Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
EMBO Rep ; 25(8): 3707-3737, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39085642

RESUMEN

The key DNA repair enzyme DNA-PKcs has several and important cellular functions. Loss of DNA-PKcs activity in mice has revealed essential roles in immune and nervous systems. In humans, DNA-PKcs is a critical factor for brain development and function since mutation of the prkdc gene causes severe neurological deficits such as microcephaly and seizures, predicting yet unknown roles of DNA-PKcs in neurons. Here we show that DNA-PKcs modulates synaptic plasticity. We demonstrate that DNA-PKcs localizes at synapses and phosphorylates PSD-95 at newly identified residues controlling PSD-95 protein stability. DNA-PKcs -/- mice are characterized by impaired Long-Term Potentiation (LTP), changes in neuronal morphology, and reduced levels of postsynaptic proteins. A PSD-95 mutant that is constitutively phosphorylated rescues LTP impairment when over-expressed in DNA-PKcs -/- mice. Our study identifies an emergent physiological function of DNA-PKcs in regulating neuronal plasticity, beyond genome stability.


Asunto(s)
Proteína Quinasa Activada por ADN , Homólogo 4 de la Proteína Discs Large , Potenciación a Largo Plazo , Plasticidad Neuronal , Estabilidad Proteica , Animales , Fosforilación , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Ratones , Homólogo 4 de la Proteína Discs Large/metabolismo , Homólogo 4 de la Proteína Discs Large/genética , Neuronas/metabolismo , Ratones Noqueados , Humanos , Sinapsis/metabolismo , Reparación del ADN , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Unión al ADN
2.
Int J Mol Sci ; 25(11)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38892366

RESUMEN

In order to overcome the resistance to radiotherapy in human chondrosarcoma cells, the prevention from efficient DNA repair with a combined treatment with the DNA-dependent protein kinase catalytic subunit (DNA-PKcs) inhibitor AZD7648 was explored for carbon ion (C-ion) as well as reference photon (X-ray) irradiation (IR) using gene expression analysis, flow cytometry, protein phosphorylation, and telomere length shortening. Proliferation markers and cell cycle distribution changed significantly after combined treatment, revealing a prominent G2/M arrest. The expression of the G2/M checkpoint genes cyclin B, CDK1, and WEE1 was significantly reduced by IR alone and the combined treatment. While IR alone showed no effects, additional AZD7648 treatment resulted in a dose-dependent reduction in AKT phosphorylation and an increase in Chk2 phosphorylation. Twenty-four hours after IR, the key genes of DNA repair mechanisms were reduced by the combined treatment, which led to impaired DNA repair and increased radiosensitivity. A time-dependent shortening of telomere length was observed in both cell lines after combined treatment with AZD7648 and 8 Gy X-ray/C-ion IR. Our data suggest that the inhibition of DNA-PKcs may increase sensitivity to X-rays and C-ion IR by impairing its functional role in DNA repair mechanisms and telomere end protection.


Asunto(s)
Condrosarcoma , Proteína Quinasa Activada por ADN , Radioterapia de Iones Pesados , Telómero , Humanos , Proteína Quinasa Activada por ADN/antagonistas & inhibidores , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Línea Celular Tumoral , Condrosarcoma/metabolismo , Condrosarcoma/genética , Condrosarcoma/radioterapia , Condrosarcoma/tratamiento farmacológico , Telómero/efectos de los fármacos , Telómero/metabolismo , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de la radiación , Reparación del ADN/efectos de los fármacos , Tolerancia a Radiación/efectos de los fármacos , Pirazoles/farmacología , Proliferación Celular/efectos de los fármacos , Neoplasias Óseas/metabolismo , Neoplasias Óseas/genética , Neoplasias Óseas/patología , Neoplasias Óseas/tratamiento farmacológico , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de la radiación
3.
Adv Sci (Weinh) ; 11(29): e2400023, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38828688

RESUMEN

The factors driving glioma progression remain poorly understood. Here, the epigenetic regulator TRIM24 is identified as a driver of glioma progression, where TRIM24 overexpression promotes HRasV12 anaplastic astrocytoma (AA) progression into epithelioid GBM (Ep-GBM)-like tumors. Co-transfection of TRIM24 with HRasV12 also induces Ep-GBM-like transformation of human neural stem cells (hNSCs) with tumor protein p53 gene (TP53) knockdown. Furthermore, TRIM24 is highly expressed in clinical Ep-GBM specimens. Using single-cell RNA-sequencing (scRNA-Seq), the authors show that TRIM24 overexpression impacts both intratumoral heterogeneity and the tumor microenvironment. Mechanically, HRasV12 activates phosphorylated adaptor for RNA export (PHAX) and upregulates U3 small nucleolar RNAs (U3 snoRNAs) to recruit Ku-dependent DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Overexpressed TRIM24 is also recruited by PHAX to U3 snoRNAs, thereby facilitating DNA-PKcs phosphorylation of TRIM24 at S767/768 residues. Phosphorylated TRIM24 induces epigenome and transcription factor network reprogramming and promotes Ep-GBM-like transformation. Targeting DNA-PKcs with the small molecule inhibitor NU7441 synergizes with temozolomide to reduce Ep-GBM tumorigenicity and prolong animal survival. These findings provide new insights into the epigenetic regulation of Ep-GBM-like transformation and suggest a potential therapeutic strategy for patients with Ep-GBM.


Asunto(s)
Progresión de la Enfermedad , Glioma , Mutación , ARN Nucleolar Pequeño , Humanos , Glioma/genética , Glioma/metabolismo , Glioma/patología , Ratones , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , Animales , Mutación/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Modelos Animales de Enfermedad , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas ras/metabolismo , Proteínas ras/genética , Proteínas Portadoras
4.
Clin Transl Med ; 14(5): e1690, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38760896

RESUMEN

INTRODUCTION: Radiation-induced pulmonary fibrosis (RIPF) is a chronic, progressive, irreversible lung interstitial disease that develops after radiotherapy. Although several previous studies have focused on the mechanism of epithelial-mesenchymal transition (EMT) in lung epithelial cells, the essential factors involved in this process remain poorly understood. The DNA-dependent protein kinase catalytic subunit (DNA-PKcs) exhibits strong repair capacity when cells undergo radiation-induced damage; whether DNA-PKcs regulates EMT during RIPF remains unclear. OBJECTIVES: To investigate the role and molecular mechanism of DNA-PKcs in RIPF and provide an important theoretical basis for utilising DNA-PKcs-targeted drugs for preventing RIPF. METHODS: DNA-PKcs knockout (DPK-/-) mice were generated via the Cas9/sgRNA technique and subjected to whole chest ionizing radiation (IR) at a 20 Gy dose. Before whole chest IR, the mice were intragastrically administered the DNA-PKcs-targeted drug VND3207. Lung tissues were collected at 1 and 5 months after IR. RESULTS: The expression of DNA-PKcs is low in pulmonary fibrosis (PF) patients. DNA-PKcs deficiency significantly exacerbated RIPF by promoting EMT in lung epithelial cells. Mechanistically, DNA-PKcs deletion by shRNA or inhibitor NU7441 maintained the protein stability of Twist1. Furthermore, AKT1 mediated the interaction between DNA-PKcs and Twist1. High Twist1 expression and EMT-associated changes caused by DNA-PKcs deletion were blocked by insulin-like growth factor-1 (IGF-1), an AKT1 agonist. The radioprotective drug VND3207 prevented IR-induced EMT and alleviated RIPF in mice by stimulating the kinase activity of DNA-PKcs. CONCLUSION: Our study clarified the critical role and mechanism of DNA-PKcs in RIPF and showed that it could be a potential target for preventing RIPF.


Asunto(s)
Proteína Quinasa Activada por ADN , Transición Epitelial-Mesenquimal , Proteínas Nucleares , Proteínas Proto-Oncogénicas c-akt , Fibrosis Pulmonar , Proteína 1 Relacionada con Twist , Transición Epitelial-Mesenquimal/efectos de los fármacos , Animales , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteína 1 Relacionada con Twist/metabolismo , Proteína 1 Relacionada con Twist/genética , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/etiología , Ubiquitinación , Humanos , Ratones Noqueados , Proteínas de Unión al ADN
5.
Nucleic Acids Res ; 52(11): 6360-6375, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38682589

RESUMEN

Although DNA-PK inhibitors (DNA-PK-i) have been applied in clinical trials for cancer treatment, the biomarkers and mechanism of action of DNA-PK-i in tumor cell suppression remain unclear. Here, we observed that a low dose of DNA-PK-i and PARP inhibitor (PARP-i) synthetically suppresses BRCA-deficient tumor cells without inducing DNA double-strand breaks (DSBs). Instead, we found that a fraction of DNA-PK localized inside of nucleoli, where we did not observe obvious DSBs. Moreover, the Ku proteins recognize pre-rRNA that facilitates DNA-PKcs autophosphorylation independent of DNA damage. Ribosomal proteins are also phosphorylated by DNA-PK, which regulates pre-rRNA biogenesis. In addition, DNA-PK-i acts together with PARP-i to suppress pre-rRNA biogenesis and tumor cell growth. Collectively, our studies reveal a DNA damage repair-independent role of DNA-PK-i in tumor suppression.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Proteína Quinasa Activada por ADN , Autoantígeno Ku , Precursores del ARN , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Humanos , Precursores del ARN/metabolismo , Precursores del ARN/genética , Línea Celular Tumoral , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Fosforilación , Nucléolo Celular/metabolismo , Nucléolo Celular/genética , Nucléolo Celular/efectos de los fármacos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteína BRCA1/genética , Proteína BRCA1/metabolismo , ARN Ribosómico/metabolismo , ARN Ribosómico/genética , Animales , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo
6.
Cell Death Differ ; 31(5): 683-696, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38589496

RESUMEN

Protein phosphatase 1 catalytic subunit gamma (PPP1CC) promotes DNA repair and tumor development and progression, however, its underlying mechanisms remain unclear. This study investigated the molecular mechanism of PPP1CC's involvement in DNA repair and the potential clinical implications. High expression of PPP1CC was significantly correlated with radioresistance and poor prognosis in human nasopharyngeal carcinoma (NPC) patients. The mechanistic study revealed that PPP1CC bound to Ku70/Ku80 heterodimers and activated DNA-PKcs by promoting DNA-PK holoenzyme formation, which enhanced nonhomologous end junction (NHEJ) -mediated DNA repair and led to radioresistance. Importantly, BRCA1-BRCA2-containing complex subunit 3 (BRCC3) interacted with PPP1CC to enhance its stability by removing the K48-linked polyubiquitin chain at Lys234 to prevent PPP1CC degradation. Therefore, BRCC3 helped the overexpressed PPP1CC to maintain its high protein level, thereby sustaining the elevation of DNA repair capacity and radioresistance. Our study identified the molecular mechanism by which PPP1CC promotes NHEJ-mediated DNA repair and radioresistance, suggesting that the BRCC3-PPP1CC-Ku70 axis is a potential therapeutic target to improve the efficacy of radiotherapy.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Carcinoma Nasofaríngeo , Neoplasias Nasofaríngeas , Proteína Fosfatasa 1 , Tolerancia a Radiación , Animales , Femenino , Humanos , Masculino , Ratones , Línea Celular Tumoral , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Ratones Desnudos , Carcinoma Nasofaríngeo/radioterapia , Carcinoma Nasofaríngeo/patología , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/metabolismo , Neoplasias Nasofaríngeas/radioterapia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patología , Neoplasias Nasofaríngeas/metabolismo , Pronóstico , Proteína Fosfatasa 1/metabolismo , Proteína Fosfatasa 1/genética , Tolerancia a Radiación/genética
7.
Cell Syst ; 15(4): 339-361.e8, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38593799

RESUMEN

The DNA-dependent protein kinase, DNA-PK, is an essential regulator of DNA damage repair. DNA-PK-driven phosphorylation events and the activated DNA damage response (DDR) pathways are also components of antiviral intrinsic and innate immune responses. Yet, it is not clear whether and how the DNA-PK response differs between these two forms of nucleic acid stress-DNA damage and DNA virus infection. Here, we define DNA-PK substrates and the signature cellular phosphoproteome response to DNA damage or infection with the nuclear-replicating DNA herpesvirus, HSV-1. We establish that DNA-PK negatively regulates the ataxia-telangiectasia-mutated (ATM) DDR kinase during viral infection. In turn, ATM blocks the binding of DNA-PK and the nuclear DNA sensor IFI16 to viral DNA, thereby inhibiting cytokine responses. However, following DNA damage, DNA-PK enhances ATM activity, which is required for IFN-ß expression. These findings demonstrate that the DDR autoregulates cytokine expression through the opposing modulation of DDR kinases.


Asunto(s)
Ataxia Telangiectasia , Infecciones por Herpesviridae , Humanos , Fosforilación , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Citocinas/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Daño del ADN
8.
Exp Cell Res ; 438(1): 114036, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614421

RESUMEN

Ovarian cancer is the leading cause of gynecologic cancer death. Among the most innovative anti-cancer approaches, the genetic concept of synthetic lethality is that mutations in multiple genes work synergistically to effect cell death. Previous studies found that although vaccinia-related kinase-1 (VRK1) associates with DNA damage repair proteins, its underlying mechanisms remain unclear. Here, we found high VRK1 expression in ovarian tumors, and that VRK1 depletion can significantly promote apoptosis and cell cycle arrest. The effect of VRK1 knockdown on apoptosis was manifested by increased DNA damage, genomic instability, and apoptosis, and also blocked non-homologous end joining (NHEJ) by destabilizing DNA-PK. Further, we verified that VRK1 depletion enhanced sensitivity to a PARP inhibitor (PARPi), olaparib, promoting apoptosis through DNA damage, especially in ovarian cancer cell lines with high VRK1 expression. Proteins implicated in DNA damage responses are suitable targets for the development of new anti-cancer therapeutic strategies, and their combination could represent an alternative form of synthetic lethality. Therefore, normal protective DNA damage responses are impaired by combining olaparib with elimination of VRK1 and could be used to reduce drug dose and its associated toxicity. In summary, VRK1 represents both a potential biomarker for PARPi sensitivity, and a new DDR-associated therapeutic target, in ovarian cancer.


Asunto(s)
Daño del ADN , Proteína Quinasa Activada por ADN , Péptidos y Proteínas de Señalización Intracelular , Neoplasias Ováricas , Proteínas Serina-Treonina Quinasas , Femenino , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Daño del ADN/efectos de los fármacos , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Inestabilidad Genómica/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Neoplasias Ováricas/tratamiento farmacológico , Neoplasias Ováricas/genética , Neoplasias Ováricas/patología , Neoplasias Ováricas/metabolismo , Ftalazinas/farmacología , Piperazinas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética
9.
Oncogene ; 43(15): 1087-1097, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38383726

RESUMEN

BRCA1-associated protein 1 (BAP1) has emerged as a major tumor suppressor gene in diverse cancer types, notably in malignant pleural mesothelioma (DPM), and has also been identified as a germline cancer predisposition gene for DPM and other select cancers. However, its role in the response to DNA damage has remained unclear. Here, we show that BAP1 inactivation is associated with increased DNA damage both in Met-5A human mesothelial cells and human DPM cell lines. Through proteomic analyses, we identified PRKDC as an interaction partner of BAP1 protein complexes in DPM cells and 293 T human embryonic kidney cells. PRKDC encodes the catalytic subunit of DNA protein kinase (DNA-PKcs) which functions in the nonhomologous end-joining (NHEJ) pathway of DNA repair. Double-stranded DNA damage resulted in prominent nuclear expression of BAP1 in DPM cells and phosphorylation of BAP1 at serine 395. A plasmid-based NHEJ assay confirmed a significant effect of BAP1 knockdown on cellular NHEJ activity. Combination treatment with X-ray irradiation and gemcitabine (as a radiosensitizer) strongly suppressed the growth of BAP1-deficient cells. Our results suggest reciprocal positive interactions between BAP1 and DNA-PKcs, based on phosphorylation of BAP1 by the latter and deubiquitination of DNA-PKcs by BAP1. Thus, functional interaction of BAP1 with DNA-PKcs supports a role for BAP1 in NHEJ DNA repair and may provide the basis for new therapeutic strategies and new insights into its role as a tumor suppressor.


Asunto(s)
Neoplasias , Proteómica , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Roturas del ADN de Doble Cadena , Reparación del ADN/genética , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , ADN/genética , Reparación del ADN por Unión de Extremidades/genética , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina Tiolesterasa/genética , Ubiquitina Tiolesterasa/metabolismo
10.
Nucleic Acids Res ; 52(9): 5048-5066, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38412274

RESUMEN

Two DNA repair pathways, non-homologous end joining (NHEJ) and alternative end joining (A-EJ), are involved in V(D)J recombination and chromosome translocation. Previous studies reported distinct repair mechanisms for chromosome translocation, with NHEJ involved in humans and A-EJ in mice predominantly. NHEJ depends on DNA-PKcs, a critical partner in synapsis formation and downstream component activation. While DNA-PKcs inhibition promotes chromosome translocations harboring microhomologies in mice, its synonymous effect in humans is not known. We find partial DNA-PKcs inhibition in human cells leads to increased translocations and the continued involvement of a dampened NHEJ. In contrast, complete DNA-PKcs inhibition substantially increased microhomology-mediated end joining (MMEJ), thus bridging the two different translocation mechanisms between human and mice. Similar to a previous study on Ku70 deletion, DNA-PKcs deletion in G1/G0-phase mouse progenitor B cell lines, significantly impairs V(D)J recombination and generated higher rates of translocations as a consequence of dysregulated coding and signal end joining. Genetic DNA-PKcs inhibition suppresses NHEJ entirely, with repair phenotypically resembling Ku70-deficient A-EJ. In contrast, we find DNA-PKcs necessary in generating the near-exclusive MMEJ associated with Lig4 deficiency. Our study underscores DNA-PKcs in suppressing illegitimate chromosome rearrangement while also contributing to MMEJ in both species.


Asunto(s)
Aberraciones Cromosómicas , Reparación del ADN por Unión de Extremidades , Proteína Quinasa Activada por ADN , Animales , Humanos , Ratones , Línea Celular , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Autoantígeno Ku/genética , Autoantígeno Ku/metabolismo , Translocación Genética , Recombinación V(D)J
11.
Nucleic Acids Res ; 52(8): 4313-4327, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38407308

RESUMEN

The complex formed by Ku70/80 and DNA-PKcs (DNA-PK) promotes the synapsis and the joining of double strand breaks (DSBs) during canonical non-homologous end joining (c-NHEJ). In c-NHEJ during V(D)J recombination, DNA-PK promotes the processing of the ends and the opening of the DNA hairpins by recruiting and/or activating the nuclease Artemis/DCLRE1C/SNM1C. Paradoxically, DNA-PK is also required to prevent the fusions of newly replicated leading-end telomeres. Here, we describe the role for DNA-PK in controlling Apollo/DCLRE1B/SNM1B, the nuclease that resects leading-end telomeres. We show that the telomeric function of Apollo requires DNA-PKcs's kinase activity and the binding of Apollo to DNA-PK. Furthermore, AlphaFold-Multimer predicts that Apollo's nuclease domain has extensive additional interactions with DNA-PKcs, and comparison to the cryo-EM structure of Artemis bound to DNA-PK phosphorylated on the ABCDE/Thr2609 cluster suggests that DNA-PK can similarly grant Apollo access to the DNA end. In agreement, the telomeric function of DNA-PK requires the ABCDE/Thr2609 cluster. These data reveal that resection of leading-end telomeres is regulated by DNA-PK through its binding to Apollo and its (auto)phosphorylation-dependent positioning of Apollo at the DNA end, analogous but not identical to DNA-PK dependent regulation of Artemis at hairpins.


Asunto(s)
Proteína Quinasa Activada por ADN , Proteínas de Unión al ADN , Endonucleasas , Telómero , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Telómero/metabolismo , Telómero/genética , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Endonucleasas/metabolismo , Endonucleasas/genética , Reparación del ADN por Unión de Extremidades , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Autoantígeno Ku/metabolismo , Autoantígeno Ku/genética , Unión Proteica , Roturas del ADN de Doble Cadena , Fosforilación , ADN/metabolismo , ADN/química , ADN/genética
12.
Int J Radiat Biol ; 100(4): 584-594, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38166485

RESUMEN

PURPOSE: AMP-activated protein kinase (AMPK) acts as a cellular energy sensor and is essential for controlling mitochondrial homeostasis. Here, we investigated the regulatory mechanisms involved in AMPK activation to elucidate how networks of intracellular signaling pathways respond to stress conditions. MATERIALS AND METHODS: Inhibitors of ATM, DNA-PK, and AKT were tested in normal TIG-3 and MRC-5 human fibroblasts to determine which upstream kinases are responsible for AMPK activation. SV40 transformed-human ATM-deficient fibroblasts (AT5BIVA) and their ATM-complemented cells (i.e., AT5BIVA/ATMwt) were also used. Protein expression associated with AMPK signaling was examined by immunostaining and/or Western blotting. RESULTS: Radiation-induced nuclear DNA damage activates ATM-dependent AMPK signaling pathways that regulate mitochondrial quality control. In contrast, hypoxia and glucose starvation caused ATP depletion and activated AMPK via a pathway independent of ATM. DNA-PK and AKT are not involved in AMPK-mediated mitochondrial signaling pathways. CONCLUSION: Activation of the AMPK signaling pathway differs depending on the stimulus. Radiation activates AMPK through two pathways: depletion of ATP-mediated LKB1 signaling and nuclear DNA damage-induced ATM signaling. Nuclear DNA damage signaling to mitochondria therefore plays a pivotal role in determining the cell fates of irradiated cells.


Asunto(s)
Proteínas Quinasas Activadas por AMP , Proteína Quinasa Activada por ADN , Humanos , Proteína Quinasa Activada por ADN/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas de la Ataxia Telangiectasia Mutada/genética , Mitocondrias/metabolismo , Daño del ADN , Adenosina Trifosfato/metabolismo , ADN
13.
Mol Biol Rep ; 51(1): 163, 2024 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-38252348

RESUMEN

BACKGROUND: Due to the high demand for novel approaches for leukemia-targeted therapy, this study investigates the impact of DNA-PK inhibitor NU7441 on the sensitivity of pre-B ALL cells to the telomerase inhibitor MST-312. METHODS: The study involved NALM-6 cells treated with MST-312 and NU7441, assessing their viability and metabolic activity using trypan blue and MTT assays. The study also evaluated apoptosis, gene expression changes, and DNA damage using flow cytometry, qRT-PCR, and micronucleus assays. The binding energy of MST-312 in the active site of telomerase was calculated using molecular docking. RESULTS: The study's findings revealed a synergistic decline in both cell viability and metabolic activity in NALM-6 cells when exposed to the combined treatment of MST-312 and NU7441, and this decrease occurred without any adverse effects on healthy PBMC cells. Furthermore, the combination treatment exhibited a significantly higher induction of apoptosis than treatment with MST-312 alone, as observed through flow cytometry assay. qRT-PCR analysis revealed that this enhanced apoptosis was associated with a notable downregulation of Bcl-2 expression and an upregulation of Bax gene expression. Moreover, the combination therapy decreased expression levels of hTERT and c-Myc genes. The micronucleus assay indicated that the combination treatment increased DNA damage in NALM-6 cells. Also, a good conformation between MST-312 and the active site of telomerase was revealed by docking data. CONCLUSIONS: The study suggests that simultaneous inhibition of telomerase and DNA-PK in pre-B ALL presents a novel targeted therapy approach.


Asunto(s)
Benzamidas , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Telomerasa , Humanos , Telomerasa/genética , Leucocitos Mononucleares , Simulación del Acoplamiento Molecular , Proteína Quinasa Activada por ADN/genética , ADN
14.
J Cell Sci ; 137(3)2024 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-38240344

RESUMEN

Anthracyclines, topoisomerase II enzyme poisons that cause DNA damage, are the mainstay of acute myeloid leukemia (AML) treatment. However, acquired resistance to anthracyclines leads to relapse, which currently lacks effective treatment and is the cause of poor survival in individuals with AML. Therefore, the identification of the mechanisms underlying anthracycline resistance remains an unmet clinical need. Here, using patient-derived primary cultures and clinically relevant cellular models that recapitulate acquired anthracycline resistance in AML, we have found that GCN5 (also known as KAT2A) mediates transcriptional upregulation of DNA-dependent protein kinase catalytic subunit (DNA-PKcs) in AML relapse, independently of the DNA-damage response. We demonstrate that anthracyclines fail to induce DNA damage in resistant cells, owing to the loss of expression of their target enzyme, TOP2B; this was caused by DNA-PKcs directly binding to its promoter upstream region as a transcriptional repressor. Importantly, DNA-PKcs kinase activity inhibition re-sensitized AML relapse primary cultures and cells resistant to mitoxantrone, and abrogated their tumorigenic potential in a xenograft mouse model. Taken together, our findings identify a GCN5-DNA-PKcs-TOP2B transcriptional regulatory axis as the mechanism underlying anthracycline resistance, and demonstrate the therapeutic potential of DNA-PKcs inhibition to re-sensitize resistant AML relapse cells to anthracycline.


Asunto(s)
Proteína Quinasa Activada por ADN , Leucemia Mieloide Aguda , Humanos , Ratones , Animales , Proteína Quinasa Activada por ADN/genética , Proteína Quinasa Activada por ADN/metabolismo , Resistencia a Antineoplásicos/genética , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , ADN-Topoisomerasas de Tipo II/genética , ADN-Topoisomerasas de Tipo II/metabolismo , ADN-Topoisomerasas de Tipo II/uso terapéutico , Antraciclinas/farmacología , Antraciclinas/uso terapéutico , Antibióticos Antineoplásicos , Recurrencia , ADN , Proteínas de Unión a Poli-ADP-Ribosa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA