Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Protein Expr Purif ; 175: 105689, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32698044

RESUMEN

Lipopolysaccharides are central elements of the outer leaflet of the outer membrane of Gram-negative bacteria and as such, of cyanobacteria. In the past, the structural analysis of the system in proteobacteria like Escherichia coli has contributed to a deep understanding of the transport of lipopolysaccharides from plasma membrane to the outer membrane. While many components of the transport system are conserved between proteobacteria and cyanobacteria, the periplasmic LptC appears to be distinct. The cyanobacterial proteins are twice as long as the proteobacterial proteins or proteins from firmicutes. This prompted the question whether the structure of the cyanobacterial proteins is comparable the one of the proteobacterial proteins. To address this question, we expressed LptC from Anabaena sp. PCC 7120 in E. coli as truncated protein without the transmembrane segment. We purified the protein utilizing HIS-tag based affinity chromatography and polished the protein after removal of the tag by size exclusion chromatography. The purified recombinant protein was crystallized by the sitting-drop vapor diffusion technique and best crystals, despite being twinned, diffracted to a resolution of 2.6 Å.


Asunto(s)
Anabaena/genética , Expresión Génica , Proteínas Periplasmáticas , Cristalografía por Rayos X , Proteínas Periplasmáticas/biosíntesis , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/aislamiento & purificación , Dominios Proteicos , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
2.
Biotechnol Bioeng ; 116(9): 2191-2199, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31081135

RESUMEN

Toxic inhibitory compounds from lignocellulose pretreatment are the major obstacle to achieve high bioconversion efficiency in biorefinery fermentations. This study shows a unique glucose oxidation catalysis of Gluconobacter oxydans with its gluconic acid productivity free of inhibitor disturbance. The microbial experimentations and the transcriptome analysis revealed that both the activity of the membrane-bound glucose dehydrogenase and the transcription level of the genes in periplasmic glucose oxidation respiratory chain of G. oxydans were essentially not affected in the presence of inhibitory compounds. G. oxydans also rapidly converted furan and phenolic aldehyde inhibitors into the less toxic alcohols or acids. The synergy of the robust periplasmic glucose oxidation and the rapid inhibitor conversion of G. oxydans significantly elevated the efficiency of the oxidative fermentation in lignocellulose hydrolysate. The corresponding genes responsible for the conversion of furan and phenolic aldehyde inhibitors were also mined by DNA microarrays. The synergistic mechanism of G. oxydans provided an important option of metabolic modification for enhancing inhibitor tolerance of general fermentation strains.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Gluconatos/metabolismo , Gluconobacter oxydans , Glucosa/metabolismo , Proteínas Periplasmáticas , Transcripción Genética , Catálisis , Gluconobacter oxydans/genética , Gluconobacter oxydans/metabolismo , Proteínas Periplasmáticas/biosíntesis , Proteínas Periplasmáticas/genética
3.
Protein Expr Purif ; 117: 44-51, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26405011

RESUMEN

Successful isolation of well-folded and active protein often first requires the creation of many constructs. These are needed to assess the effects of truncations, insertions, mutations, and the presence and position of different affinity tags. Determining which constructs yield the highest expression and solubility requires the investigator to express and partially purify each construct, and, in the case of low-expressing proteins, to follow the protein using time-consuming Western blots. Even then, many proteins form soluble aggregates, which may only be apparent after more extensive purification via size exclusion chromatography. In this work, we have utilized a covalent bond-forming tag/domain pair, known as SpyTag/SpyCatcher, to rapidly and specifically attach a fluorescent label to proteins of interest in cellular lysates. Once labeled, tagged proteins can easily be followed via SDS-PAGE and fluorescence size exclusion chromatography (F-SEC) to assess expression levels, solubility, and monodispersity without the need for purification. These techniques enable rapid and facile analysis of proteins, which may greatly facilitate optimization of protein expression constructs.


Asunto(s)
Adhesinas Bacterianas , Proteínas Portadoras , Proteínas de Escherichia coli , Expresión Génica , Proteínas Periplasmáticas , Adhesinas Bacterianas/biosíntesis , Adhesinas Bacterianas/química , Adhesinas Bacterianas/genética , Adhesinas Bacterianas/aislamiento & purificación , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/aislamiento & purificación , Escherichia coli/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Proteínas Periplasmáticas/biosíntesis , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/aislamiento & purificación , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Solubilidad
4.
Infect Immun ; 83(9): 3638-47, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26150539

RESUMEN

The opgGH operon encodes glucosyltransferases that synthesize osmoregulated periplasmic glucans (OPGs) from UDP-glucose, using acyl carrier protein (ACP) as a cofactor. OPGs are required for motility, biofilm formation, and virulence in various bacteria. OpgH also sequesters FtsZ in order to regulate cell size according to nutrient availability. Yersinia pestis (the agent of flea-borne plague) lost the opgGH operon during its emergence from the enteropathogen Yersinia pseudotuberculosis. When expressed in OPG-negative strains of Escherichia coli and Dickeya dadantii, opgGH from Y. pseudotuberculosis restored OPGs synthesis, motility, and virulence. However, Y. pseudotuberculosis did not produce OPGs (i) under various growth conditions or (ii) when overexpressing its opgGH operon, its galUF operon (governing UDP-glucose), or the opgGH operon or Acp from E. coli. A ΔopgGH Y. pseudotuberculosis strain showed normal motility, biofilm formation, resistance to polymyxin and macrophages, and virulence but was smaller. Consistently, Y. pestis was smaller than Y. pseudotuberculosis when cultured at ≥ 37°C, except when the plague bacillus expressed opgGH. Y. pestis expressing opgGH grew normally in serum and within macrophages and was fully virulent in mice, suggesting that small cell size was not advantageous in the mammalian host. Lastly, Y. pestis expressing opgGH was able to infect Xenopsylla cheopis fleas normally. Our results suggest an evolutionary scenario whereby an ancestral Yersinia strain lost a factor required for OPG biosynthesis but kept opgGH (to regulate cell size). The opgGH operon was presumably then lost because OpgH-dependent cell size control became unnecessary.


Asunto(s)
Proteínas Bacterianas/genética , Evolución Molecular , Yersinia pestis/patogenicidad , Yersinia pseudotuberculosis/genética , Yersinia pseudotuberculosis/patogenicidad , Animales , Western Blotting , Modelos Animales de Enfermedad , Eliminación de Gen , Glucanos/biosíntesis , Glucanos/genética , Ratones , Operón/genética , Proteínas Periplasmáticas/biosíntesis , Proteínas Periplasmáticas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
5.
Biochem Soc Trans ; 43(2): 133-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25849907

RESUMEN

The ß-barrel outer membrane proteins (OMPs) are integral membrane proteins that reside in the outer membrane of Gram-negative bacteria and perform a diverse range of biological functions. Synthesized in the cytoplasm, OMPs must be transported across the inner membrane and through the periplasmic space before they are assembled in the outer membrane. In Escherichia coli, Skp, SurA and DegP are the most prominent factors identified to guide OMPs across the periplasm and to play the role of quality control. Although extensive genetic and biochemical analyses have revealed many basic functions of these periplasmic proteins, the mechanism of their collaboration in assisting the folding and insertion of OMPs is much less understood. Recently, biophysical approaches have shed light on the identification of the intricate network. In the present review, we summarize recent advances in the characterization of these key factors, with a special emphasis on the multifunctional protein DegP. In addition, we present our proposed model on the periplasmic quality control in biogenesis of OMPs.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/biosíntesis , Proteínas de Unión al ADN/biosíntesis , Proteínas de Choque Térmico/biosíntesis , Periplasma/metabolismo , Proteínas Periplasmáticas/biosíntesis , Serina Endopeptidasas/biosíntesis , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/genética , Fenómenos Biofísicos , Proteínas Portadoras/biosíntesis , Proteínas Portadoras/genética , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Proteínas de Choque Térmico/genética , Chaperonas Moleculares/biosíntesis , Chaperonas Moleculares/genética , Isomerasa de Peptidilprolil/biosíntesis , Isomerasa de Peptidilprolil/genética , Periplasma/química , Periplasma/genética , Proteínas Periplasmáticas/genética , Proteínas Periplasmáticas/metabolismo , Pliegue de Proteína , Serina Endopeptidasas/genética
6.
Biochim Biophys Acta ; 1817(6): 911-9, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21945855

RESUMEN

The reconstitution of biosynthetic pathways from heterologous hosts can help define the minimal genetic requirements for pathway function and facilitate detailed mechanistic studies. Each of the three pathways for the assembly of cytochrome c in nature (called systems I, II, and III) has been shown to function recombinantly in Escherichia coli, covalently attaching heme to the cysteine residues of a CXXCH motif of a c-type cytochrome. However, recombinant systems I (CcmABCDEFGH) and II (CcsBA) function in the E. coli periplasm, while recombinant system III (CCHL) attaches heme to its cognate receptor in the cytoplasm of E. coli, which makes direct comparisons between the three systems difficult. Here we show that the human CCHL (with a secretion signal) attaches heme to the human cytochrome c (with a signal sequence) in the E. coli periplasm, which is bioenergetically (p-side) analogous to the mitochondrial intermembrane space. The human CCHL is specific for the human cytochrome c, whereas recombinant system II can attach heme to multiple non-cognate c-type cytochromes (possessing the CXXCH motif.) We also show that the recombinant periplasmic systems II and III use components of the natural E. coli periplasmic DsbC/DsbD thiol-reduction pathway. This article is part of a Special Issue entitled: Biogenesis/Assembly of Respiratory Enzyme Complexes.


Asunto(s)
Citocromos c/biosíntesis , Proteínas de Escherichia coli/genética , Oxidorreductasas/genética , Proteína Disulfuro Isomerasas/genética , Proteínas Recombinantes de Fusión/biosíntesis , Compuestos de Sulfhidrilo/química , Secuencia de Aminoácidos , Apoproteínas/biosíntesis , Apoproteínas/química , Apoproteínas/genética , Citocromos c/química , Citocromos c/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/fisiología , Eliminación de Gen , Expresión Génica , Hemo/metabolismo , Humanos , Liasas/biosíntesis , Liasas/química , Liasas/genética , Proteínas de Unión a Maltosa/biosíntesis , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/aislamiento & purificación , Datos de Secuencia Molecular , Oxidación-Reducción , Oxidorreductasas/metabolismo , Oxidorreductasas/fisiología , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Proteínas Periplasmáticas/biosíntesis , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proteína Disulfuro Isomerasas/metabolismo , Proteína Disulfuro Isomerasas/fisiología , Señales de Clasificación de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Compuestos de Sulfhidrilo/metabolismo
7.
Biochem J ; 442(1): 85-93, 2012 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-22084975

RESUMEN

The bacterial envelope is the interface with the surrounding environment and is consequently subjected to a barrage of noxious agents including a range of compounds with antimicrobial activity. The ESR (envelope stress response) pathways of enteric bacteria are critical for maintenance of the envelope against these antimicrobial agents. In the present study, we demonstrate that the periplasmic protein ZraP contributes to envelope homoeostasis and assign both chaperone and regulatory function to ZraP from Salmonella Typhimurium. The ZraP chaperone mechanism is catalytic and independent of ATP; the chaperone activity is dependent on the presence of zinc, which is shown to be responsible for the stabilization of an oligomeric ZraP complex. Furthermore, ZraP can act to repress the two-component regulatory system ZraSR, which itself is responsive to zinc concentrations. Through structural homology, ZraP is a member of the bacterial CpxP family of periplasmic proteins, which also consists of CpxP and Spy. We demonstrate environmental co-expression of the CpxP family and identify an important role for these proteins in Salmonella's defence against the cationic antimicrobial peptide polymyxin B.


Asunto(s)
Proteínas de Escherichia coli/genética , Chaperonas Moleculares/metabolismo , Proteínas Periplasmáticas/metabolismo , Proteínas Represoras/metabolismo , Salmonella typhimurium/genética , Cristalografía por Rayos X , Farmacorresistencia Bacteriana/fisiología , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Indoles/farmacología , Proteínas de la Membrana/biosíntesis , Periplasma/efectos de los fármacos , Periplasma/metabolismo , Proteínas Periplasmáticas/biosíntesis , Polimixina B/farmacología , Salmonella typhimurium/metabolismo , Zinc/metabolismo
8.
J Proteomics ; 74(12): 2959-71, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21875698

RESUMEN

Brucella abortus is an alpha-2 proteobacteria with a type IV secretion system (T4SS) known as virB, which is necessary to gain virulence by building up a replicative vacuole associated with the endoplasmic reticulum of the host cell. A virB T4SS mutant of the B. abortus 2308 strain and its wild-type strain were grown in acid medium in order to obtain and analyze their proteomes, looking for putative proteins that may serve as T4SS substrates and those that may be subjected to T4SS regulation. A total of 47 overexpressed and 22 underexpressed proteins from the virB T4SS mutant strain were selected and sequenced. Some of the 69 analyzed proteins have not been described before either as over or under-expressed in relation to a virB T4SS mutation, whereas some of them have been already described by other groups as potentially important secretory proteins in other Brucella species. An important number of the proteins identified are outer membrane and periplasmic space protein, which makes them become particularly important new T4SS-related candidate proteins.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/biosíntesis , Sistemas de Secreción Bacterianos , Brucella abortus/metabolismo , Regulación Bacteriana de la Expresión Génica , Mutación , Proteínas Periplasmáticas/biosíntesis , Proteoma/biosíntesis , Proteínas de la Membrana Bacteriana Externa/genética , Brucella abortus/genética , Proteínas Periplasmáticas/genética , Proteoma/genética
9.
Proc Natl Acad Sci U S A ; 108(17): 6899-904, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21482809

RESUMEN

To avoid costly biomass recovery in photosynthetic microbial biofuel production, we genetically modified cyanobacteria to produce and secrete fatty acids. Starting with introducing an acyl-acyl carrier protein thioesterase gene, we made six successive generations of genetic modifications of cyanobacterium Synechocystis sp. PCC6803 wild type (SD100). The fatty acid secretion yield was increased to 197 ± 14 mg/L of culture in one improved strain at a cell density of 1.0 × 10(9) cells/mL by adding codon-optimized thioesterase genes and weakening polar cell wall layers. Although these strains exhibited damaged cell membranes at low cell densities, they grew more rapidly at high cell densities in late exponential and stationary phase and exhibited less cell damage than cells in wild-type cultures. Our results suggest that fatty acid secreting cyanobacteria are a promising technology for renewable biofuel production.


Asunto(s)
Biocombustibles , Proteínas de Escherichia coli/biosíntesis , Ácidos Grasos/metabolismo , Lisofosfolipasa/biosíntesis , Organismos Modificados Genéticamente/metabolismo , Proteínas Periplasmáticas/biosíntesis , Synechocystis/enzimología , Tioléster Hidrolasas/biosíntesis , Proteínas de Escherichia coli/genética , Ácidos Grasos/genética , Lisofosfolipasa/genética , Organismos Modificados Genéticamente/genética , Proteínas Periplasmáticas/genética , Synechocystis/genética , Tioléster Hidrolasas/genética
10.
Methods Mol Biol ; 715: 209-19, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21222087

RESUMEN

Structural proteins of the primary cell wall present unusual but interesting problems for structural biologists in particular and plant biologists in general. As structure is the key to function; then the biochemical isolation of these glycoproteins for further study is paramount. Here, we detail the "classical" method for isolating soluble extensin monomers by elution of monomeric precursors to network extensin from tissue cultures. We also outline an additional approach involving genetic engineering that can potentially yield the complete genomic range of extensins and other hydroxyproline-rich glycoprotein (HRGPs) currently underutilized for biotechnology.


Asunto(s)
Pared Celular/química , Glicoproteínas/química , Mucoproteínas/aislamiento & purificación , Nicotiana/química , Técnicas de Cultivo de Célula , Glicoproteínas/biosíntesis , Glicoproteínas/genética , Glicoproteínas/aislamiento & purificación , Proteínas Fluorescentes Verdes/biosíntesis , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/aislamiento & purificación , Mucoproteínas/biosíntesis , Proteínas Periplasmáticas/biosíntesis , Proteínas Periplasmáticas/aislamiento & purificación , Proteínas de Plantas/biosíntesis , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas Recombinantes de Fusión/biosíntesis , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Nicotiana/genética , Nicotiana/metabolismo , Transformación Genética
11.
Transgenic Res ; 18(5): 747-56, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19396561

RESUMEN

Human pro-urokinase expressed in the mammary glands of transgenic animals is quickly activated and converted to urokinase by proteases that are present in the milk. Thus, it is nearly impossible to isolate full-sized pro-urokinase from the milk of transgenic animals. To solve this problem, we constructed transgenic mice that express human pro-urokinase and modified ecotin, which is a potent serine protease inhibitor from E. coli, in their mammary glands. The gene encoding ecotin was modified so as to enhance its specificity for the human urokinase-type plasminogen activator. Co-expression of modified ecotin and human pro-urokinase in the mammary glands allows for purification of full-length human pro-urokinase from these transgenic mice. The results described here suggest a general way of preventing the activation of zymogens that are expressed in the mammary glands of transgenic animals by co-expression of a zymogen along with a protease inhibitor.


Asunto(s)
Precursores Enzimáticos/biosíntesis , Glándulas Mamarias Animales/enzimología , Activador de Plasminógeno de Tipo Uroquinasa/biosíntesis , Animales , Activación Enzimática , Precursores Enzimáticos/genética , Precursores Enzimáticos/aislamiento & purificación , Proteínas de Escherichia coli/biosíntesis , Proteínas de Escherichia coli/genética , Femenino , Humanos , Ratones , Ratones Transgénicos , Proteínas Periplasmáticas/biosíntesis , Proteínas Periplasmáticas/genética , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/aislamiento & purificación
12.
Microbiology (Reading) ; 153(Pt 7): 2148-2158, 2007 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-17600059

RESUMEN

Carbon-energy source starvation is a commonly encountered stress that can influence the epidemiology and virulence of Salmonella enterica serovars. Salmonella responds to C-starvation by eliciting the starvation-stress response (SSR), which allows for long-term C-starvation survival and cross-resistance to other stresses. The stiC locus was identified as a C-starvation-inducible, sigma(S)-dependent locus required for a maximal SSR. We report here that the stiC locus is an operon composed of the yohC (putative transport protein) and pbpG (penicillin-binding protein-7/8) genes. yohC pbpG transcription is initiated from a sigma(S)-dependent C-starvation-inducible promoter upstream of yohC. Another (sigma(S)-independent) promoter, upstream of pbpG, drives lower constitutive pbpG transcription, primarily during exponential phase. C-starvation-inducible pbpG expression was required for development of the SSR in 5 h, but not 24 h, C-starved cells; yohC was dispensable for the SSR. Furthermore, the yohC pbpG operon is induced within MDCK epithelial cells, but was not essential for oral virulence in BALB/c mice. Thus, PBP 7 is required for physiological changes, occurring within the first few hours of C-starvation, essential for the development of the SSR. Lack of PBP 7, however, can be compensated for by further physiological changes developed in 24 h C-starved cells. This supports the dynamic overlapping and distinct nature of resistance pathways within the Salmonella SSR.


Asunto(s)
Proteínas Bacterianas/metabolismo , Carbono/metabolismo , Estrés Oxidativo , Proteínas de Unión a las Penicilinas/biosíntesis , Proteínas Periplasmáticas/biosíntesis , Salmonella typhimurium/crecimiento & desarrollo , Salmonella typhimurium/fisiología , Factor sigma/metabolismo , Adaptación Fisiológica , Ciclo Celular , Línea Celular , Regulación Bacteriana de la Expresión Génica , Salmonella typhimurium/genética , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
13.
Protein Expr Purif ; 55(1): 100-11, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17509894

RESUMEN

Native proinsulin belongs to the class of the difficult-to-express proteins in Escherichia coli. Problems mainly arise due to its small size, a high proteolytic decay, and the necessity to form a native disulfide pattern. In the present study, human proinsulin was produced in the periplasm of E. coli as a fusion to ecotin, which is a small periplasmic protein of 16 kDa encoded by the host, containing one disulfide bond. The fusion protein was secreted to the periplasm and native proinsulin was determined by ELISA. Cultivation parameters were studied in parallel batch mode fermentations using E. coli BL21(DE3)Gold as a host. After improvement of fed-batch high density fermentation conditions, 153 mg fusion protein corresponding to 51.5mg native proinsulin was obtained per L. Proteins were extracted from the periplasm by osmotic shock treatment. The fusion protein was purified in one step by ecotin affinity chromatography on immobilized trypsinogen. After thrombin cleavage of the fusion protein, the products were separated by Ni-NTA chromatography. Proinsulin was quantified by ELISA and characterized by mass spectrometry. To evaluate the influence of periplasmic proteases, the amount of ecotin-proinsulin was determined in E. coli BL21(DE3)Gold and in a periplasmic protease deficient strain, E. coli SF120.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Fermentación , Proteínas Periplasmáticas/biosíntesis , Proinsulina/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis , Secuencia de Aminoácidos , Reactores Biológicos , Clonación Molecular , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Datos de Secuencia Molecular , Periplasma/metabolismo , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Proinsulina/química , Proinsulina/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/aislamiento & purificación
14.
Biochim Biophys Acta ; 1758(10): 1587-95, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16836975

RESUMEN

Verapamil is used clinically as a Ca(2+) channel inhibitor for the treatment of various disorders such as angina, hypertension and cardiac arrhythmia. Here we study the effect of verapamil on the bacterium Escherichia coli. The drug was shown to inhibit cell division at growth sub inhibitory concentrations, independently of the SOS response. We show verapamil is a membrane active drug, with similar effects to dibucaine, a local anesthetic. Thus, both verapamil and dibucaine abolish the proton motive force and decrease the intracellular ATP concentration. This is accompanied by induction of degP expression, as a result of the activation of the RpoE (SigmaE) extra-cytoplasmic stress response, and activation of the psp operon. Such effects of verapamil, as a membrane active compound, could explain its general toxicity in eukaryotic cells.


Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Escherichia coli/efectos de los fármacos , Factor sigma/biosíntesis , Factores de Transcripción/biosíntesis , Verapamilo/farmacología , Anestésicos Locales/farmacología , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/genética , Dibucaína/farmacología , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Proteínas de Choque Térmico/biosíntesis , Potenciales de la Membrana/efectos de los fármacos , Proteínas Periplasmáticas/biosíntesis , Serina Endopeptidasas/biosíntesis
15.
Protein Expr Purif ; 47(2): 662-71, 2006 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-16600627

RESUMEN

Human pepsinogen is the secreted inactive precursor of pepsin. Under the acidic conditions present in the stomach it is autocatalytically cleaved into the active protease. Pepsinogen contains three consecutive disulfides, and was used here as a model protein to investigate the production of aspartic proteases in the Escherichia coli periplasm. Various N-terminal translocation signals were applied and several different expression vectors were tested. After fusion to pelB, dsbA or ompT signal peptides no recombinant product could be obtained in the periplasm using the T7 promoter. As a new approach, human pepsinogen was fused to E. coli ecotin (E. coli trypsin inhibitor), which is a periplasmic homodimeric protein of 142 amino acids per monomer containing one disulfide bridge. The fusion protein was expressed in pTrc99a. After induction, the ecotin-pepsinogen fusion protein was translocated into the periplasm and the ecotin signal peptide was cleaved. Upon acid treatment, the fusion protein was converted into pepsin, indicating that pepsinogen was produced in its native form. In shake flasks experiments, the amount of active fusion protein present in the periplasm was 100 microg per litre OD 1, corresponding to 70 microg pepsinogen. After large scale cultivation, the fusion protein was isolated from the periplasmic extract. It was purified to homogeneity with a yield of 20%. The purified protein was native. Acid-induced activation of the fusion protein proceeded very fast. As soon as pepsin was present, the ecotin part of the fusion protein was rapidly digested, followed by a further activation of pepsinogen.


Asunto(s)
Proteínas de Escherichia coli/biosíntesis , Escherichia coli , Pepsinógeno A/biosíntesis , Periplasma , Proteínas Periplasmáticas/biosíntesis , Proteínas Recombinantes de Fusión/biosíntesis , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Humanos , Pepsinógeno A/química , Pepsinógeno A/genética , Periplasma/genética , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Señales de Clasificación de Proteína/genética , Estructura Terciaria de Proteína , Transporte de Proteínas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética
16.
FEMS Microbiol Lett ; 251(1): 75-80, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16143461

RESUMEN

The HtrA protein of Escherichia coli is a heat-shock inducible periplasmic protease, essential for bacterial survival at high temperatures. Expression of htrA gene depends on the alternative factor sigmaE and on the two-component regulatory system Cpx. These regulators systems respond, among others factors, to overproduction of misfolded proteins in the periplasm or to high level synthesis of various extracytoplasmic proteins. We describe in this report the osmoregulation of the expression of htrA gene. Low osmolarity conditions result in htrA repression. We report, as well, the role of the nucleoid associated proteins H-NS and Hha in the repression of htrA expression at low osmolarity.


Asunto(s)
Proteínas Bacterianas/fisiología , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/fisiología , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Proteínas de Choque Térmico/biosíntesis , Proteínas Periplasmáticas/biosíntesis , Serina Endopeptidasas/biosíntesis , Proteínas Bacterianas/metabolismo , Ensayo de Cambio de Movilidad Electroforética , Escherichia coli/enzimología , Escherichia coli/genética , Fusión Génica , Genes Reporteros , Mutación , Concentración Osmolar , ARN Bacteriano/análisis , ARN Mensajero/análisis , beta-Galactosidasa/análisis , beta-Galactosidasa/genética
17.
J Bacteriol ; 187(9): 3282-6, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15838058

RESUMEN

Transcription of the Escherichia coli osmB gene is induced by several stress conditions. osmB is expressed from two promoters, osmBp1 and osmBp2. The downstream promoter, osmBp2, is induced after osmotic shock or upon entry into stationary phase in a sigma(S)-dependent manner. The upstream promoter, osmBp1, is independent of sigma(S) and is activated by RcsB, the response regulator of the His-Asp phosphorelay signal transduction system RcsCDB. RcsB is responsible for the induction of osmBp1 following treatment with chlorpromazine. Activation of osmBp1 by RcsB requires a sequence upstream of its -35 element similar to the RcsB binding site consensus, suggesting a direct regulatory role. osmB appears as another example of a multistress-responsive gene whose transcription involves both a sigma(S)-dependent promoter and a second one independent of sigma(S) but controlled by stress-specific transcription factors.


Asunto(s)
Proteínas de la Membrana Bacteriana Externa/genética , Proteínas Bacterianas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/fisiología , Regulación Bacteriana de la Expresión Génica , Lipoproteínas/genética , Proteínas Periplasmáticas/genética , Regiones Promotoras Genéticas , Factor sigma/metabolismo , Factores de Transcripción/metabolismo , Adaptación Fisiológica , Ácido Aspártico/metabolismo , Proteínas de la Membrana Bacteriana Externa/biosíntesis , Secuencia de Bases , ADN Bacteriano , Escherichia coli/crecimiento & desarrollo , Proteínas de Escherichia coli/fisiología , Histidina/metabolismo , Lipoproteínas/biosíntesis , Datos de Secuencia Molecular , Proteínas Periplasmáticas/biosíntesis , Transducción de Señal
18.
J Bacteriol ; 186(18): 6311-5, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15342602

RESUMEN

Formate dehydrogenase N (FDH-N) of Escherichia coli is a membrane-bound enzyme comprising FdnG, FdnH, and FdnI subunits organized in an (alphabetagamma)3 configuration. The FdnG subunit carries a Tat-dependent signal peptide, which localizes the protein complex to the periplasmic side of the membrane. We noted that substitution of the first arginine (R5) in the twin arginine signal sequence of FdnG for a variety of other amino acids resulted in a dramatic (up to 60-fold) increase in the levels of protein synthesized. Bioinformatic analysis suggested that the mRNA specifying the first 17 codons of fdnG forms a stable stem-loop structure. A detailed mutational analysis has demonstrated the importance of this mRNA stem-loop in modulating FDH-N translation.


Asunto(s)
Escherichia coli/metabolismo , Formiato Deshidrogenasas/biosíntesis , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , ARN Mensajero/química , Fusión Artificial Génica , Secuencia de Bases , Análisis Mutacional de ADN , Escherichia coli/genética , Proteínas de Escherichia coli/biosíntesis , Genes Reporteros , Datos de Secuencia Molecular , Proteínas Periplasmáticas/biosíntesis , ARN Bacteriano/química , ARN Bacteriano/genética , ARN Bacteriano/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismo
19.
J Mol Biol ; 342(1): 195-205, 2004 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-15313617

RESUMEN

Osmoregulated periplasmic glucans (OPGs) G protein (OpgG) is required for OPGs biosynthesis. OPGs from Escherichia coli are branched glucans, with a backbone of beta-1,2 glucose units and with branches attached by beta-1,6 linkages. In Proteobacteria, OPGs are involved in osmoprotection, biofilm formation, virulence and resistance to antibiotics. Despite their important biological implications, enzymes synthesizing OPGs are poorly characterized. Here, we report the 2.5 A crystal structure of OpgG from E.coli. The structure was solved using a selenemethionine derivative of OpgG and the multiple anomalous diffraction method (MAD). The protein is composed of two beta-sandwich domains connected by one turn of 3(10) helix. The N-terminal domain (residues 22-388) displays a 25-stranded beta-sandwich fold found in several carbohydrate-related proteins. It exhibits a large cleft comprising many aromatic and acidic residues. This putative binding site shares some similarities with enzymes such as galactose mutarotase and glucodextranase, suggesting a potential catalytic role for this domain in OPG synthesis. On the other hand, the C-terminal domain (residues 401-512) has a seven-stranded immunoglobulin-like beta-sandwich fold, found in many proteins where it is mainly implicated in interactions with other molecules. The structural data suggest that OpgG is an OPG branching enzyme in which the catalytic activity is located in the large N-terminal domain and controlled via the smaller C-terminal domain.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de Unión al GTP/química , Glucanos/biosíntesis , Proteínas Periplasmáticas/biosíntesis , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Secuencia de Aminoácidos , Cristalografía por Rayos X , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Unión al GTP/genética , Glucanos/química , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas Periplasmáticas/química , Selenometionina/química
20.
Biochemistry ; 43(3): 748-58, 2004 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-14730980

RESUMEN

4-Oxalocrotonate tautomerase (4-OT) and YwhB, a 4-OT homologue found in Bacillus subtilis, exhibit a low level hydratase activity that converts trans-3-haloacrylates to acetaldehyde, presumably through a malonate semialdehyde intermediate. The mechanism for the initial transformation of the 3-haloacrylate to malonate semialdehyde involves Pro-1 as well as an arginine, two residues that play critical roles in the 4-OT-catalyzed isomerization reaction and the YwhB-catalyzed tautomerization reaction. These residues are also critical for the trans-3-chloroacrylic acid dehalogenase (CaaD)-catalyzed conversion of trans-3-haloacrylates to malonate semialdehyde. Recently, 3-bromo- and 3-chloropropiolate, the acetylene analogues of 3-haloacrylates, were characterized as potent irreversible inhibitors of CaaD due to the covalent modification of the catalytic proline. In view of these observations, an investigation of the behavior of 4-OT and YwhB with the 3-halopropiolates was undertaken. The results show that these compounds are potent irreversible inhibitors of 4-OT and YwhB with Pro-1 being the sole site of covalent modification by 3-bromopropiolate. The inactivation process could involve the enzyme-catalyzed addition of water to the 3-halopropiolate yielding an acyl halide, which would inactivate the enzyme or be initiated by the nucleophilic attack of Pro-1 at the C-3 position of the 3-halopropiolate in a Michael type reaction. The presence of the halogen along with Arg-11 could facilitate both reactions with the latter causing the polarization of the alpha,beta-unsaturated acids. The 3-halopropiolates are the first identified inhibitors of YwhB and confirm the importance of Pro-1 in its mechanism. In addition, the results set the stage for the use of these compounds as mechanistic probes of the primary as well as low level activities of 4-OT and YwhB.


Asunto(s)
Alquinos/química , Bacillus subtilis/enzimología , Inhibidores Enzimáticos/química , Isomerasas/química , Proteínas de Unión a las Penicilinas , Propionatos/química , Amidohidrolasas/antagonistas & inhibidores , Amidohidrolasas/química , Sustitución de Aminoácidos/genética , Proteínas Bacterianas/biosíntesis , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Hidrolasas/antagonistas & inhibidores , Hidrolasas/química , Isomerasas/antagonistas & inhibidores , Isomerasas/genética , Cinética , Peso Molecular , Proteínas Periplasmáticas/biosíntesis , Proteínas Periplasmáticas/química , Proteínas Periplasmáticas/genética , Prolina/genética , Espectrometría de Masa por Ionización de Electrospray , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA