Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23.196
Filtrar
Más filtros

Intervalo de año de publicación
1.
Emerg Microbes Infect ; 13(1): 2368221, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38932432

RESUMEN

A positive-sense (+) single-stranded RNA (ssRNA) virus (e.g. enterovirus A71, EV-A71) depends on viral polypeptide translation for initiation of virus replication after entry. We reported that EV-A71 hijacks Hsp27 to induce hnRNP A1 cytosol redistribution to initiate viral protein translation, but the underlying mechanism is still elusive. Here, we show that phosphorylation-deficient Hsp27-3A (Hsp27S15/78/82A) and Hsp27S78A fail to translocate into the nucleus and induce hnRNP A1 cytosol redistribution, while Hsp27S15A and Hsp27S82A display similar effects to the wild type Hsp27. Furthermore, we demonstrate that the viral 2A protease (2Apro) activity is a key factor in regulating Hsp27/hnRNP A1 relocalization. Hsp27S78A dramatically decreases the IRES activity and viral replication, which are partially reduced by Hsp27S82A. However, Hsp27S15A displays the same activity as the wild-type Hsp27. Peptide S78 potently suppresses EV-A71 protein translation and reproduction through blockage of EV-A71-induced Hsp27 phosphorylation and Hsp27/hnRNP A1 relocalization. A point mutation (S78A) on S78 impairs its inhibitory functions on Hsp27/hnRNP A1 relocalization and viral replication. Taken together, we demonstrate the importance of Ser78 phosphorylation of Hsp27 regulated by virus infection in nuclear translocation, hnRNP A1 cytosol relocation, and viral replication, suggesting a new path (such as peptide S78) for target-based antiviral strategy.


Asunto(s)
Enterovirus Humano A , Proteínas de Choque Térmico HSP27 , Ribonucleoproteína Nuclear Heterogénea A1 , Replicación Viral , Enterovirus Humano A/efectos de los fármacos , Enterovirus Humano A/fisiología , Enterovirus Humano A/genética , Fosforilación , Humanos , Replicación Viral/efectos de los fármacos , Ribonucleoproteína Nuclear Heterogénea A1/metabolismo , Ribonucleoproteína Nuclear Heterogénea A1/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/genética , Infecciones por Enterovirus/virología , Infecciones por Enterovirus/metabolismo , Antivirales/farmacología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Serina/metabolismo , Células HeLa , Biosíntesis de Proteínas , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética , Proteínas de Choque Térmico
2.
Metabolomics ; 20(4): 68, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38941046

RESUMEN

INTRODUCTION: Exploring metabolic changes within host E. coli through an untargeted metabolomic study of T7L variants overexpression to optimize engineered endolysins for clinical/therapeutic use. AIM AND OBJECTIVE: This study aims to assess the impact of overexpressing T7L variants on the metabolic profiles of E. coli. The two variants considered include T7L-H37A, which has enhanced lytic activity compared to its wild-type protein, and T7L-H48K, a dead mutant with no significant activity. METHODS: 1H NMR-based metabolomics was employed to compare the metabolic profiles of E. coli cells overexpressing T7L wild-type protein and its variants. RESULTS: Overexpression of the T7L wild-type (T7L-WT) protein and its variants (T7L-H48K and T7L-H37A) was compared to RNAP overexpression in E. coli cells using 1H NMR-based metabolomics, analyzing a total of 75 annotated metabolites, including organic acids, amino acids, sugars, and nucleic acids. The results showed distinct clustering patterns for the two T7L variant groups compared with the WT, in which the dead mutant (H48K) group showed clustering close to that of RNAP. Pathway impact analysis revealed different effects of T7L variants on E. coli metabolic profiles, with T7L-H48K showing minimal alterations in energy and amino acid pathways linked to osmotic stress compared to noticeable alterations in these pathways for both T7L-H37A and T7L-WT. CONCLUSIONS: This study uncovered distinct metabolic fingerprints when comparing the overexpression of active and inactive mutants of T7L lytic enzymes in E. coli cells. These findings could contribute to the optimization and enhancement of suitable endolysins as potential alternatives to antibiotics.


Asunto(s)
Escherichia coli , Metaboloma , Metabolómica , Escherichia coli/metabolismo , Escherichia coli/genética , Metabolómica/métodos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Bacteriófago T7/genética , Bacteriófago T7/metabolismo , Mutación , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética
3.
Signal Transduct Target Ther ; 9(1): 159, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38937432

RESUMEN

The ORF9b protein, derived from the nucleocapsid's open-reading frame in both SARS-CoV and SARS-CoV-2, serves as an accessory protein crucial for viral immune evasion by inhibiting the innate immune response. Despite its significance, the precise regulatory mechanisms underlying its function remain elusive. In the present study, we unveil that the ORF9b protein of SARS-CoV-2, including emerging mutant strains like Delta and Omicron, can undergo ubiquitination at the K67 site and subsequent degradation via the proteasome pathway, despite certain mutations present among these strains. Moreover, our investigation further uncovers the pivotal role of the translocase of the outer mitochondrial membrane 70 (TOM70) as a substrate receptor, bridging ORF9b with heat shock protein 90 alpha (HSP90α) and Cullin 5 (CUL5) to form a complex. Within this complex, CUL5 triggers the ubiquitination and degradation of ORF9b, acting as a host antiviral factor, while HSP90α functions to stabilize it. Notably, treatment with HSP90 inhibitors such as GA or 17-AAG accelerates the degradation of ORF9b, leading to a pronounced inhibition of SARS-CoV-2 replication. Single-cell sequencing data revealed an up-regulation of HSP90α in lung epithelial cells from COVID-19 patients, suggesting a potential mechanism by which SARS-CoV-2 may exploit HSP90α to evade the host immunity. Our study identifies the CUL5-TOM70-HSP90α complex as a critical regulator of ORF9b protein stability, shedding light on the intricate host-virus immune response dynamics and offering promising avenues for drug development against SARS-CoV-2 in clinical settings.


Asunto(s)
COVID-19 , Proteínas Cullin , Proteínas HSP90 de Choque Térmico , SARS-CoV-2 , Ubiquitinación , Replicación Viral , Humanos , Proteínas Cullin/genética , Proteínas Cullin/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Replicación Viral/genética , Proteínas HSP90 de Choque Térmico/genética , Proteínas HSP90 de Choque Térmico/metabolismo , COVID-19/virología , COVID-19/genética , COVID-19/metabolismo , COVID-19/inmunología , Ubiquitinación/genética , Células HEK293 , Benzoquinonas/farmacología , Estabilidad Proteica , Células Vero , Proteínas Virales/genética , Proteínas Virales/metabolismo , Lactamas Macrocíclicas
4.
Viruses ; 16(6)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38932128

RESUMEN

This study was conducted to efficiently produce virus-like particles (VLPs) of enterovirus 71 (EV71), a causative virus of hand, foot, and mouth disease (HFMD). The expression level of the P1 precursor, a structural protein of EV71, was modified to increase VLP production, and the optimal expression level and duration of the 3CD protein for P1 cleavage were determined. The expression level and duration of 3CD were controlled by the p10 promoter, which was weakened by repeated burst sequence (BS) applications, as well as the OpIE2 promoter, which was weakened by the insertion of random untranslated region sequences of various lengths. The cleavage and production efficiency of the P1 precursor were compared based on the expression time and level of 3CD, revealing that the p10-BS5 promoter with four repeated BSs was the most effective. When P1 and 3CD were expressed using the hyperexpression vector and the p10-BS5 promoter, high levels of structural protein production and normal HFMD-VLP formation were observed, respectively. This study suggests that the production efficiency of HFMD-VLPs can be significantly enhanced by increasing the expression of the P1 precursor and controlling the amount and duration of 3CD expression.


Asunto(s)
Enterovirus Humano A , Regiones Promotoras Genéticas , Enterovirus Humano A/genética , Enterovirus Humano A/fisiología , Animales , Proteínas Virales/genética , Proteínas Virales/metabolismo , Humanos , Enfermedad de Boca, Mano y Pie/virología , Línea Celular , Células Sf9 , Vectores Genéticos/genética
5.
Viruses ; 16(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38932139

RESUMEN

The viral interferon regulatory factors (vIRFs) of KSHV are known to dysregulate cell signaling pathways to promote viral oncogenesis and to block antiviral immune responses to facilitate infection. However, it remains unknown to what extent each vIRF plays a role in gene regulation. To address this, we performed a comparative analysis of the protein structures and gene regulation of the four vIRFs. Our structure prediction analysis revealed that despite their low amino acid sequence similarity, vIRFs exhibit high structural homology in both their DNA-binding domain (DBD) and IRF association domain. However, despite this shared structural homology, we demonstrate that each vIRF regulates a distinct set of KSHV gene promoters and human genes in epithelial cells. We also found that the DBD of vIRF1 is essential in regulating the expression of its target genes. We propose that the structurally similar vIRFs evolved to possess specialized transcriptional functions to regulate specific genes.


Asunto(s)
Células Epiteliales , Regulación Viral de la Expresión Génica , Herpesvirus Humano 8 , Factores Reguladores del Interferón , Proteínas Virales , Humanos , Factores Reguladores del Interferón/metabolismo , Factores Reguladores del Interferón/genética , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/fisiología , Células Epiteliales/virología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Regiones Promotoras Genéticas , Transcripción Genética , Genoma Viral , Línea Celular
6.
Viruses ; 16(6)2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38932138

RESUMEN

Viruses exploit the host cell machinery to enable infection and propagation. This review discusses the complex landscape of DNA virus-host interactions, focusing primarily on herpesviruses and adenoviruses, which replicate in the nucleus of infected cells, and vaccinia virus, which replicates in the cytoplasm. We discuss experimental approaches used to discover and validate interactions of host proteins with viral genomes and how these interactions impact processes that occur during infection, including the host DNA damage response and viral genome replication, repair, and transcription. We highlight the current state of knowledge regarding virus-host protein interactions and also outline emerging areas and future directions for research.


Asunto(s)
ADN Viral , Genoma Viral , Interacciones Huésped-Patógeno , Replicación Viral , Humanos , ADN Viral/genética , ADN Viral/metabolismo , Virus ADN/genética , Animales , Proteínas Virales/metabolismo , Proteínas Virales/genética , Herpesviridae/genética , Herpesviridae/metabolismo , Herpesviridae/fisiología , Virus Vaccinia/genética
7.
Viruses ; 16(6)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38932171

RESUMEN

Proteins of the Bcl-2 family regulate cellular fate via multiple mechanisms including apoptosis, autophagy, senescence, metabolism, inflammation, redox homeostasis, and calcium flux. There are several regulated cell death (RCD) pathways, including apoptosis and autophagy, that use distinct molecular mechanisms to elicit the death response. However, the same proteins/genes may be deployed in multiple biochemical pathways. In apoptosis, Bcl-2 proteins control the integrity of the mitochondrial outer membrane (MOM) by regulating the formation of pores in the MOM and apoptotic cell death. A number of prosurvival genes populate the genomes of viruses including those of the pro-survival Bcl-2 family. Viral Bcl-2 proteins are sequence and structural homologs of their cellular counterparts and interact with cellular proteins in apoptotic and autophagic pathways, potentially allowing them to modulate these pathways and determine cellular fate.


Asunto(s)
Apoptosis , Autofagia , Virus ADN , Proteínas Proto-Oncogénicas c-bcl-2 , Proteínas Virales , Humanos , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/genética , Virus ADN/genética , Virus ADN/fisiología , Proteínas Virales/metabolismo , Proteínas Virales/genética , Animales , Membranas Mitocondriales/metabolismo
8.
Viruses ; 16(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38932190

RESUMEN

Human coronavirus 229E (HCoV-229E) is associated with upper respiratory tract infections and generally causes mild respiratory symptoms. HCoV-229E infection can cause cell death, but the molecular pathways that lead to virus-induced cell death as well as the interplay between viral proteins and cellular cell death effectors remain poorly characterized for HCoV-229E. Studying how HCoV-229E and other common cold coronaviruses interact with and affect cell death pathways may help to understand its pathogenesis and compare it to that of highly pathogenic coronaviruses. Here, we report that the main protease (Mpro) of HCoV-229E can cleave gasdermin D (GSDMD) at two different sites (Q29 and Q193) within its active N-terminal domain to generate fragments that are now unable to cause pyroptosis, a form of lytic cell death normally executed by this protein. Despite GSDMD cleavage by HCoV-229E Mpro, we show that HCoV-229E infection still leads to lytic cell death. We demonstrate that during virus infection caspase-3 cleaves and activates gasdermin E (GSDME), another key executioner of pyroptosis. Accordingly, GSDME knockout cells show a significant decrease in lytic cell death upon virus infection. Finally, we show that HCoV-229E infection leads to increased lytic cell death levels in cells expressing a GSDMD mutant uncleavable by Mpro (GSDMD Q29A+Q193A). We conclude that GSDMD is inactivated by Mpro during HCoV-229E infection, preventing GSDMD-mediated cell death, and point to the caspase-3/GSDME axis as an important player in the execution of virus-induced cell death. In the context of similar reported findings for highly pathogenic coronaviruses, our results suggest that these mechanisms do not contribute to differences in pathogenicity among coronaviruses. Nonetheless, understanding the interactions of common cold-associated coronaviruses and their proteins with the programmed cell death machineries may lead to new clues for coronavirus control strategies.


Asunto(s)
Muerte Celular , Coronavirus Humano 229E , Péptidos y Proteínas de Señalización Intracelular , Proteínas de Unión a Fosfato , Piroptosis , Humanos , Proteínas de Unión a Fosfato/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Coronavirus Humano 229E/fisiología , Coronavirus Humano 229E/genética , Infecciones por Coronavirus/virología , Infecciones por Coronavirus/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Línea Celular , Interacciones Huésped-Patógeno , Células HEK293 , Gasderminas
9.
Viruses ; 16(6)2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38932209

RESUMEN

A proteomics analysis of purified rabies virus (RABV) revealed 47 entrapped host proteins within the viral particles. Out of these, 11 proteins were highly disordered. Our study was particularly focused on five of the RABV-entrapped mouse proteins with the highest levels of disorder: Neuromodulin, Chmp4b, DnaJB6, Vps37B, and Wasl. We extensively utilized bioinformatics tools, such as FuzDrop, D2P2, UniProt, RIDAO, STRING, AlphaFold, and ELM, for a comprehensive analysis of the intrinsic disorder propensity of these proteins. Our analysis suggested that these disordered host proteins might play a significant role in facilitating the rabies virus pathogenicity, immune system evasion, and the development of antiviral drug resistance. Our study highlighted the complex interaction of the virus with its host, with a focus on how the intrinsic disorder can play a crucial role in virus pathogenic processes, and suggested that these intrinsically disordered proteins (IDPs) and disorder-related host interactions can also be a potential target for therapeutic strategies.


Asunto(s)
Proteínas Intrínsecamente Desordenadas , Virus de la Rabia , Virión , Virus de la Rabia/fisiología , Animales , Ratones , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Virión/metabolismo , Proteómica , Interacciones Huésped-Patógeno , Rabia/virología , Biología Computacional/métodos , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas Virales/química
10.
Viruses ; 16(6)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38932241

RESUMEN

African swine fever (ASF) is an acute, hemorrhagic, highly contagious disease in pigs caused by African swine fever virus (ASFV). Our previous study identified that the ASFV MGF300-2R protein functions as a virulence factor and found that MGF300-2R degrades IKKß via selective autophagy. However, the E3 ubiquitin ligase responsible for IKKß ubiquitination during autophagic degradation still remains unknown. In order to solve this problem, we first pulled down 328 proteins interacting with MGF300-2R through immunoprecipitation-mass spectrometry. Next, we analyzed and confirmed the interaction between the E3 ubiquitin ligase TRIM21 and MGF300-2R and demonstrated the catalytic role of TRIM21 in IKKß ubiquitination. Finally, we indicated that the degradation of IKKß by MGF300-2R was dependent on TRIM21. In summary, our results indicate TRIM21 is the E3 ubiquitin ligase involved in the degradation of IKKß by MGF300-2R, thereby augmenting our understanding of the functions of MGF300-2R and offering insights into the rational design of live attenuated vaccines and antiviral strategies against ASF.


Asunto(s)
Virus de la Fiebre Porcina Africana , Quinasa I-kappa B , Ribonucleoproteínas , Ubiquitina-Proteína Ligasas , Ubiquitinación , Proteínas Virales , Animales , Virus de la Fiebre Porcina Africana/metabolismo , Virus de la Fiebre Porcina Africana/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitina-Proteína Ligasas/genética , Porcinos , Quinasa I-kappa B/metabolismo , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Fiebre Porcina Africana/virología , Fiebre Porcina Africana/metabolismo , Humanos , Células HEK293 , Interacciones Huésped-Patógeno , Factores de Virulencia/metabolismo , Autofagia , Unión Proteica
11.
Emerg Microbes Infect ; 13(1): 2369193, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38873898

RESUMEN

The global outbreak of Mpox, caused by the monkeypox virus (MPXV), has attracted international attention and become another major infectious disease event after COVID-19. The mRNA cap N7 methyltransferase (RNMT) of MPXV methylates the N7 position of the added guanosine to the 5'-cap structure of mRNAs and plays a vital role in evading host antiviral immunity. MPXV RNMT is composed of the large subunit E1 and the small subunit E12. How E1 and E12 of MPXV assembly remains unclear. Here, we report the crystal structures of E12, the MTase domain of E1 with E12 (E1CTD-E12) complex, and the E1CTD-E12-SAM ternary complex, revealing the detailed conformations of critical residues and the structural changes upon E12 binding to E1. Functional studies suggest that E1CTD N-terminal extension (Asp545-Arg562) and the small subunit E12 play an essential role in the binding process of SAM. Structural comparison of the AlphaFold2-predicted E1, E1CTD-E12 complex, and the homologous D1-D12 complex of vaccinia virus (VACV) indicates an allosteric activating effect of E1 in MPXV. Our findings provide the structural basis for the MTase activity stimulation of the E1-E12 complex and suggest a potential interface for screening the anti-poxvirus inhibitors.


Asunto(s)
Metiltransferasas , Monkeypox virus , Metiltransferasas/química , Metiltransferasas/metabolismo , Metiltransferasas/genética , Monkeypox virus/genética , Monkeypox virus/enzimología , Monkeypox virus/química , Proteínas Virales/química , Proteínas Virales/genética , Proteínas Virales/metabolismo , Cristalografía por Rayos X , Caperuzas de ARN/metabolismo , Caperuzas de ARN/química , Modelos Moleculares , Humanos , Conformación Proteica , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Mensajero/química
12.
PLoS Pathog ; 20(6): e1011642, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38875296

RESUMEN

Influenza viruses transcribe and replicate their genome in the nucleus of the infected cells, two functions that are supported by the viral RNA-dependent RNA-polymerase (FluPol). FluPol displays structural flexibility related to distinct functional states, from an inactive form to conformations competent for replication and transcription. FluPol machinery is constituted by a structurally-invariant core comprising the PB1 subunit stabilized with PA and PB2 domains, whereas the PA endonuclease and PB2 C-domains can pack in different configurations around the core. To get insights into the functioning of FluPol, we selected single-domain nanobodies (VHHs) specific of the influenza A FluPol core. When expressed intracellularly, some of them exhibited inhibitory activity on type A FluPol, but not on the type B one. The most potent VHH (VHH16) binds PA and the PA-PB1 dimer with an affinity below the nanomolar range. Ectopic intracellular expression of VHH16 in virus permissive cells blocks multiplication of different influenza A subtypes, even when induced at late times post-infection. VHH16 was found to interfere with the transport of the PA-PB1 dimer to the nucleus, without affecting its handling by the importin ß RanBP5 and subsequent steps in FluPol assembly. Using FluPol mutants selected after passaging in VHH16-expressing cells, we identified the VHH16 binding site at the interface formed by PA residues with the N-terminus of PB1, overlapping or close to binding sites of two host proteins, ANP32A and RNA-polymerase II RPB1 subunit which are critical for virus replication and transcription, respectively. These data suggest that the VHH16 neutralization is likely due to several activities, altering the import of the PA-PB1 dimer into the nucleus as well as inhibiting specifically virus transcription and replication. Thus, the VHH16 binding site represents a new Achilles' heel for FluPol and as such, a potential target for antiviral development.


Asunto(s)
Antivirales , Virus de la Influenza A , ARN Polimerasa Dependiente del ARN , Anticuerpos de Dominio Único , Replicación Viral , Anticuerpos de Dominio Único/inmunología , Humanos , Antivirales/farmacología , Virus de la Influenza A/inmunología , Animales , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Gripe Humana/inmunología , Gripe Humana/virología , Células HEK293 , Perros , Células de Riñón Canino Madin Darby
13.
Mol Plant Pathol ; 25(6): e13487, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38877765

RESUMEN

We had previously reported that a plum pox virus (PPV)-based chimera that had its P1-HCPro bi-cistron replaced by a modified one from potato virus Y (PVY) increased its virulence in some Nicotiana benthamiana plants, after mechanical passages. This correlated with the natural acquisition of amino acid substitutions in several proteins, including in HCPro at either position 352 (Ile→Thr) or 454 (Leu→Arg), or of mutations in non-coding regions. Thr in position 352 is not found among natural potyviruses, while Arg in 454 is a reversion to the native PVY HCPro amino acid. We show here that both mutations separately contributed to the increased virulence observed in the passaged chimeras that acquired them, and that Thr in position 352 is no intragenic suppressor to a Leu in position 454, because their combined effects were cumulative. We demonstrate that Arg in position 454 improved HCPro autocatalytic cleavage, while Thr in position 352 increased its accumulation and the silencing suppression of a reporter in agropatch assays. We assessed infection by four cloned chimera variants expressing HCPro with none of the two substitutions, one of them or both, in wild-type versus DCL2/4-silenced transgenic plants. We found that during infection, the transgenic context of altered small RNAs affected the accumulation of the four HCPro variants differently and hence, also infection virulence.


Asunto(s)
Sustitución de Aminoácidos , Nicotiana , Potyvirus , Proteínas Virales , Virulencia/genética , Nicotiana/virología , Potyvirus/patogenicidad , Potyvirus/genética , Proteínas Virales/metabolismo , Proteínas Virales/genética , Enfermedades de las Plantas/virología , Quimera , Virus Eruptivo de la Ciruela/patogenicidad , Virus Eruptivo de la Ciruela/genética , Cisteína Endopeptidasas/metabolismo , Cisteína Endopeptidasas/genética , Mutación/genética
14.
PLoS Pathog ; 20(6): e1012311, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38885273

RESUMEN

The majority of rod-shaped and some filamentous plant viruses encode a cysteine-rich protein (CRP) that functions in viral virulence; however, the roles of these CRPs in viral infection remain largely unknown. Here, we used barley stripe mosaic virus (BSMV) as a model to investigate the essential role of its CRP in virus morphogenesis. The CRP protein γb directly interacts with BSMV coat protein (CP), the mutations either on the His-85 site in γb predicted to generate a potential CCCH motif or on the His-13 site in CP exposed to the surface of the virions abolish the zinc-binding activity and their interaction. Immunogold-labeling assays show that γb binds to the surface of rod-shaped BSMV virions in a Zn2+-dependent manner, which enhances the RNA binding activity of CP and facilitates virion assembly and stability, suggesting that the Zn2+-dependent physical association of γb with the virion is crucial for BSMV morphogenesis. Intriguingly, the tightly binding of diverse CRPs to their rod-shaped virions is a general feature employed by the members in the families Virgaviridae (excluding the genus Tobamovirus) and Benyviridae. Together, these results reveal a hitherto unknown role of CRPs in the assembly and stability of virus particles, and expand our understanding of the molecular mechanism underlying virus morphogenesis.


Asunto(s)
Virión , Zinc , Zinc/metabolismo , Virión/metabolismo , Proteínas de la Cápside/metabolismo , Ensamble de Virus/fisiología , Virus de Plantas/metabolismo , Virus de Plantas/fisiología , Enfermedades de las Plantas/virología , Cisteína/metabolismo , Proteínas Virales/metabolismo , Morfogénesis
15.
World J Microbiol Biotechnol ; 40(8): 256, 2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38926173

RESUMEN

The analysis of transcriptional activity of the bacteriophage T5 hol/endo operon conducted in the paper revealed a strong constitutive promoter recognized by E. coli RNA polymerase and a transcription initiation point of the operon. It was also shown that the only translational start codon for holin was a non-canonical TTG. Translation initiation regions (TIRs) of both genes of the operon (hol and endo) were further analyzed using chimeric constructs, in which parts of the hol/endo regulatory regions were fused with the gene of a reporter protein (EGFP). It was found that TIR of hol was 20 times less effective than that of endo. As it turned out, the level of EGFP production was influenced by the composition of the constructs and the type of the hol start codon. Apparently, the translational suppression of holin's accumulation and posttranslational activation of endolysin by Ca2+ are the main factors ensuring the proper timing of the host cell lysis by bacteriophage T5. The approach based on the use of chimeric constructs proposed in the paper can be recommended for studying other native or artificial operons of any complexity: analyzing the impacts of separate DNA regions, as well as their coupled effect, on the processes of transcription and translation of recombinant protein(s).


Asunto(s)
Endopeptidasas , Escherichia coli , Operón , Regiones Promotoras Genéticas , Biosíntesis de Proteínas , Transcripción Genética , Proteínas Virales , Endopeptidasas/genética , Endopeptidasas/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Escherichia coli/genética , Escherichia coli/virología , Regulación Viral de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Codón Iniciador/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ADN Viral/genética , Bacteriófagos/genética
16.
Biotechnol J ; 19(6): e2300736, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38900041

RESUMEN

During plant-pathogen interaction, plant exhibits a strong defense system utilizing diverse groups of proteins to suppress the infection and subsequent establishment of the pathogen. However, in response, pathogens trigger an anti-silencing mechanism to overcome the host defense machinery. Among plant viruses, geminiviruses are the second largest virus family with a worldwide distribution and continue to be production constraints to food, feed, and fiber crops. These viruses are spread by a diverse group of insects, predominantly by whiteflies, and are characterized by a single-stranded DNA (ssDNA) genome coding for four to eight proteins that facilitate viral infection. The most effective means to managing these viruses is through an integrated disease management strategy that includes virus-resistant cultivars, vector management, and cultural practices. Dynamic changes in this virus family enable the species to manipulate their genome organization to respond to external changes in the environment. Therefore, the evolutionary nature of geminiviruses leads to new and novel approaches for developing virus-resistant cultivars and it is essential to study molecular ecology and evolution of geminiviruses. This review summarizes the multifunctionality of each geminivirus-encoded protein. These protein-based interactions trigger the abrupt changes in the host methyl cycle and signaling pathways that turn over protein normal production and impair the plant antiviral defense system. Studying these geminivirus interactions localized at cytoplasm-nucleus could reveal a more clear picture of host-pathogen relation. Data collected from this antagonistic relationship among geminivirus, vector, and its host, will provide extensive knowledge on their virulence mode and diversity with climate change.


Asunto(s)
Geminiviridae , Interacciones Huésped-Patógeno , Enfermedades de las Plantas , Proteínas Virales , Geminiviridae/genética , Geminiviridae/patogenicidad , Proteínas Virales/genética , Proteínas Virales/metabolismo , Enfermedades de las Plantas/virología , Animales , Plantas/virología
17.
Arch Virol ; 169(7): 143, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38864946

RESUMEN

Potyvirus genomes are expressed as polyproteins that are autocatalytically cleaved to produce 10 to 12 multifunctional proteins, among which P1 is the most variable. It has long been hypothesized that P1 plays role(s) in host adaptation and host specificity. We tested this hypothesis using two phylogenetically distinct potyviruses: soybean mosaic virus (SMV), with a narrow host range, and clover yellow vein virus (ClYVV), with a broader host range. When the full-length P1 cistron of SMV-N was replaced with P1 from ClYVV-No.30, the chimera systemically infected only SMV-N-permissive hosts. Hence, there were no changes in the host range or host specificity of the chimeric viruses. Despite sharing only 20.3% amino acid sequence identity, predicted molecular models of P1 proteins from SMV-N and ClYVV-No.30 showed analogous topologies. These observations suggest that P1 of ClYVV-No.30 can functionally replace P1 of SMV-N. However, the P1 proteins of these two potyviruses are not determinants of host specificity and host range.


Asunto(s)
Especificidad del Huésped , Enfermedades de las Plantas , Potyvirus , Proteínas Virales , Potyvirus/genética , Potyvirus/fisiología , Enfermedades de las Plantas/virología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Glycine max/virología , Nicotiana/virología , Filogenia
18.
Molecules ; 29(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38893337

RESUMEN

mRNA vaccines are entering a period of rapid development. However, their synthesis is still plagued by challenges related to mRNA impurities and fragments (incomplete mRNA). Most impurities of mRNA products transcribed in vitro are mRNA fragments. Only full-length mRNA transcripts containing both a 5'-cap and a 3'-poly(A) structure are viable for in vivo expression. Therefore, RNA fragments are the primary product-related impurities that significantly hinder mRNA efficacy and must be effectively controlled; these species are believed to originate from either mRNA hydrolysis or premature transcriptional termination. In the manufacturing of commercial mRNA vaccines, T7 RNA polymerase-catalyzed in vitro transcription (IVT) synthesis is a well-established method for synthesizing long RNA transcripts. This study identified a pivotal domain on the T7 RNA polymerase that is associated with erroneous mRNA release. By leveraging the advantageous properties of a T7 RNA polymerase mutant and precisely optimized IVT process parameters, we successfully achieved an mRNA integrity exceeding 91%, thereby further unlocking the immense potential of mRNA therapeutics.


Asunto(s)
ARN Polimerasas Dirigidas por ADN , ARN Mensajero , Transcripción Genética , Proteínas Virales , ARN Mensajero/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Vacunas de ARNm
19.
Int J Mol Sci ; 25(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891850

RESUMEN

Clostridioides difficile is a causative agent of antibiotic-associated diarrhea as well as pseudomembranous colitis. So far, all known bacteriophages infecting these bacteria are temperate, which means that instead of prompt lysis of host cells, they can integrate into the host genome or replicate episomally. While C. difficile phages are capable of spontaneous induction and entering the lytic pathway, very little is known about the regulation of their maintenance in the state of lysogeny. In this study, we investigated the properties of a putative major repressor of the recently characterized C. difficile phiCDKH01 bacteriophage. A candidate protein belongs to the XRE family and controls the transcription of genes encoding putative phage antirepressors, known to be involved in the regulation of lytic development. Hence, the putative major phage repressor is likely to be responsible for maintenance of the lysogeny.


Asunto(s)
Bacteriófagos , Clostridioides difficile , Lisogenia , Clostridioides difficile/virología , Bacteriófagos/genética , Bacteriófagos/fisiología , Proteínas Virales/genética , Proteínas Virales/metabolismo , Regulación Viral de la Expresión Génica , Humanos , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Genoma Viral
20.
Int J Mol Sci ; 25(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38892197

RESUMEN

Viral pathogens pose a substantial threat to public health and necessitate the development of effective remediation and antiviral strategies. This short communication aimed to investigate the antiviral efficacy of disinfectants on the surface proteins of human pathogenic viruses. Using in silico modeling, the ligand-binding energies (LBEs) of selected disinfectants were predicted and combined with their environmental impacts and costs through an eco-pharmaco-economic analysis (EPEA). The results revealed that the binding affinities of chemical disinfectants to viral proteins varied significantly (p < 0.005). Rutin demonstrated promising broad-spectrum antiviral efficacy with an LBE of -8.49 ± 0.92 kcal/mol across all tested proteins. Additionally, rutin showed a superior eco-pharmaco-economic profile compared to the other chemicals, effectively balancing high antiviral effectiveness, moderate environmental impact, and affordability. These findings highlight rutin as a key phytochemical for use in remediating viral contaminants.


Asunto(s)
Antivirales , Desinfectantes , Rutina , Desinfectantes/farmacología , Desinfectantes/química , Antivirales/farmacología , Antivirales/química , Rutina/química , Rutina/farmacología , Humanos , Simulación por Computador , Virus/efectos de los fármacos , Proteínas Virales/química , Proteínas Virales/metabolismo , Simulación del Acoplamiento Molecular , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/química , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA