Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 423
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Neurochem Int ; 145: 104990, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33592203

RESUMEN

N-methyl-D-aspartate receptors (NMDARs) are important for synaptogenesis, synaptic maturation and refinement during the early postnatal weeks after birth. Defective synapse formation or refinement underlie cognitive and emotional abnormalities in various neurodevelopmental disorders (NDDs), including schizophrenia (Sz) and autism spectrum disorder (ASD). Serine racemase (SR) is a neuronal enzyme that produces D-serine, a co-agonist required for full NMDAR activation. NMDAR hypofunction as a result of genetic SR elimination and reduced synaptic availability of D-serine reduces neuronal dendritic arborization and spine density. In adult mouse brain, the expression of SR parallels that of NMDARs across forebrain regions including the striatum, amygdala, hippocampus, and medial prefrontal cortex (mPFC). However, there have yet to be studies providing a detailed characterization of the spatial and temporal expression of SR during early periods of synaptogenesis. Here, we examined the postnatal expression of SR in cortical and subcortical brain regions important for learning, memory and emotional regulation, during the first four weeks after birth. Using dual-antigen immunofluorescence, we demonstrate that the number of SR+ neurons steadily increases with postnatal age across the mPFC, amygdala, hippocampus and striatum. We also identified differences in the rate of SR protein induction both across and within brain regions. Analyzing existing human post-mortem brain in situ data, there was a similar developmental mRNA expression profile of SRR and GRIN1 (GluN1 subunit) from infancy through the first decade of life. Our findings further support a developmental role for D-serine mediated NMDAR activation regulating synaptogenesis and neural circuit refinement, which has important implications for the pathophysiology of Sz and other NDDs.


Asunto(s)
Regulación Enzimológica de la Expresión Génica , Prosencéfalo/enzimología , Prosencéfalo/crecimiento & desarrollo , Racemasas y Epimerasas/biosíntesis , Animales , Masculino , Ratones Endogámicos C57BL , Trastornos del Neurodesarrollo/enzimología , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/patología , Racemasas y Epimerasas/genética , Receptores de N-Metil-D-Aspartato/biosíntesis , Receptores de N-Metil-D-Aspartato/genética
2.
Am J Physiol Heart Circ Physiol ; 320(2): H772-H786, 2021 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-33337962

RESUMEN

Peripherally or centrally administered TNF-α elicits a prolonged sympathetically mediated pressor response, but the underlying molecular mechanisms are unknown. Activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in cardiovascular regions of the brain has recently been recognized as a key mediator of sympathetic excitation, and ERK1/2 signaling is induced by activation of epidermal growth factor receptor (EGFR) tyrosine kinase activity. The present study examined the role of EGFR and ERK1/2 signaling in the sympathetic response to TNF-α. In urethane-anesthetized rats, intracarotid artery injection of TNF-α increased phosphorylation of EGFR and ERK1/2 in the subfornical organ (SFO) and the hypothalamic paraventricular nucleus (PVN); upregulated the gene expression of excitatory mediators in SFO and PVN; and increased blood pressure (BP), heart rate (HR), and renal sympathetic nerve activity (RSNA). A continuous intracerebroventricular infusion of the selective EGFR tyrosine kinase inhibitor AG1478 or the ERK1/2 inhibitor PD98059 significantly attenuated these responses. Bilateral PVN microinjections of TNF-α also increased phosphorylated ERK1/2 and the gene expression of excitatory mediators in PVN, along with increases in BP, HR, and RSNA, and these responses were substantially reduced by prior bilateral PVN microinjections of AG1478. These results identify activation of EGFR in cardiovascular regulatory regions of the forebrain as an important molecular mediator of TNF-α-driven sympatho-excitatory responses and suggest that EGFR activation of the ERK1/2 signaling pathway plays an essential role. These mechanisms likely contribute to sympathetic excitation in pathophysiological states like heart failure and hypertension, in which circulating and brain TNF-α levels are increased.NEW & NOTEWORTHY Proinflammatory cytokines contribute to the augmented sympathetic nerve activity in hypertension and heart failure, but the central mechanisms involved are largely unknown. The present study reveals that TNF-α transactivates EGFR in the subfornical organ and the hypothalamic paraventricular nucleus to initiate ERK1/2 signaling, upregulate the gene expression of excitatory mediators, and increase sympathetic nerve activity. These findings identify EGFR as a gateway to sympathetic excitation and a potential target for intervention in cardiovascular disease states.


Asunto(s)
Sistema Cardiovascular/inervación , Receptores ErbB/metabolismo , Hemodinámica/efectos de los fármacos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Prosencéfalo/efectos de los fármacos , Sistema Nervioso Simpático/efectos de los fármacos , Factor de Necrosis Tumoral alfa/farmacología , Animales , Presión Sanguínea/efectos de los fármacos , Receptores ErbB/antagonistas & inhibidores , Frecuencia Cardíaca/efectos de los fármacos , Masculino , Fosforilación , Prosencéfalo/enzimología , Inhibidores de Proteínas Quinasas/farmacología , Quinazolinas/farmacología , Ratas Sprague-Dawley , Transducción de Señal , Tirfostinos/farmacología
3.
Neurosci Lett ; 740: 135362, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33166635

RESUMEN

Nitric oxide (NO) has been implicated as an important neurotransmitter in stress responses and sleep regulatory processes. However, the role of NO in the relationship between stress and sleep remains unclear. The medial septum (MS) and vertical diagonal band (VDB), regions of the basal forebrain involved in sleep regulation, contain nitric oxide synthase (NOS) producing neurons. Additionally, NOS neurons in the dorsal raphe nucleus (DRN) encode information about stress duration. The role of nitrergic neurons in these regions in subserving sex-specific responses to stress and sleep loss has yet to be elucidated. In this study, NADPH-d, an index of NOS activity, was used to examine the effects of acute restraint stress and sleep loss on NOS activity in the MS, VDB, and DRN. We show that NOS activity in response to restraint stress, total sleep deprivation (TSD), and partial sleep restriction (PSR) differs based on sex and region. Initial analysis showed no effect of restraint stress or TSD on NOS activity in the basal forebrain. However, investigation of each sex separately revealed that restraint stress and TSD significantly decrease NOS activity in the MS of females, but not males. Interestingly, the difference in NOS activity between restraint stress and TSD in females was not significant. Furthermore, PSR was not sufficient to affect NOS activity in males or females. These data suggest that restraint stress and sleep loss regulate NOS activation in a sex-dependent manner, and that the NOS stress response in females may be mediated by sleep loss.


Asunto(s)
Óxido Nítrico , Transducción de Señal , Privación de Sueño/fisiopatología , Estrés Psicológico/fisiopatología , Animales , Corticosterona/metabolismo , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , NADP/metabolismo , Óxido Nítrico Sintasa de Tipo I/metabolismo , Prosencéfalo/enzimología , Núcleos del Rafe/enzimología , Restricción Física , Caracteres Sexuales
4.
Artículo en Inglés | MEDLINE | ID: mdl-32360816

RESUMEN

Lithium (Li) is a typical mood stabilizer and the first choice for treatment of bipolar disorder (BD). Despite an extensive clinical use of Li, its mechanisms of action remain widely different and debated. In this work, we studied the time-course of the therapeutic Li effects on ouabain-sensitive Na+/K+-ATPase in forebrain cortex and hippocampus of rats exposed to 3-day sleep deprivation (SD). We also monitored lipid peroxidation as malondialdehyde (MDA) production. In samples of plasma collected from all experimental groups of animals, Li concentrations were followed by ICP-MS. The acute (1 day), short-term (7 days) and chronic (28 days) treatment of rats with Li resulted in large decrease of Na+/K+-ATPase activity in both brain parts. At the same time, SD of control, Li-untreated rats increased Na+/K+-ATPase along with increased production of MDA. The SD-induced increase of Na+/K+-ATPase and MDA was attenuated in Li-treated rats. While SD results in a positive change of Na+/K+-ATPase, the inhibitory effect of Li treatment may be interpreted as a pharmacological mechanism causing a normalization of the stress-induced shift and return the Na+/K+-ATPase back to control level. We conclude that SD alone up-regulates Na+/K+-ATPase together with increased peroxidative damage of lipids. Chronic treatment of rats with Li before SD, protects the brain tissue against this type of damage and decreases Na+/K+-ATPase level back to control level.


Asunto(s)
Antimaníacos/farmacología , Hipocampo/efectos de los fármacos , Peroxidación de Lípido/efectos de los fármacos , Carbonato de Litio/farmacología , Prosencéfalo/efectos de los fármacos , Prosencéfalo/metabolismo , Privación de Sueño/tratamiento farmacológico , Privación de Sueño/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Animales , Antimaníacos/uso terapéutico , Unión Competitiva/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Malondialdehído/metabolismo , Ouabaína/metabolismo , Prosencéfalo/enzimología , Ratas , Ratas Wistar , Privación de Sueño/enzimología
5.
Cells ; 9(5)2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32443534

RESUMEN

Human and murine studies identified the lysosomal enzyme acid sphingomyelinase (ASM) as a target for antidepressant therapy and revealed its role in the pathophysiology of major depression. In this study, we generated a mouse model with overexpression of Asm (Asm-tgfb) that is restricted to the forebrain to rule out any systemic effects of Asm overexpression on depressive-like symptoms. The increase in Asm activity was higher in male Asm-tgfb mice than in female Asm-tgfb mice due to the breeding strategy, which allows for the generation of wild-type littermates as appropriate controls. Asm overexpression in the forebrain of male mice resulted in a depressive-like phenotype, whereas in female mice, Asm overexpression resulted in a social anxiogenic-like phenotype. Ceramides in male Asm-tgfb mice were elevated specifically in the dorsal hippocampus. mRNA expression analyses indicated that the increase in Asm activity affected other ceramide-generating pathways, which might help to balance ceramide levels in cortical brain regions. This forebrain-specific mouse model offers a novel tool for dissecting the molecular mechanisms that play a role in the pathophysiology of major depression.


Asunto(s)
Depresión/enzimología , Prosencéfalo/enzimología , Esfingomielina Fosfodiesterasa/metabolismo , Animales , Ansiedad/complicaciones , Conducta Animal , Ceramidas/metabolismo , Depresión/complicaciones , Depresión/genética , Femenino , Hipocampo/metabolismo , Masculino , Ratones Transgénicos , Especificidad de Órganos , Prosencéfalo/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Esfingolípidos/metabolismo , Esfingomielina Fosfodiesterasa/genética
6.
J Neurosci ; 39(15): 2792-2809, 2019 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-30728170

RESUMEN

17ß-estradiol (E2) is produced from androgens via the action of the enzyme aromatase. E2 is known to be made in neurons in the brain, but its precise functions in the brain are unclear. Here, we used a forebrain-neuron-specific aromatase knock-out (FBN-ARO-KO) mouse model to deplete neuron-derived E2 in the forebrain of mice and thereby elucidate its functions. FBN-ARO-KO mice showed a 70-80% decrease in aromatase and forebrain E2 levels compared with FLOX controls. Male and female FBN-ARO-KO mice exhibited significant deficits in forebrain spine and synaptic density, as well as hippocampal-dependent spatial reference memory, recognition memory, and contextual fear memory, but had normal locomotor function and anxiety levels. Reinstating forebrain E2 levels via exogenous in vivo E2 administration was able to rescue both the molecular and behavioral defects in FBN-ARO-KO mice. Furthermore, in vitro studies using FBN-ARO-KO hippocampal slices revealed that, whereas induction of long-term potentiation (LTP) was normal, the amplitude was significantly decreased. Intriguingly, the LTP defect could be fully rescued by acute E2 treatment in vitro Mechanistic studies revealed that FBN-ARO-KO mice had compromised rapid kinase (AKT, ERK) and CREB-BDNF signaling in the hippocampus and cerebral cortex. In addition, acute E2 rescue of LTP in hippocampal FBN-ARO-KO slices could be blocked by administration of a MEK/ERK inhibitor, further suggesting a key role for rapid ERK signaling in neuronal E2 effects. In conclusion, the findings provide evidence of a critical role for neuron-derived E2 in regulating synaptic plasticity and cognitive function in the male and female brain.SIGNIFICANCE STATEMENT The steroid hormone 17ß-estradiol (E2) is well known to be produced in the ovaries in females. Intriguingly, forebrain neurons also express aromatase, the E2 biosynthetic enzyme, but the precise functions of neuron-derived E2 is unclear. Using a novel forebrain-neuron-specific aromatase knock-out mouse model to deplete neuron-derived E2, the current study provides direct genetic evidence of a critical role for neuron-derived E2 in the regulation of rapid AKT-ERK and CREB-BDNF signaling in the mouse forebrain and demonstrates that neuron-derived E2 is essential for normal expression of LTP, synaptic plasticity, and cognitive function in both the male and female brain. These findings suggest that neuron-derived E2 functions as a novel neuromodulator in the forebrain to control synaptic plasticity and cognitive function.


Asunto(s)
Estradiol/fisiología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Animales , Ansiedad/genética , Ansiedad/psicología , Aromatasa/genética , Cognición , Espinas Dendríticas , Estradiol/metabolismo , Estradiol/farmacología , Femenino , Hipocampo , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Prosencéfalo/enzimología , Prosencéfalo/metabolismo , Desempeño Psicomotor/fisiología , Aprendizaje Espacial
7.
J Neurosci ; 39(8): 1386-1404, 2019 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-30617207

RESUMEN

Heparan sulfate (HS) is a cell surface and extracellular matrix carbohydrate extensively modified by differential sulfation. HS interacts physically with canonical fibroblast growth factor (FGF) proteins that signal through the extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK) pathway. At the embryonic mouse telencephalic midline, FGF/ERK signaling drives astroglial precursor somal translocation from the ventricular zone of the corticoseptal boundary (CSB) to the induseum griseum (IG), producing a focus of Slit2-expressing astroglial guidepost cells essential for interhemispheric corpus callosum (CC) axon navigation. Here, we investigated the cell and molecular function of a specific form of HS sulfation, 2-O HS sulfation catalyzed by the enzyme Hs2st, in midline astroglial development and in regulating FGF protein levels and interaction with HS. Hs2st-/- embryos of either sex exhibit a grossly enlarged IG due to precocious astroglial translocation and conditional Hs2st mutagenesis and ex vivo culture experiments show that Hs2st is not required cell autonomously by CC axons or by the IG astroglial cell lineage, but rather acts non-cell autonomously to suppress the transmission of translocation signals to astroglial precursors. Rescue of the Hs2st-/- astroglial translocation phenotype by pharmacologically inhibiting FGF signaling shows that the normal role of Hs2st is to suppress FGF-mediated astroglial translocation. We demonstrate a selective action of Hs2st on FGF protein by showing that Hs2st (but not Hs6st1) normally suppresses the levels of Fgf17 protein in the CSB region in vivo and use a biochemical assay to show that Hs2st (but not Hs6st1) facilitates a physical interaction between the Fgf17 protein and HS.SIGNIFICANCE STATEMENT We report a novel non-cell-autonomous mechanism regulating cell signaling in developing brain. Using the developing mouse telencephalic midline as an exemplar, we show that the specific sulfation modification of the cell surface and extracellular carbohydrate heparan sulfate (HS) performed by Hs2st suppresses the supply of translocation signals to astroglial precursors by a non-cell-autonomous mechanism. We further show that Hs2st modification selectively facilitates a physical interaction between Fgf17 and HS and suppresses Fgf17 protein levels in vivo, strongly suggesting that Hs2st acts selectively on Fgf17 signaling. HS interacts with many signaling proteins potentially encoding numerous selective interactions important in development and disease, so this class of mechanism may apply more broadly to other biological systems.


Asunto(s)
Astrocitos/metabolismo , Heparitina Sulfato/metabolismo , Proteínas del Tejido Nervioso/fisiología , Células-Madre Neurales/metabolismo , Prosencéfalo/enzimología , Sulfatos/metabolismo , Sulfotransferasas/fisiología , Animales , Biomarcadores , Linaje de la Célula , Movimiento Celular , Corteza Cerebral/citología , Corteza Cerebral/embriología , Corteza Cerebral/metabolismo , Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Homeodominio/análisis , Ratones , N-Acetilglucosaminiltransferasas/deficiencia , N-Acetilglucosaminiltransferasas/fisiología , Prosencéfalo/citología , Prosencéfalo/embriología , Sulfotransferasas/deficiencia , Factores de Transcripción/análisis
8.
Brain Struct Funct ; 224(1): 387-417, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30343334

RESUMEN

Sodium deficiency elevates aldosterone, which in addition to epithelial tissues acts on the brain to promote dysphoric symptoms and salt intake. Aldosterone boosts the activity of neurons that express 11-beta-hydroxysteroid dehydrogenase type 2 (HSD2), a hallmark of aldosterone-sensitive cells. To better characterize these neurons, we combine immunolabeling and in situ hybridization with fate mapping and Cre-conditional axon tracing in mice. Many cells throughout the brain have a developmental history of Hsd11b2 expression, but in the adult brain one small brainstem region with a leaky blood-brain barrier contains HSD2 neurons. These neurons express Hsd11b2, Nr3c2 (mineralocorticoid receptor), Agtr1a (angiotensin receptor), Slc17a6 (vesicular glutamate transporter 2), Phox2b, and Nxph4; many also express Cartpt or Lmx1b. No HSD2 neurons express cholinergic, monoaminergic, or several other neuropeptidergic markers. Their axons project to the parabrachial complex (PB), where they intermingle with AgRP-immunoreactive axons to form dense terminal fields overlapping FoxP2 neurons in the central lateral subnucleus (PBcL) and pre-locus coeruleus (pLC). Their axons also extend to the forebrain, intermingling with AgRP- and CGRP-immunoreactive axons to form dense terminals surrounding GABAergic neurons in the ventrolateral bed nucleus of the stria terminalis (BSTvL). Sparse axons target the periaqueductal gray, ventral tegmental area, lateral hypothalamic area, paraventricular hypothalamic nucleus, and central nucleus of the amygdala. Dual retrograde tracing revealed that largely separate HSD2 neurons project to pLC/PB or BSTvL. This projection pattern raises the possibility that a subset of HSD2 neurons promotes the dysphoric, anorexic, and anhedonic symptoms of hyperaldosteronism via AgRP-inhibited relay neurons in PB.


Asunto(s)
11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/metabolismo , Aldosterona/farmacología , Tronco Encefálico/efectos de los fármacos , Neuronas/efectos de los fármacos , Prosencéfalo/efectos de los fármacos , Núcleo Solitario/efectos de los fármacos , 11-beta-Hidroxiesteroide Deshidrogenasa de Tipo 2/genética , Animales , Regulación del Apetito , Axones/efectos de los fármacos , Axones/enzimología , Tronco Encefálico/citología , Tronco Encefálico/enzimología , Encefalinas/genética , Encefalinas/metabolismo , Conducta Alimentaria , Técnica del Anticuerpo Fluorescente , Regulación de la Expresión Génica , Genes Reporteros , Hibridación Fluorescente in Situ , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Fluorescente , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/enzimología , Técnicas de Trazados de Vías Neuroanatómicas , Neuronas/enzimología , Prosencéfalo/citología , Prosencéfalo/enzimología , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Receptor de Angiotensina Tipo 1/genética , Receptor de Angiotensina Tipo 1/metabolismo , Núcleo Solitario/citología , Núcleo Solitario/enzimología
9.
Learn Mem ; 25(6): 273-282, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29764973

RESUMEN

Nonassociative learning is considered simple because it depends on presentation of a single stimulus, but it likely reflects complex molecular signaling. To advance understanding of the molecular mechanisms of one form of nonassociative learning, habituation, for ethologically relevant signals we examined song recognition learning in adult zebra finches. These colonial songbirds learn the unique song of individuals, which helps establish and maintain mate and other social bonds, and informs appropriate behavioral interactions with specific birds. We leveraged prior work demonstrating behavioral habituation for individual songs, and extended the molecular framework correlated with this behavior by investigating the mechanistic Target of Rapamycin (mTOR) signaling cascade. We hypothesized that mTOR may contribute to habituation because it integrates a variety of upstream signals and enhances associative learning, and it crosstalks with another cascade previously associated with habituation, ERK/ZENK. To begin probing for a possible role for mTOR in song recognition learning, we used a combination of song playback paradigms and bidirectional dysregulation of mTORC1 activation. We found that mTOR demonstrates the molecular signatures of a habituation mechanism, and that its manipulation reveals the complexity of processes that may be invoked during nonassociative learning. These results thus expand the molecular targets for habituation studies and raise new questions about neural processing of complex natural signals.


Asunto(s)
Percepción Auditiva/fisiología , Proteínas Aviares/metabolismo , Habituación Psicofisiológica/fisiología , Patrones de Reconocimiento Fisiológico/fisiología , Serina-Treonina Quinasas TOR/metabolismo , Vocalización Animal , Animales , Vías Auditivas/efectos de los fármacos , Vías Auditivas/enzimología , Percepción Auditiva/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Femenino , Pinzones , Habituación Psicofisiológica/efectos de los fármacos , Masculino , Patrones de Reconocimiento Fisiológico/efectos de los fármacos , Prosencéfalo/efectos de los fármacos , Prosencéfalo/enzimología , Reconocimiento en Psicología/efectos de los fármacos , Reconocimiento en Psicología/fisiología , Transducción de Señal , Sirolimus/farmacología , Serina-Treonina Quinasas TOR/antagonistas & inhibidores
10.
Brain Res ; 1679: 171-178, 2018 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-29225049

RESUMEN

The Wistar Audiogenic Rat (WAR) is a well-characterized seizure-prone, inbred rodent strain that, when acutely stimulated with high-intensity sounds, develops brainstem-dependent tonic-clonic seizures that can evolve to limbic-like, myoclonic (forebrain) seizures when the acoustic stimuli are presented chronically (audiogenic kindling). In order to investigate possible mechanisms underlying WAR susceptibility to seizures, we evaluated Na,K-ATPase activity, Ca-ATPase activity, Mg-ATPase activity, lipid membrane composition and oxidative stress markers in whole forebrain and whole brainstem samples of naïve WAR, as compared to samples from control Wistar rats. We also evaluated the expression levels of α1 and α3 isoforms of Na,K-ATPase in forebrain samples. We observed increased Na,K-ATPase activity in forebrain samples and increased oxidative stress markers (lipid peroxidation, glutathione peroxidase and superoxide dismutase) in brainstem samples of WAR. The Ca-ATPase activity, Mg-ATPase activity, lipid membrane composition and expression levels of α1 and α3 isoforms of Na,K-ATPase were unaltered. In view of previous data showing that the membrane potentials from naïve WAR's neurons are less negative than that from neurons from Wistar rats, we suggest that Na,K-ATPase increased activity might be involved in a compensatory mechanism necessary to maintain WAR's brains normal activity. Additionally, ongoing oxidative stress in the brainstem could bring Na,K-ATPase activity back to normal levels, which may explain why WAR's present increased susceptibility to seizures triggered by high-intensity sound stimulation.


Asunto(s)
Tronco Encefálico/enzimología , Estrés Oxidativo/fisiología , Prosencéfalo/enzimología , Convulsiones , ATPasa Intercambiadora de Sodio-Potasio/metabolismo , Estimulación Acústica/efectos adversos , Adenosina Trifosfatasas/metabolismo , Animales , Tronco Encefálico/patología , Modelos Animales de Enfermedad , Glutatión Peroxidasa/metabolismo , Excitación Neurológica/fisiología , Peroxidación de Lípido , Neuronas/enzimología , Prosencéfalo/patología , Isoformas de Proteínas/metabolismo , Ratas , Ratas Wistar , Convulsiones/etiología , Convulsiones/metabolismo , Convulsiones/patología
11.
Hippocampus ; 27(12): 1239-1249, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28833860

RESUMEN

The ERK/MAPK signaling pathway has been extensively studied in the context of learning and memory. Defects in this pathway underlie genetic diseases associated with intellectual disability, including impaired learning and memory. Numerous studies have investigated the impact of acute ERK/MAPK inhibition on long-term potentiation and spatial memory. However, genetic knockouts of the ERKs have not been utilized to determine whether developmental perturbations of ERK/MAPK signaling affect LTP and memory formation in postnatal life. In this study, two different ERK2 conditional knockout mice were generated that restrict loss of ERK2 to excitatory neurons in the forebrain, but at different time-points (embryonically and post-natally). We found that embryonic loss of ERK2 had minimal effect on spatial memory retention and novel object recognition, while loss of ERK2 post-natally had more pronounced effects in these behaviors. Loss of ERK2 in both models showed intact LTP compared to control animals, while loss of both ERK1 and ERK2 impaired late phase LTP. These findings indicate that ERK2 is not necessary for LTP and spatial memory retention and provide new insights into the functional deficits associated with the chronic impairment of ERK signaling.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/deficiencia , Ácido Glutámico/metabolismo , Potenciación a Largo Plazo/fisiología , Neuronas/enzimología , Prosencéfalo/enzimología , Memoria Espacial/fisiología , Animales , Animales Recién Nacidos , Quinasas MAP Reguladas por Señal Extracelular/genética , Femenino , Potenciación a Largo Plazo/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Neurogénesis/fisiología , Neuronas/citología , Prosencéfalo/citología , Prosencéfalo/crecimiento & desarrollo , Sinapsis/enzimología
12.
EMBO Mol Med ; 9(8): 1088-1099, 2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28588032

RESUMEN

γ-Secretases are a family of intramembrane cleaving aspartyl proteases and important drug targets in Alzheimer's disease. Here, we generated mice deficient for all γ-secretases in the pyramidal neurons of the postnatal forebrain by deleting the three anterior pharynx defective 1 (Aph1) subunits (Aph1abc cKO Cre+). The mice show progressive cortical atrophy, neuronal loss, and gliosis. Interestingly, this is associated with more than 10-fold accumulation of membrane-bound fragments of App, Aplp1, Nrg1, and Dcc, while other known substrates of γ-secretase such as Aplp2, Lrp1, and Sdc3 accumulate to lesser extents. Despite numerous reports linking neurodegeneration to accumulation of membrane-bound App fragments, deletion of App expression in the combined Aph1 knockout does not rescue this phenotype. Importantly, knockout of only Aph1a- or Aph1bc-secretases causes limited and differential accumulation of substrates. This was not associated with neurodegeneration. Further development of selective Aph1-γ-secretase inhibitors should be considered for treatment of Alzheimer's disease.


Asunto(s)
Endopeptidasas/deficiencia , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/fisiopatología , Prosencéfalo/enzimología , Prosencéfalo/patología , Animales , Western Blotting , Modelos Animales de Enfermedad , Histocitoquímica , Inmunohistoquímica , Proteínas de la Membrana , Ratones , Ratones Noqueados , Microscopía Fluorescente
13.
Dev Biol ; 424(2): 221-235, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28263766

RESUMEN

Sonic hedgehog (SHH) is a master developmental regulator. In 1995, the SHH crystal structure predicted that SHH-E176 (human)/E177 (mouse) regulates signaling through a Zn2+-dependent mechanism. While Zn2+ is known to be required for SHH protein stability, a regulatory role for SHH-E176 or Zn2+ has not been described. Here, we show that SHH-E176/177 modulates Zn2+-dependent cross-linking in vitro and is required for endogenous signaling, in vivo. While ectopically expressed SHH-E176A is highly active, mice expressing SHH-E177A at endogenous sites (ShhE177A/-) are morphologically indistinguishable from mice lacking SHH (Shh-/-), with patterning defects in both embryonic spinal cord and forebrain. SHH-E177A distribution along the embryonic spinal cord ventricle is unaltered, suggesting that E177 does not control long-range transport. While SHH-E177A association with cilia basal bodies increases in embryonic ventral spinal cord, diffusely distributed SHH-E177A is not detected. Together, these results reveal a novel role for E177-Zn2+ in regulating SHH signaling that may involve critical, cilia basal-body localized changes in cross-linking and/or conformation.


Asunto(s)
Proteínas Hedgehog/química , Proteínas Hedgehog/metabolismo , Transducción de Señal , Zinc/química , Animales , Anticuerpos/química , Anticuerpos/metabolismo , Especificidad de Anticuerpos/inmunología , Cuerpos Basales/efectos de los fármacos , Cuerpos Basales/metabolismo , Secuencia de Bases , Cilios/efectos de los fármacos , Cilios/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Embrión de Mamíferos/efectos de los fármacos , Embrión de Mamíferos/metabolismo , Humanos , Ratones , Prosencéfalo/efectos de los fármacos , Prosencéfalo/enzimología , Prosencéfalo/metabolismo , Conformación Proteica , Multimerización de Proteína/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Médula Espinal/efectos de los fármacos , Médula Espinal/embriología , Médula Espinal/metabolismo , Zinc/farmacología
14.
Mol Psychiatry ; 22(10): 1473-1482, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28138157

RESUMEN

Manic episodes are one of the major diagnostic symptoms in a spectrum of neuropsychiatric disorders that include schizophrenia, obsessive-compulsive disorder and bipolar disorder (BD). Despite a possible association between BD and the gene encoding phospholipase Cγ1 (PLCG1), its etiological basis remains unclear. Here, we report that mice lacking phospholipase Cγ1 (PLCγ1) in the forebrain (Plcg1f/f; CaMKII) exhibit hyperactivity, decreased anxiety-like behavior, reduced depressive-related behavior, hyperhedonia, hyperphagia, impaired learning and memory and exaggerated startle responses. Inhibitory transmission in hippocampal pyramidal neurons and striatal dopamine receptor D1-expressing neurons of Plcg1-deficient mice was significantly reduced. The decrease in inhibitory transmission is likely due to a reduced number of γ-aminobutyric acid (GABA)-ergic boutons, which may result from impaired localization and/or stabilization of postsynaptic CaMKII (Ca2+/calmodulin-dependent protein kinase II) at inhibitory synapses. Moreover, mutant mice display impaired brain-derived neurotrophic factor-tropomyosin receptor kinase B-dependent synaptic plasticity in the hippocampus, which could account for deficits of spatial memory. Lithium and valproate, the drugs presently used to treat mania associated with BD, rescued the hyperactive phenotypes of Plcg1f/f; CaMKII mice. These findings provide evidence that PLCγ1 is critical for synaptic function and plasticity and that the loss of PLCγ1 from the forebrain results in manic-like behavior.


Asunto(s)
Trastorno Bipolar/enzimología , Trastorno Bipolar/genética , Fosfolipasa C gamma/metabolismo , Prosencéfalo/enzimología , Animales , Trastorno Bipolar/parasitología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/enzimología , Hipocampo/metabolismo , Ratones , Plasticidad Neuronal/fisiología , Neuronas/enzimología , Neuronas/metabolismo , Fosfolipasa C gamma/deficiencia , Fosfolipasa C gamma/genética , Prosencéfalo/patología , Células Piramidales/metabolismo , Receptor trkB/metabolismo , Receptores de Dopamina D1 , Sinapsis/enzimología , Sinapsis/patología , Transmisión Sináptica/fisiología , Ácido gamma-Aminobutírico/metabolismo
15.
Neurobiol Aging ; 50: 134-143, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27960107

RESUMEN

The precise molecular and cellular events responsible for age-dependent cognitive dysfunctions remain unclear. We report that Rheb (ras homolog enriched in brain) GTPase, an activator of mammalian target of rapamycin (mTOR), regulates memory functions in mice. Conditional depletion of Rheb selectively in the forebrain of mice obtained from crossing Rhebf/f and CamKIICre results in spontaneous signs of age-related memory loss, that is, spatial memory deficits (T-maze, Morris water maze) without affecting locomotor (open-field test), anxiety-like (elevated plus maze), or contextual fear conditioning functions. Partial depletion of Rheb in forebrain was sufficient to elicit memory defects with little effect on the neuronal size, cortical thickness, or mammalian target of rapamycin activity. Rheb depletion, however, increased the levels of beta-site amyloid precursor protein cleaving enzyme 1 (BACE1), a protein elevated in aging and Alzheimer's disease. Overall, our study demonstrates that forebrain Rheb promotes aging-associated cognitive defects. Thus, molecular understanding of Rheb pathway in brain may provide new therapeutic targets for aging and/or Alzheimer's disease-associated memory deficits.


Asunto(s)
Envejecimiento/psicología , Trastornos de la Memoria/etiología , Proteínas de Unión al GTP Monoméricas/deficiencia , Proteínas de Unión al GTP Monoméricas/fisiología , Neuropéptidos/deficiencia , Neuropéptidos/fisiología , Prosencéfalo/enzimología , Envejecimiento/metabolismo , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Animales , Ácido Aspártico Endopeptidasas/metabolismo , Disfunción Cognitiva/etiología , Ratones Mutantes , Ratones Transgénicos , Terapia Molecular Dirigida , Proteína Homóloga de Ras Enriquecida en el Cerebro , Sirolimus/metabolismo , Memoria Espacial
16.
Arch Toxicol ; 90(5): 1081-92, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26026611

RESUMEN

Cadmium is a neurotoxic compound which induces cognitive alterations similar to those produced by Alzheimer's disease (AD). However, the mechanism through which cadmium induces this effect remains unknown. In this regard, we described in a previous work that cadmium blocks cholinergic transmission and induces a more pronounced cell death on cholinergic neurons from basal forebrain which is partially mediated by AChE overexpression. Degeneration of basal forebrain cholinergic neurons, as happens in AD, results in memory deficits attributable to the loss of cholinergic modulation of hippocampal synaptic circuits. Moreover, cadmium has been described to activate GSK-3ß, induce Aß protein production and tau filament formation, which have been related to a selective loss of basal forebrain cholinergic neurons and development of AD. The present study is aimed at researching the mechanisms of cell death induced by cadmium on basal forebrain cholinergic neurons. For this purpose, we evaluated, in SN56 cholinergic mourine septal cell line from basal forebrain region, the cadmium toxic effects on neuronal viability through muscarinic M1 receptor, AChE splice variants, GSK-3ß enzyme, Aß and tau proteins. This study proves that cadmium induces cell death on cholinergic neurons through blockade of M1 receptor, overexpression of AChE-S and GSK-3ß, down-regulation of AChE-R and increase in Aß and total and phosphorylated tau protein levels. Our present results provide new understanding of the mechanisms contributing to the harmful effects of cadmium on cholinergic neurons and suggest that cadmium could mediate these mechanisms by M1R blockade through AChE splices altered expression.


Asunto(s)
Precursor de Proteína beta-Amiloide/metabolismo , Cloruro de Cadmio/toxicidad , Neuronas Colinérgicas/efectos de los fármacos , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Antagonistas Muscarínicos/toxicidad , Prosencéfalo/efectos de los fármacos , Receptor Muscarínico M1/efectos de los fármacos , Proteínas tau/metabolismo , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animales , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Neuronas Colinérgicas/enzimología , Neuronas Colinérgicas/patología , Relación Dosis-Respuesta a Droga , Proteínas Ligadas a GPI/genética , Proteínas Ligadas a GPI/metabolismo , Glucógeno Sintasa Quinasa 3 beta/genética , Ratones , Fosforilación , Prosencéfalo/enzimología , Prosencéfalo/patología , Interferencia de ARN , Receptor Muscarínico M1/genética , Receptor Muscarínico M1/metabolismo , Transducción de Señal/efectos de los fármacos , Transfección , Regulación hacia Arriba
17.
Nutr Neurosci ; 19(8): 337-345, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26086200

RESUMEN

OBJECTIVES: Western-style diets high in saturated fat and refined carbohydrate have been shown to alter gut microbiota as well as being associated with altered behaviour and learning ability. The objective of this study was to determine the effects of short-term intake of a Western-style diet on intestinal cytokine expression, tryptophan metabolism, and levels of neurotransmitters in the brain. METHODS: At 7 weeks of age, 129S1/SvImJ mice were placed on a standard chow or Western-style diet (fat 33%, refined carbohydrates 49%) for 3 weeks. Anxiety-like behaviour was assessed by the latency to step-down test and exploration assessed in a Barnes maze. Neurotransmitter levels in forebrains were analysed by high-pressure liquid chromatography. Liver metabolism was examined by 1H nuclear magnetic resonance (NMR). Cytokine expression in the intestine was measured using MesoScale discovery platform. mRNA levels of tryptophan hydroxylase (Tph) and indoleamine 2,3-dioxygenase (IDO) in the brain and intestine were measured using qPCR. RESULTS: Results showed that mice fed the Western diet displayed reduced exploratory and anxiety-like behaviour. Anxiolytic effects correlated with increased hippocampal brain-derived neurotrophic factor (BDNF) and tryptophan levels. Brain serotonin was not altered. These changes were associated with reduced expression of small intestinal indoleamine 2,3-dioxygenase, a tryptophan-processing enzyme. Western diet-fed mice exhibited low-grade systemic and intestinal inflammation along with altered liver metabolic profiles. DISCUSSION: In conclusion, diets high in fat and refined sugar are associated with increased levels of brain BDNF and tryptophan and decreased exploratory and anxiety-like behaviour. These behavioural changes correlated with altered intestinal tryptophan metabolism and liver metabolic profiles.


Asunto(s)
Ansiedad/etiología , Dieta Occidental/efectos adversos , Modelos Animales de Enfermedad , Mucosa Intestinal/metabolismo , Enfermedades Metabólicas/etiología , Prosencéfalo/metabolismo , Triptófano/metabolismo , Animales , Ansiedad/inmunología , Ansiedad/metabolismo , Conducta Animal , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Citocinas/metabolismo , Conducta Exploratoria , Regulación Enzimológica de la Expresión Génica , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Mucosa Intestinal/enzimología , Mucosa Intestinal/inmunología , Intestino Delgado/enzimología , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Hígado/inmunología , Hígado/metabolismo , Masculino , Enfermedades Metabólicas/inmunología , Enfermedades Metabólicas/metabolismo , Ratones de la Cepa 129 , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/enzimología , Neuronas/inmunología , Neuronas/metabolismo , Prosencéfalo/enzimología , Prosencéfalo/inmunología , Organismos Libres de Patógenos Específicos , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/metabolismo
18.
Brain Res Bull ; 119(Pt A): 41-51, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26481044

RESUMEN

Nicotinamide adenine dinucleotide (NAD(+)) is an essential coenzyme/cosubstrate for many biological processes in cellular metabolism. The rate-limiting step in the major pathway of mammalian NAD(+) biosynthesis is mediated by nicotinamide phosphoribosyltransferase (Nampt). Previously, we showed that mice lacking Nampt in forebrain excitatory neurons (CamKIIαNampt(-/-) mice) exhibited hyperactivity, impaired learning and memory, and reduced anxiety-like behaviors. However, it remained unclear if these functional effects were accompanied by synaptic changes. Here, we show that CamKIIαNampt(-/-) mice have impaired induction of long-term depression (LTD) in the Schaffer collateral pathway, but normal induction of long-term potentiation (LTP), at postnatal day 30. Pharmacological assessments demonstrated that CamKIIαNampt(-/-) mice also display dysfunction of synaptic GluN2B (NR2B)-containing N-methyl-d-aspartate receptors (NMDARs) prior to changes in NMDAR subunit expression. These results support a novel, important role for Nampt-mediated NAD(+) biosynthesis in LTD and in the function of GluN2B-containing NMDARs.


Asunto(s)
Citocinas/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Nicotinamida Fosforribosiltransferasa/metabolismo , Prosencéfalo/enzimología , Receptores de N-Metil-D-Aspartato/metabolismo , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Animales , Citocinas/genética , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Potenciación a Largo Plazo/efectos de los fármacos , Depresión Sináptica a Largo Plazo/efectos de los fármacos , Masculino , Ratones Noqueados , Nicotinamida Fosforribosiltransferasa/genética , Prosencéfalo/efectos de los fármacos , Técnicas de Cultivo de Tejidos
19.
ACS Chem Neurosci ; 6(4): 615-31, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25650780

RESUMEN

Ca(2+)/calmodulin-dependent protein kinase IIα (CaMKIIα) autophosphorylation at Thr286 and Thr305/Thr306 regulates kinase activity and modulates subcellular targeting and is critical for normal synaptic plasticity and learning and memory. Here, a mass spectrometry-based approach was used to identify Ca(2+)-dependent and -independent in vitro autophosphorylation sites in recombinant CaMKIIα and CaMKIIß. CaMKII holoenzymes were then immunoprecipitated from subcellular fractions of forebrains isolated from either wild-type (WT) mice or mice with a Thr286 to Ala knock-in mutation of CaMKIIα (T286A-KI mice) and analyzed using the same approach in order to characterize in vivo phosphorylation sites in both CaMKII isoforms and identify CaMKII-associated proteins (CaMKAPs). A total of six and seven autophosphorylation sites in CaMKIIα and CaMKIIß, respectively, were detected in WT mice. Thr286-phosphorylated CaMKIIα and Thr287-phosphorylated CaMKIIß were selectively enriched in WT Triton-insoluble (synaptic) fractions compared to Triton-soluble (membrane) and cytosolic fractions. In contrast, Thr306-phosphorylated CaMKIIα and Ser315- and Thr320/Thr321-phosphorylated CaMKIIß were selectively enriched in WT cytosolic fractions. The T286A-KI mutation significantly reduced levels of phosphorylation of CaMKIIα at Ser275 across all subcellular fractions and of cytosolic CaMKIIß at Ser315 and Thr320/Thr321. Significantly more CaMKAPs coprecipitated with WT CaMKII holoenzymes in the synaptic fraction compared to that in the membrane fraction, with functions including scaffolding, microtubule organization, actin organization, ribosomal function, vesicle trafficking, and others. The T286A-KI mutation altered the interactions of multiple CaMKAPs with CaMKII, including several proteins linked to autism spectrum disorders. These data identify CaMKII isoform phosphorylation sites and a network of synaptic protein interactions that are sensitive to the abrogation of Thr286 autophosphorylation of CaMKIIα, likely contributing to the diverse synaptic and behavioral deficits of T286A-KI mice.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Prosencéfalo/enzimología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Membrana Celular/metabolismo , Citosol/metabolismo , Técnicas de Sustitución del Gen , Células HEK293 , Holoenzimas/genética , Holoenzimas/metabolismo , Humanos , Inmunoprecipitación , Masculino , Espectrometría de Masas , Ratones Transgénicos , Fosforilación , Proteómica/métodos , Proteínas Recombinantes/metabolismo , Células Sf9 , Spodoptera , Sinapsis/metabolismo
20.
J Neurosci ; 35(1): 339-51, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25568126

RESUMEN

The type 1 adenylyl cyclase (AC1) is an activity-dependent, calcium-stimulated adenylyl cyclase expressed in the nervous system that is implicated in memory formation. We examined the locomotor activity, and impulsive and social behaviors of AC1+ mice, a transgenic mouse strain overexpressing AC1 in the forebrain. Here we report that AC1+ mice exhibit hyperactive behaviors and demonstrate increased impulsivity and reduced sociability. In contrast, AC1 and AC8 double knock-out mice are hypoactive, and exhibit increased sociability and reduced impulsivity. Interestingly, the hyperactivity of AC1+ mice can be corrected by valproate, a mood-stabilizing drug. These data indicate that increased expression of AC1 in the forebrain leads to deficits in behavioral inhibition.


Asunto(s)
Adenilil Ciclasas/biosíntesis , Regulación Enzimológica de la Expresión Génica , Inhibición Psicológica , Inhibición Prepulso/fisiología , Prosencéfalo/enzimología , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Distribución Aleatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA