascularization. METHODS: Patients with stable corneal neovascularization (CNV) unresponsive to conventional treatment (topical steroid) were included in this study. Patients were divided into two groups, receiving PDT with two different sets of parameters (group 1 receiving fluence of 50 J/cm2 at 15 min after intravenous injection of verteporfin with, group 2 receiving fluence of 150 J/cm2 at 60 min after intravenous injection of verteporfin with). Subconjunctival injection of bevacizumab was performed immediately after PDT. All patients were followed for 6 months. Best-corrected visual acuity and intraocular pressure were evaluated, and slit-lamp biomicroscopy as well as digital photography were performed. Average diameter and cumulative length of corneal neovascular were measured to evaluate the corneal neovascularization. RESULTS: Seventeen patients (20 eyes) were included in this study. At the last visit, the vision was improved in 12 eyes (60 %), steady in 4 eyes (20 %) and worsen in 4 eyes (20 %). The intraocular pressure (IOP) of all patients remained in normal range. A significant decrease in corneal neovascularization was showed in all the eyes after treatment. At 6 months after the combined treatment, the average diameter and cumulative length of vessels significantly decreased to 0.041 ± 0.023 mm (P < 0.05) and 18.78 ± 17.73 mm (P < 0.05), respectively, compared with the pretreatment data (0.062 ± 0.015 mm, 31.48 ± 18.21 mm). The reduction was more remarkable in group 2 compared to group 1.In group 1, the average diameter was 0.062 ± 0.013mm before and 0.056 ± 0.017mm after, the cumulative length of vessels was 38.66 ± 22.55mm before and 31.21 ± 17.30 after. In group 2, the date were 0.061 ± 0.016mm before and 0.029 ± 0.020mm after, 25.60 ± 8.95 mm before and 8.61 ± 8.26 mm. The reported complications included epithelial defect in four eyes, small white filaments in two eyes and corneal epithelial erosion in two eyes. CONCLUSION: The PDT combined with subconjunctival injection of bevacizumab was effective for the chronic corneal neovascularization. A more promising treatment outcome was observed when PDT was performed at 60 min after intravenous injection of verteporfin with fluence of 150 J/cm2. No serious complications or systemic events were observed throughout the follow-up period.