Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 599
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Metab ; 36(6): 1169-1171, 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38838638

RESUMEN

In this issue of Cell Metabolism, Fang et al.1 report a novel pH-sensitive cellular signaling mechanism involving the transcription factor SMAD5 that regulates the vesicular secretion of insulin from pancreatic ß cells in response to dietary challenges. Dysregulation of this pathway may contribute to metabolic disorders such as type 2 diabetes mellitus.


Asunto(s)
Secreción de Insulina , Células Secretoras de Insulina , Insulina , Transducción de Señal , Proteína Smad5 , Insulina/metabolismo , Animales , Células Secretoras de Insulina/metabolismo , Proteína Smad5/metabolismo , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Ratones , Concentración de Iones de Hidrógeno
2.
Am J Physiol Cell Physiol ; 327(1): C124-C139, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38766767

RESUMEN

Protein synthesis regulation is critical for skeletal muscle hypertrophy, yet other established cellular processes are necessary for growth-related cellular remodeling. Autophagy has a well-acknowledged role in muscle quality control, but evidence for its role in myofiber hypertrophy remains equivocal. Both mammalian target of rapamycin complex I (mTORC1) and bone morphogenetic protein (BMP)-Smad1/5 (Sma and Mad proteins from Caenorhabditis elegans and Drosophila, respectively) signaling are reported regulators of myofiber hypertrophy; however, gaps remain in our understanding of how this regulation is integrated with growth processes and autophagy regulation. Therefore, we investigated the mTORC1 and Smad1/5 regulation of protein synthesis and autophagy flux during serum-stimulated myotube growth. Chronic serum stimulation experiments were performed on day 5 differentiated C2C12 myotubes incubated in differentiation medium [2% horse serum (HS)] or growth medium [5% fetal bovine serum (FBS)] for 48 h. Rapamycin or LDN193189 was dosed for 48 h to inhibit mTORC1 and BMP-Smad1/5 signaling, respectively. Acute serum stimulation was examined in day 7 differentiated myotubes. Protein synthesis was measured by puromycin incorporation. Bafilomycin A1 and immunoblotting for LC3B were used to assess autophagy flux. Chronic serum stimulation increased myotube diameter 22%, total protein 21%, total RNA 100%, and Smad1/5 phosphorylation 404% and suppressed autophagy flux. Rapamycin, but not LDN193189, blocked serum-induced myotube hypertrophy and the increase in total RNA. Acute serum stimulation increased protein synthesis 111%, Smad1/5 phosphorylation 559%, and rpS6 phosphorylation 117% and suppressed autophagy flux. Rapamycin increased autophagy flux during acute serum stimulation. These results provide evidence for mTORC1, but not BMP-Smad1/5, signaling being required for serum-induced myotube hypertrophy and autophagy flux by measuring LC3BII/I expression. Further investigation is warranted to examine the role of autophagy flux in myotube hypertrophy.NEW & NOTEWORTHY The present study demonstrates that myotube hypertrophy caused by chronic serum stimulation requires mammalian target of rapamycin complex 1 (mTORC1) signaling but not bone morphogenetic protein (BMP)-Smad1/5 signaling. The suppression of autophagy flux was associated with serum-induced myotube hypertrophy and mTORC1 regulation of autophagy flux by measuring LC3BII/I expression. Rapamycin is widely investigated for beneficial effects in aging skeletal muscle and sarcopenia; our results provide evidence that rapamycin can regulate autophagy-related signaling during myotube growth, which could benefit skeletal muscle functional and metabolic health.


Asunto(s)
Autofagia , Proteínas Morfogenéticas Óseas , Hipertrofia , Diana Mecanicista del Complejo 1 de la Rapamicina , Fibras Musculares Esqueléticas , Transducción de Señal , Proteína Smad1 , Proteína Smad5 , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Animales , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/efectos de los fármacos , Autofagia/efectos de los fármacos , Proteína Smad1/metabolismo , Proteína Smad1/genética , Ratones , Hipertrofia/metabolismo , Proteína Smad5/metabolismo , Proteína Smad5/genética , Proteínas Morfogenéticas Óseas/metabolismo , Línea Celular , Suero/metabolismo , Diferenciación Celular/efectos de los fármacos
3.
Vascul Pharmacol ; 155: 107381, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38795838

RESUMEN

AIMS: Bone morphogenetic protein-9 (BMP9) is critical for bone morphogenetic protein receptor type-2 (BMPR2) signalling in pulmonary vascular endothelial cells. Furthermore, human genetics studies support the central role of disrupted BMPR2 mediated BMP9 signalling in vascular endothelial cells in the initiation of pulmonary arterial hypertension (PAH). In addition, loss-of-function mutations in BMP9 have been identified in PAH patients. BMP9 is considered to play an important role in vascular homeostasis and quiescence. METHODS AND RESULTS: We identified a novel BMP9 target as the class-3 semaphorin, SEMA3G. Although originally identified as playing a role in neuronal development, class-3 semaphorins may have important roles in endothelial function. Here we show that BMP9 transcriptional regulation of SEMA3G occurs via ALK1 and the canonical Smad pathway, requiring both Smad1 and Smad5. Knockdown studies demonstrated redundancy between type-2 receptors in that BMPR2 and ACTR2A were compensatory. Increased SEMA3G expression by BMP9 was found to be regulated by the transcription factor, SOX17. Moreover, we observed that SEMA3G regulates VEGF signalling by inhibiting VEGFR2 phosphorylation and that VEGF, in contrast to BMP9, negatively regulated SEMA3G transcription. Functional endothelial cell assays of VEGF-mediated migration and network formation revealed that BMP9 inhibition of VEGF was abrogated by SEMA3G knockdown. Conversely, treatment with recombinant SEMA3G partially mimicked the inhibitory action of BMP9 in these assays. CONCLUSIONS: This study provides further evidence for the anti-angiogenic role of BMP9 in microvascular endothelial cells and these functions are mediated at least in part via SOX17 and SEMA3G induction.


Asunto(s)
Movimiento Celular , Células Endoteliales , Factor 2 de Diferenciación de Crecimiento , Semaforinas , Transducción de Señal , Factor A de Crecimiento Endotelial Vascular , Humanos , Movimiento Celular/efectos de los fármacos , Semaforinas/metabolismo , Semaforinas/genética , Factor 2 de Diferenciación de Crecimiento/genética , Factor 2 de Diferenciación de Crecimiento/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo , Factor A de Crecimiento Endotelial Vascular/genética , Proteína Smad5/metabolismo , Proteína Smad5/genética , Receptores de Activinas Tipo I/metabolismo , Receptores de Activinas Tipo I/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo II/genética , Proteína Smad1/metabolismo , Proteína Smad1/genética , Pulmón/metabolismo , Pulmón/irrigación sanguínea , Neovascularización Fisiológica/efectos de los fármacos , Células Cultivadas
4.
Biomed Pharmacother ; 174: 116503, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565060

RESUMEN

Androgenetic alopecia (AGA) is a prevalent disease in worldwide, local application or oral are often used to treat AGA, however, effective treatments for AGA are currently limited. In this work, we observed the promoting the initial anagen phase effect of pilose antler extract (PAE) on hair regeneration in AGA mice. We found that PAE accelerated hair growth and increased the degree of skin blackness by non-invasive in vivo methods including camera, optical coherence tomography and dermoscopy. Meanwhile, HE staining of sagittal and coronal skin sections revealed that PAE augmented the quantity and length of hair follicles, while also enhancing skin thickness and hair papilla diameter. Furthermore, PAE facilitated the shift of the growth cycle from the telogen to the anagen phase and expedited the proliferation of hair follicle stem cells and matrix cells in mice with AGA. This acceleration enabled the hair follicles to enter the growth phase at an earlier stage. PAE upregulated the expression of the sonic hedgehog (SHH), smoothened receptor, glioma-associated hemolog1 (GLI1), and downregulated the expression of bone morphogenetic protein 4 (BMP4), recombinant mothers against decapentaplegic homolog (Smad) 1 and 5 phosphorylation. This evidence suggests that PAE fosters hair growth and facilitates the transition of the growth cycle from the telogen to the anagen phase in AGA mice. This effect is achieved by enhancing the proliferation of follicle stem cells and matrix cells through the activation of the SHH/GLI pathway and suppression of the BMP/Smad pathway.


Asunto(s)
Alopecia , Cuernos de Venado , Proteína Morfogenética Ósea 4 , Folículo Piloso , Cabello , Animales , Cuernos de Venado/química , Alopecia/tratamiento farmacológico , Alopecia/patología , Folículo Piloso/efectos de los fármacos , Folículo Piloso/metabolismo , Ratones , Masculino , Proteína Morfogenética Ósea 4/metabolismo , Cabello/efectos de los fármacos , Cabello/crecimiento & desarrollo , Proteínas Hedgehog/metabolismo , Proteína con Dedos de Zinc GLI1/metabolismo , Proteína con Dedos de Zinc GLI1/genética , Proliferación Celular/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Extractos de Tejidos/farmacología , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad , Regeneración/efectos de los fármacos , Ciervos , Proteína Smad5/metabolismo
5.
Eur J Clin Invest ; 54(8): e14212, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38591651

RESUMEN

BACKGROUND: Bone morphogenetic protein 9 (BMP9) is a hepatokine that plays a pivotal role in the progression of liver diseases. Moreover, an increasing number of studies have shown that BMP9 is associated with hepatopulmonary syndrome (HPS), but its role in HPS is unclear. Here, we evaluated the influence of CBDL on BMP9 expression and investigated potential mechanisms of BMP9 signalling in HPS. METHODS: We profiled the circulating BMP9 levels in common bile duct ligation-induced HPS rat model, and then investigated the effects and mechanisms of HPS rat serum on pulmonary vascular endothelial dysfunction in rat model, as well as in primarily cultured rat pulmonary microvascular endothelial cells. RESULTS: Our data revealed that circulating BMP9 levels were significantly increased in the HPS rats compared to control group. Besides, the elevated BMP9 in HPS rat serum was not only crucial for promoting endothelial cell proliferation and tube formation through the activin receptor-like kinase1 (ALK1)-Endoglin-Smad1/5/9 pathway, but also important for accumulation of monocytes. Treatments with ALK1-Fc or silencing ALK1 expression to inhibit the BMP9 signalling pathway effectively eliminated these effects. In agreement with these observations, increased circulating BMP9 was associated with an increase in lung vessel density and accumulation of pro-angiogenic monocytes in the microvasculature in HPS rats. CONCLUSIONS: This study provided evidence that elevated circulating BMP9, secreted from the liver, promote pulmonary angiogenesis in HPS rats via ALK1-Endoglin-Smad1/5/9 pathway. In addition, BMP9-regulated pathways are also involved in accumulation of pro-angiogenic monocytes in the pulmonary microvasculature in HPS rats.


Asunto(s)
Receptores de Activinas Tipo II , Endoglina , Factor 2 de Diferenciación de Crecimiento , Síndrome Hepatopulmonar , Pulmón , Neovascularización Patológica , Transducción de Señal , Proteína Smad1 , Animales , Síndrome Hepatopulmonar/metabolismo , Factor 2 de Diferenciación de Crecimiento/metabolismo , Ratas , Receptores de Activinas Tipo II/metabolismo , Pulmón/metabolismo , Masculino , Proteína Smad1/metabolismo , Endoglina/metabolismo , Neovascularización Patológica/metabolismo , Células Endoteliales/metabolismo , Modelos Animales de Enfermedad , Proteína Smad5/metabolismo , Ratas Sprague-Dawley , Proliferación Celular , Conducto Colédoco , Endotelio Vascular/metabolismo , Endotelio Vascular/fisiopatología , Monocitos/metabolismo , Angiogénesis , Receptores de Activinas
6.
Cell Rep ; 43(5): 114162, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678558

RESUMEN

Zebrafish have a lifelong cardiac regenerative ability after damage, whereas mammals lose this capacity during early postnatal development. This study investigated whether the declining expression of growth factors during postnatal mammalian development contributes to the decrease of cardiomyocyte regenerative potential. Besides confirming the proliferative ability of neuregulin 1 (NRG1), interleukin (IL)1b, receptor activator of nuclear factor kappa-Β ligand (RANKL), insulin growth factor (IGF)2, and IL6, we identified other potential pro-regenerative factors, with BMP7 exhibiting the most pronounced efficacy. Bmp7 knockdown in neonatal mouse cardiomyocytes and loss-of-function in adult zebrafish during cardiac regeneration reduced cardiomyocyte proliferation, indicating that Bmp7 is crucial in the regenerative stages of mouse and zebrafish hearts. Conversely, bmp7 overexpression in regenerating zebrafish or administration at post-mitotic juvenile and adult mouse stages, in vitro and in vivo following myocardial infarction, enhanced cardiomyocyte cycling. Mechanistically, BMP7 stimulated proliferation through BMPR1A/ACVR1 and ACVR2A/BMPR2 receptors and downstream SMAD5, ERK, and AKT signaling. Overall, BMP7 administration is a promising strategy for heart regeneration.


Asunto(s)
Proteína Morfogenética Ósea 7 , Proliferación Celular , Miocitos Cardíacos , Regeneración , Pez Cebra , Animales , Femenino , Masculino , Ratones , Proteína Morfogenética Ósea 7/metabolismo , Proteína Morfogenética Ósea 7/genética , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/metabolismo , Receptores de Proteínas Morfogenéticas Óseas de Tipo 1/genética , Ratones Endogámicos C57BL , Infarto del Miocardio/metabolismo , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Neurregulina-1/metabolismo , Neurregulina-1/genética , Transducción de Señal , Proteína Smad5/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
7.
Elife ; 122024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38536963

RESUMEN

Endometrial decidualization, a prerequisite for successful pregnancies, relies on transcriptional reprogramming driven by progesterone receptor (PR) and bone morphogenetic protein (BMP)-SMAD1/SMAD5 signaling pathways. Despite their critical roles in early pregnancy, how these pathways intersect in reprogramming the endometrium into a receptive state remains unclear. To define how SMAD1 and/or SMAD5 integrate BMP signaling in the uterus during early pregnancy, we generated two novel transgenic mouse lines with affinity tags inserted into the endogenous SMAD1 and SMAD5 loci (Smad1HA/HA and Smad5PA/PA). By profiling the genome-wide distribution of SMAD1, SMAD5, and PR in the mouse uterus, we demonstrated the unique and shared roles of SMAD1 and SMAD5 during the window of implantation. We also showed the presence of a conserved SMAD1, SMAD5, and PR genomic binding signature in the uterus during early pregnancy. To functionally characterize the translational aspects of our findings, we demonstrated that SMAD1/5 knockdown in human endometrial stromal cells suppressed expressions of canonical decidual markers (IGFBP1, PRL, FOXO1) and PR-responsive genes (RORB, KLF15). Here, our studies provide novel tools to study BMP signaling pathways and highlight the fundamental roles of SMAD1/5 in mediating both BMP signaling pathways and the transcriptional response to progesterone (P4) during early pregnancy.


Asunto(s)
Endometrio , Útero , Embarazo , Femenino , Humanos , Ratones , Animales , Útero/metabolismo , Endometrio/metabolismo , Transducción de Señal/fisiología , Implantación del Embrión , Proteína Smad5/genética , Proteína Smad5/metabolismo
8.
J Orthop Surg Res ; 18(1): 663, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37674252

RESUMEN

BACKGROUND: The implication of deregulated circular RNAs in osteoporosis (OP) has gradually been proposed. Herein, we aimed to study the function and mechanism of circ_0001825 in OP using osteogenic-induced human-derived mesenchymal stem cells (hMSCs). METHODS: The content of genes and proteins was tested by quantitative real-time polymerase chain reaction and Western blotting. The osteogenic differentiation in hMSCs were evaluated by ALP activity and Alizarin Red staining, as well as the detection of osteogenesis-related markers. Cell viability and apoptosis were measured by CCK-8 assay and flow cytometry. The binding between miR-1270 and circ_0001825 or SMAD5 (SMAD Family Member 5) was confirmed by using dual-luciferase reporter assay and pull-down assay. RESULTS: Circ_0001825 was lowly expressed in OP patients and osteogenic induced hMSCs. Knockdown of circ_0001825 suppressed hMSC viability and osteogenic differentiation, while circ_0001825 overexpression showed the exact opposite effects. Mechanistically, circ_0001825/miR-1270/SMAD5 formed a feedback loop. MiR-1270 was increased and SMAD5 was decreased in OP patients and osteogenic induced hMSCs. MiR-1270 up-regulation suppressed hMSC viability and osteogenic differentiation, which was reversed by SMAD5 overexpression. Moreover, miR-1270 deficiency abolished the effects of circ_0001825 knockdown on hMSCs. CONCLUSION: Circ_0001825 promoted hMSC viability and osteogenic differentiation via miR-1270/SMAD5 axis, suggesting the potential involvement of circ_0001825 in osteoporosis.


Asunto(s)
Células Madre Mesenquimatosas , MicroARNs , Osteoporosis , Humanos , Osteogénesis/genética , Diferenciación Celular/genética , MicroARNs/genética , Proteína Smad5/genética
9.
Oral Health Prev Dent ; 21(1): 211-218, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37272598

RESUMEN

PURPOSE: To research the role of microRNA (miR)-152 in the pathogenesis of pulpitis using a cell model based on human dental pulp cells (HDPCs) treated with lipopolysaccharides (LPS). MATERIALS AND METHODS: The biological activity of HDPCs infected by LPS was measured using a cell counting kit (CCK-8), Transwell test, flow cytometry, and fluorescent quantitative PCR. The concentration of superoxide dismutase (SOD) and malondialdehyde (MDA) was evaluated using an assay kit, the levels of interleukin (IL)-1ß and IL-6 were measured by enzyme-linked immunosorbent assay (ELISA), and the targeting relationship between SMAD5 and miR-152 was measured by the double-luciferase report test. The expression of cell cycle-related CyclinD1 and BAX was assessed by PCR. By plotting a receiver operating characteristic (ROC) curve, the diagnostic value of miR-152 was shown. RESULTS: The level of miR-152 in HDPCs induced by LPS decreased, while the level of SMAD5 increased. After overexpressing miR-152 in LPS-induced HDPCs, the viability was elevated, the apoptosis rate decreased, CyclinD1 was elevated, BAX diminished, the inflammatory cytokines (IL-6 and IL-1ß) were inhibited, the activity of SOD increased, and the MDA content decreased. miR-152 targeted regulation of SMAD5, and SMAD5 modulated the effects of miR-152 on cell viability, apoptosis, inflammation, and the oxidative response of HDPCs. Reduced miR-152 expression was verified in patients with pulpitis, which could be a biomarker for pulpitis. CONCLUSION: miR-152 was found to be a biomarker correlated with the pathogenesis of pulpitis and the biological behaviour of HDPCs.


Asunto(s)
MicroARNs , Pulpitis , Humanos , Pulpitis/metabolismo , Interleucina-6/metabolismo , Interleucina-6/farmacología , Lipopolisacáridos/farmacología , Pulpa Dental/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína X Asociada a bcl-2/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Proteína Smad5/metabolismo , Proteína Smad5/farmacología
10.
Environ Toxicol Pharmacol ; 99: 104087, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36841272

RESUMEN

The plasticizer leaches from the microplastics are one of the significant concerns related to plastic pollution. These plasticizers are known to be endocrine disrupters; however, little is known about their long-term effect on the development of aquatic vertebrates. Hence, the present study has been conducted to provide a holistic understanding of the effect of the three most common plasticizers, dibutyl phthalate (DBP), diethyl phthalate (DEP), and di-ethylhexyl phthalate (DEHP) leaching out from the microplastics in zebrafish development. Zebrafish larvae were exposed to different phthalates at different concentrations. The phthalates have shown significantly higher mortality and morphological changes in the larva upon exposure compared to the control. A significant change in the genes related to cardiovascular development (krit1, fbn2b), dorsoventral axis development (chrd, smad5), tail formation (pkd2, wnt3a, wnt8a), and floorplate development (foxa2) were also observed under the effects of the phthalates in comparison to control.


Asunto(s)
Dietilhexil Ftalato , Ácidos Ftálicos , Animales , Pez Cebra/genética , Plastificantes/toxicidad , Plásticos , Microplásticos , Ácidos Ftálicos/toxicidad , Dibutil Ftalato/toxicidad , Genómica , Proteínas de Pez Cebra/genética , Proteína Smad5
11.
J Biol Chem ; 298(12): 102684, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36370851

RESUMEN

The bone morphogenetic protein (BMP) signaling pathway plays pivotal roles in various biological processes during embryogenesis and adult homeostasis. Transmembrane anterior posterior transformation 1 (TAPT1) is an evolutionarily conserved protein involved in murine axial skeletal patterning. Genetic defects in TAPT1 result in complex lethal osteochondrodysplasia. However, the specific cellular activity of TAPT1 is not clear. Herein, we report that TAPT1 inhibits BMP signaling and destabilizes the SMAD1/5 protein by facilitating its interaction with SMURF1 E3 ubiquitin ligase, which leads to SMAD1/5 proteasomal degradation. In addition, we found that the activation of BMP signaling facilitates the redistribution of TAPT1 and promotes its association with SMAD1. TAPT1-deficient murine C2C12 myoblasts or C3H/10T1/2 mesenchymal stem cells exhibit elevated SMAD1/5/9 protein levels, which amplifies BMP activation, in turn leading to a boost in the transdifferentiation or differentiation processing of these distinct TAPT1-deficient cell lines changing into mature osteoblasts. Furthermore, the enhancing effect of TAPT1 deficiency on osteogenic differentiation of C3H/10T1/2 cells was observed in an in vivo ectopic bone formation model. Importantly, a subset of TAPT1 mutations identified in humans with lethal skeletal dysplasia exhibited gain-of-function activity on SMAD1 protein levels. Thus, this finding elucidates the role of TAPT1 in the regulation of SMAD1/5 protein stability for controlling BMP signaling.


Asunto(s)
Transducción de Señal , Proteína Smad1 , Proteína Smad5 , Animales , Humanos , Ratones , Proteína Morfogenética Ósea 2/metabolismo , Diferenciación Celular , Línea Celular , Proteínas de la Membrana , Osteoblastos/citología , Osteoblastos/metabolismo , Osteogénesis/genética , Estabilidad Proteica , Transducción de Señal/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo , Proteína Smad8/genética , Proteína Smad8/metabolismo
12.
Sci Rep ; 12(1): 16310, 2022 09 29.
Artículo en Inglés | MEDLINE | ID: mdl-36175474

RESUMEN

Bone morphogenetic protein 2 (BMP2) is highly overexpressed in human non-small cell lung cancer (NSCLC) and correlates with tumor stage and metastatic burden. Although several lines of evidence suggest that BMP2 promotes cell migration and invasiveness in vitro, the in vivo role of BMP2 in the metastasis of lung adenocarcinoma cells remains less well understood. Here, we revealed that BMP2 is highly overexpressed in lung adenocarcinoma patients with lymph node metastasis compared with patients without lymph node metastasis. Using an in vivo orthotopic mouse model, we clearly demonstrated that BMP2 promotes lung adenocarcinoma metastasis. The depletion of BMP2 or its receptor BMPR2 significantly reduced cell migration and invasiveness. We further identified that BMP2/BMPR2-mediated cell migration involves the activation of the SMAD1/5/8 signaling pathway, independent of the KRAS signaling pathway. Significantly, the depletion of SMAD1/5/8 or the inhibition of SMAD1/5/8 by LDN193189 inhibitor significantly reduced cell migration. These findings show that BMP2 promotes NSCLC metastasis, indicating that targeting the BMP2 signaling pathway may represent a potential therapeutic strategy for treating patients with metastatic NSCLC.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Proteína Smad5/metabolismo , Adenocarcinoma/genética , Animales , Proteína Morfogenética Ósea 2 , Carcinoma de Pulmón de Células no Pequeñas/genética , Humanos , Neoplasias Pulmonares/genética , Metástasis Linfática , Ratones , Proteínas Proto-Oncogénicas p21(ras) , Proteína Smad1
13.
J Biol Chem ; 298(9): 102297, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35872017

RESUMEN

Insulin signaling in blood vessels primarily functions to stimulate angiogenesis and maintain vascular homeostasis through the canonical PI3K and MAPK signaling pathways. However, angiogenesis is a complex process coordinated by multiple other signaling events. Here, we report a distinct crosstalk between the insulin receptor and endoglin/activin receptor-like kinase 1 (ALK1), an endothelial cell-specific TGF-ß receptor complex essential for angiogenesis. While the endoglin-ALK1 complex normally binds to TGF-ß or bone morphogenetic protein 9 (BMP9) to promote gene regulation via transcription factors Smad1/5, we show that insulin drives insulin receptor oligomerization with endoglin-ALK1 at the cell surface to trigger rapid Smad1/5 activation. Through quantitative proteomic analysis, we identify ependymin-related protein 1 (EPDR1) as a major Smad1/5 gene target induced by insulin but not by TGF-ß or BMP9. We found endothelial EPDR1 expression is minimal at the basal state but is markedly enhanced upon prolonged insulin treatment to promote cell migration and formation of capillary tubules. Conversely, we demonstrate EPDR1 depletion strongly abrogates these angiogenic effects, indicating that EPDR1 is a crucial mediator of insulin-induced angiogenesis. Taken together, these results suggest important therapeutic implications for EPDR1 and the TGF-ß pathways in pathologic angiogenesis during hyperinsulinemia and insulin resistance.


Asunto(s)
Endoglina , Factor 2 de Diferenciación de Crecimiento , Insulina , Neovascularización Patológica , Proteínas del Tejido Nervioso , Receptores de Factores de Crecimiento Transformadores beta , Animales , Humanos , Ratones , Receptores de Activinas Tipo II/metabolismo , Chlorocebus aethiops , Células COS , Endoglina/genética , Endoglina/metabolismo , Factor 2 de Diferenciación de Crecimiento/genética , Insulina/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Fosfatidilinositol 3-Quinasas , Proteómica , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
14.
Biochim Biophys Acta Mol Cell Res ; 1869(10): 119316, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35724807

RESUMEN

The molecules induced by hypoxia have been supposed to be important regulators of first trimester trophoblast activity, but the key mechanism mediating invasion of trophoblast cells is not fully illustrated. Here, we found that the expression of RNA demethylase ALKBH5 was upregulated in trophoblast upon hypoxia treatment and decreased in extravillous trophoblast (EVT) of patients with recurrent spontaneous abortion (RSA). Furthermore, we found that trophoblast-specific knockdown of ALKBH5 in mouse placenta suppressed the invasion of trophoblast and significantly led to fetus abortion in vivo. Then ALKBH5 was identified to promote the invasion of trophoblast. Mechanistically, we identified transcripts with altered methylation in trophoblast induced by hypoxia via m6A-seq, ALKBH5 translocated from nucleus to cytoplasm upon hypoxia treatment and demethylated certain target transcripts, such as m6A-modified SMAD1/SMAD5, consequently enhanced the translation of SMAD1/SMAD5 and then promoted MMP9 and ITGA1 production. Thus, we demonstrated that ALKBH5 promoted the activity of trophoblasts by enhancing SMAD1/5 expression via erasing their m6A modifications. Our research revealed a new m6A epigenetic way to regulate the invasion of trophoblast, which suggested a novel potential therapeutic target for spontaneous abortion prevention.


Asunto(s)
Aborto Espontáneo , Desmetilasa de ARN, Homólogo 5 de AlkB/metabolismo , Aborto Espontáneo/metabolismo , Desmetilasa de ARN, Homólogo 5 de AlkB/genética , Animales , Desmetilación , Femenino , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Ratones , Embarazo , ARN Mensajero/genética , Proteína Smad1/metabolismo , Proteína Smad5/metabolismo , Trofoblastos/metabolismo
15.
Bioengineered ; 13(5): 12350-12364, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35599595

RESUMEN

In this study, we employed multiple laboratory techniques to acknowledge the biological activities and processes of Per2 and Id3 in glioma. We analyzed TCGA and CGGA databases for seeking association among Per2, Id3, and clinical features in glioma. Immunohistochemistry and Western blot were used to detect protein expression levels. CCK-8 assay, colony formation assay, Transwell assay, the wound healing assay, flow cytometric, and Xenograft nude mice were used to acknowledge the impact of Per2 and Id3 on biological behavior of glioma. The results showed that the Per2 mRNA expression was negatively correlated with the WHO grade, while the Id3 mRNA expression was positively correlated with the WHO grade in patients with glioma in TCGA and CGGA databases. Per2 and Id3 maintained separate prognostic abilities and had a negative connection in human glioma. In the clinical sample study, Per2 and Id3 were validated at the protein level with the same results compared to the mRNA expression level in TCGA and CGGA. By using a wide range of functional examples, overexpression of Per2 restrains malignant biological behaviors in glioma cells by many ways, while Id3 promotes malignant biological behaviors in glioma cells. Furthermore, overexpression of Per2 can inhibit Id3 expression via regulating PTEN/AKT/Smad5 signaling pathway and thereby abolish malignant biological behaviors that are caused by Id3 overexpression. These results suggested that Per2 inhibits glioma cell proliferation through regulating PTEN/AKT/Smad5/Id3 signaling pathway, which may be a viable therapeutic target for glioma.


Asunto(s)
Glioma , Proteínas Inhibidoras de la Diferenciación , Proteínas Circadianas Period , Animales , Apoptosis/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Glioma/metabolismo , Humanos , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Ratones , Ratones Desnudos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Fosfohidrolasa PTEN/genética , Fosfohidrolasa PTEN/metabolismo , Proteínas Circadianas Period/genética , Proteínas Circadianas Period/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , ARN Mensajero , Proteína Smad5/genética , Proteína Smad5/metabolismo
16.
PLoS One ; 17(5): e0266409, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35580109

RESUMEN

Transforming growth factor-ß (TGF-ß) is an important inducer of the epithelial-to-mesenchymal transition (EMT) in various cancers. Our previous study demonstrated that prohaptoglobin (proHp) stimulates Smad1/5 activation via ALK1, a TGF-ß type I receptor, in endothelial cells, suggesting that proHp plays a role in TGF-ß signaling. However, the function of proHp in cellular events downstream of Smads remains unclear. The current study investigated the effects of proHp on TGF-ß-mediated Smad-dependent EMT induction and cell invasion in vitro using proHp-overexpressing SK-Hep1 liver cancer cells. The results of Western blotting, quantitative real-time RT-PCR, and immunocytochemistry indicated that proHp downregulated expression of mesenchymal marker and EMT regulator such as N-cadherin, vimentin, and twist, and upregulated expression of the epithelial marker E-cadherin. Compared with control cells, proHp-overexpressing cells exhibited high levels of ALK1/2/3 receptors and markedly increased Smad1/5 phosphorylation. Interestingly, proHp attenuated TGF-ß-induced expression of mesenchymal markers and Smad2/3 phosphorylation. It also significantly suppressed cell invasion and migration. Knockdown of Smad1/5 abolished the inhibitory effects of proHp on TGF-ß-stimulated Smad2/3 phosphorylation and mesenchymal marker expression. These findings indicate that proHp suppresses the TGF-ß-induced EMT and cell invasion in vitro by enhancing Smad1/5 activation via ALK1/2/3 receptors and thus suppressing the Smad2/3 signaling pathway in SK-Hep1 cells. This study suggests that proHp may prevent a de-differentiation of hepatic cells and induce a cell differentiation by regulating the Smad signaling pathway.


Asunto(s)
Haptoglobinas , Neoplasias Hepáticas , Proteínas Smad , Factor de Crecimiento Transformador beta , Línea Celular Tumoral , Movimiento Celular , Células Endoteliales/metabolismo , Transición Epitelial-Mesenquimal , Haptoglobinas/metabolismo , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Precursores de Proteínas/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Proteína Smad1/metabolismo , Proteína smad3/metabolismo , Proteína Smad5/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
17.
Endocrinology ; 163(5)2022 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-35383354

RESUMEN

The biological processes that control endometrial receptivity and embryo implantation are critical for the successful outcome of pregnancy. The endometrium is the complex inner lining of the uterine wall that is under the cyclical control of estrogen and progesterone and is a site of intimate contact between mother and blastocyst. The bone morphogenetic signaling (BMP) pathway is a highly conserved signaling pathway that controls key cellular processes throughout pregnancy and exerts intracellular effects via the SMAD1/5 transcription factors. To delineate the endometrial compartment-specific roles of BMP signaling, we generated mice with epithelial-specific conditional deletion of SMAD1/5 using Lactoferrin-icre (Smad1flox/flox;Smad5flox/flox;Lactoferrin-cre, "Smad1/5 cKO"). Histological analysis of the reproductive tracts showed that Smad1/5 cKO mice were developmentally normal and displayed no defects in glandular morphology. In fertility analyses, single SMAD1 or SMAD5 deletion had no effect on fertility; however, double-conditional deletion of SMAD1 and SMAD5 resulted in severe subfertility. Timed mating analyses revealed endometrial receptivity defects in the Smad1/5 cKO mice beginning at 3.5 days post coitum (dpc) that perturbed embryo implantation at 4.5 dpc, as demonstrated by the detection of unattached blastocysts in the uterus, decreased COX2 expression, and FOXO1 cytoplasmic mislocalization. We also found that defects that arose during peri-implantation adversely affected embryonic and decidual development at 5.5 and 6.5 dpc. Thus, uterine epithelial BMP/SMAD1/5 signaling is essential during early pregnancy and SMAD1/5 epithelial-specific deletion has detrimental effects on stromal cell decidualization and pregnancy development.


Asunto(s)
Lactoferrina , Animales , Implantación del Embrión , Endometrio/metabolismo , Epitelio/metabolismo , Femenino , Lactoferrina/metabolismo , Ratones , Embarazo , Transducción de Señal , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5 , Útero/metabolismo
18.
Ren Fail ; 44(1): 191-203, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35170385

RESUMEN

Peritoneal fibrosis (PF) is the main reason leading to declining efficiency and ultrafiltration failure of peritoneum, which restricts the application of peritoneal dialysis (PD). We aimed to investigate the effects and mechanisms of miR-122-5p on the PF. Sprague-Dawley (SD) rats were infused with glucose-based standard PD fluid to establish PF model. HE staining was performed to evaluate the extent of PF. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and fluorescence in situ hybridization (FISH) were performed to measure the expression level of miR-122-5p. Western blot was used to test the expression of transforming growth factor (TGF)-ß1, platelet-derived growth factor (PDGF)-A, Fibronectin 1 (FN1), extracellular matrix protein 1 (ECM1), Smad5, α-smooth muscle actin (SMA), collagen type 1(COL-1), Vimentin, E-Cadherin, Wnt1, ß-catenin, p-ß-catenin, c-Myc, c-Jun, and Cyclin D1. Immunohistochemistry (IHC) staining was used to detect type I collagen alpha 1 (Col1α1), α-SMA, and E-Cadherin expression. We found PF was glucose concentration-dependently enhanced in peritoneum of PD rat. The PD rats showed increased miR-122-5p and decreased Smad5 expression. MiR-122-5p silencing improved PF and epithelial-mesenchymal transition (EMT) process in PD rats. MiR-122-5p silencing attenuated the activity of the Wnt/ß-catenin signaling pathway. Importantly, dual-luciferase reporter assay showed Smad5 was a target gene of miR-122-5p. Smad5 overexpression significantly reversed the increases of PF and EMT progression induced by miR-122-5p overexpression. Moreover, miR-122-5p mimic activated Wnt/ß-catenin activity, which was blocked by Smad5 overexpression. Overall, present results demonstrated that miR-122-5p overexpression showed a deterioration effect on PD-related PF by targeting Smad5 to activate Wnt/ß-catenin pathway.


Asunto(s)
Transición Epitelial-Mesenquimal/fisiología , MicroARNs/metabolismo , Fibrosis Peritoneal/metabolismo , Proteína Smad5/metabolismo , Animales , Cadherinas/metabolismo , Humanos , Hibridación Fluorescente in Situ , Modelos Animales , Diálisis Peritoneal/efectos adversos , Ratas , Ratas Sprague-Dawley , Factor de Crecimiento Transformador beta1/metabolismo , Vimentina/metabolismo , Vía de Señalización Wnt , beta Catenina/metabolismo
19.
Bioengineered ; 13(1): 1447-1458, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34974806

RESUMEN

Accumulating evidence suggests that long non-coding RNAs (lncRNAs) participate in the formation and development of keloids, a benign tumor. In addition, lncRNA H19 has been shown to act on the biological processes of keloids. This study aimed to identify other important mechanisms of the effect of lncRNA H19 on keloid formation. The H19, miR-196b-5p, and SMAD family member 5 (SMAD5) expression levels were detected using quantitative reverse transcriptase polymerase chain reaction (qRT-PCR) and Western blotting. Subcellular localization of lncRNA H19 was detected using a nuclear-cytoplasmic separation assay. Cell viability and proliferation were measured using counting kit-8 and colony formation assays. Bax and Bcl-2 levels were examined using Western blot analysis. The interaction between H19 and miR-196b-5p or SMAD5 was verified using a dual-luciferase reporter assay. H19 and SMAD5 expression was upregulated in keloid tissue and fibroblasts, whereas miR-196b-5p expression was downregulated. Knockdown of H19, overexpression of miR-196b-5p, or knockdown of SMAD5 inhibited the viability and proliferation of keloid fibroblasts and promoted apoptosis. Overexpression of H19 or SMAD5 and knockdown of miR-196b-5p promoted viability and proliferation and inhibited apoptosis. miR-196b-5p was identified as a H19 sponge, and SMAD5 was identified as a miR-196b-5p target. The combination of lncRNA H19 and miR-196b-5p regulates SMAD5 expression and promotes keloid formation, thus providing a new direction for keloid treatment.


Asunto(s)
Queloide/genética , MicroARNs/genética , ARN Largo no Codificante/genética , Proteína Smad5/genética , Movimiento Celular , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proliferación Celular , Supervivencia Celular , Células Cultivadas , Citoplasma/genética , Citoplasma/metabolismo , Progresión de la Enfermedad , Regulación hacia Abajo , Fibroblastos/química , Fibroblastos/citología , Humanos , Queloide/metabolismo , Cultivo Primario de Células , Proteína Smad5/metabolismo
20.
Cells Dev ; 169: 203763, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34995814

RESUMEN

Msx1 is essential for the maintenance of the odontogenic fate of dental mesenchymal cells, and is regulated by BMP/Smad1/5 signaling in a Smad4-independent manner. However, the exact co-factors that assist pSmad1/5 entering the nucleus to regulate Msx1 in dental mesenchymal cells are still unknown. Importin7 (IPO7) is one of the important members of importin ß-superfamily, which is mainly responsible for nucleocytoplasmic shuttling of RNAs and proteins, including transcription factors. This study aims to investigate whether IPO7 participates in the nuclear translocation of pSmad1/5 activated by BMP4 to regulate Msx1 expression in mouse dental mesenchymal cells. In the current study, we found that IPO7 was strongly expressed in the mouse dental mesenchymal cells at postnatal day 1 (PN1) both in vitro and in vivo. With BMP4 stimulation, IPO7 showed a translocation from the cytoplasm to the nucleus. Knockdown of IPO7 with siRNA inhibited the nuclear accumulation of pSmad1/5 in response to BMP4 stimulation. Furthermore, the co-immunoprecipitation assay showed pSmad1/5 was a nuclear import cargo of IPO7. Next, knockdown of IPO7 abolished the upregulation of Msx1 induced by BMP4, while overexpression of Smad1 was able to rescue the Msx1 expression. Finally, ChIP and Re-ChIP assay showed IPO7 facilitated the recruitment of pSmad1/5 to the Msx1 promoter. Taken together, our data demonstrated that the regulation of Msx1 by BMP4/pSmad1/5 signaling is mediated by importin7 in mouse dental mesenchymal cells.


Asunto(s)
Factor de Transcripción MSX1 , Mesodermo , Animales , Ratones , Proteína Morfogenética Ósea 4/genética , Mesodermo/metabolismo , Factor de Transcripción MSX1/genética , Odontogénesis/genética , Transducción de Señal , Proteína Smad1 , Proteína Smad5 , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA