Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 16.470
Filtrar
Más filtros

Intervalo de año de publicación
1.
Sci Adv ; 10(38): eadp5636, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39303042

RESUMEN

Adaptation of the response to stimuli is a fundamental process for all organisms. Here, we show that the adaptation enzyme CheB methylesterase of Escherichia coli assembles to the ON state receptor array after exposure to the repellent l-isoleucine and dissociates from the array after adaptation is complete. The duration of increased CheB localization and the time of highly clockwise-biased flagellar rotation were similar and depended on the strength of the stimulus. The increase in CheB at the receptor array and the decrease in cytoplasmic CheB were both ~100 molecules, which represents 15 to 20% of the total cellular content of CheB. We confirmed that the main binding site for CheB in the ON state array is the P2 domain of phosphorylated CheA, with a second minor site being the carboxyl-terminal pentapeptide of the serine chemoreceptor. Thus, we have been able to quantify the regulation of the signal output of the receptor array by the intracellular dynamics of an adaptation enzyme.


Asunto(s)
Adaptación Fisiológica , Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas Quimiotácticas Aceptoras de Metilo/metabolismo , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Sitios de Unión , Fosforilación , Flagelos/metabolismo , Unión Proteica , Proteínas Bacterianas/metabolismo , Quimiotaxis
2.
Sci Rep ; 14(1): 20837, 2024 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-39242641

RESUMEN

Tumours often display invasive behaviours that induce fingering, branching and fragmentation processes. The phenomenon, known as diffusional instability, is driven by differential cell proliferation, migration, and death due to the presence of metabolite and catabolite concentration gradients. An understanding of the intricate dynamics of this spatially heterogeneous process plays a key role in the investigation of tumour growth and invasion. In this study, we developed an in vitro tumour invasion assay to investigate cell invasiveness in tumour spheroids under a chemotactic stimulus. Our method, employing tumour spheroids seeded in a 3D collagen gel within a microfluidic chemotaxis chamber, focuses on the role of diffusive gradients. Using Time-Lapse Microscopy, the dynamic evolution of tumour spheroids was monitored in real-time, providing a comprehensive view of the morphological changes and cell migration patterns under different chemotactic conditions. Specifically, we explored the impact of fetal bovine serum (FBS) gradients on the behaviour of CT26 mouse colon carcinoma cells and compared the effects of varying FBS concentrations to two isotropic control conditions. Furthermore, a finite element in silico model was developed to quantify the diffusive flow of nutrients in the chemotaxis chamber and obtain a detailed understanding of tumour dynamics. Our findings reveal that the presence of a chemotactic gradient significantly influences tumour invasiveness, with higher concentrations of nutrients associated with increased cancer growth and cell migration.


Asunto(s)
Movimiento Celular , Quimiotaxis , Esferoides Celulares , Microambiente Tumoral , Esferoides Celulares/patología , Animales , Ratones , Línea Celular Tumoral , Proliferación Celular , Nutrientes/metabolismo , Invasividad Neoplásica , Humanos
3.
Cell Rep Methods ; 4(9): 100846, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39241776

RESUMEN

Monocytes are critical to innate immunity, participating in chemotaxis during tissue injury, infection, and inflammatory conditions. However, the migration dynamics of human monocytes under different guidance cues are not well characterized. Here, we developed a microfluidic device to profile the migration characteristics of human monocytes under chemotactic and barotactic guidance cues while also assessing the effects of age and cytokine stimulation. Human monocytes preferentially migrated toward the CCL2 gradient through confined microchannels, regardless of donor age and migration pathway. Stimulation with interferon (IFN)-γ, but not granulocyte-macrophage colony-stimulating factor (GM-CSF), disrupted monocyte navigation through complex paths and decreased monocyte CCL2 chemotaxis, velocity, and CCR2 expression. Additionally, monocytes exhibited a bias toward low-hydraulic-resistance pathways in asymmetric environments, which remained consistent across donor ages, cytokine stimulation, and chemoattractants. This microfluidic system provides insights into the unique migratory behaviors of human monocytes and is a valuable tool for studying peripheral immune cell migration in health and disease.


Asunto(s)
Movimiento Celular , Quimiotaxis , Monocitos , Humanos , Monocitos/inmunología , Monocitos/metabolismo , Monocitos/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Quimiotaxis/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Quimiocina CCL2/metabolismo , Interferón gamma/farmacología , Interferón gamma/metabolismo , Receptores CCR2/metabolismo , Adulto
4.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273320

RESUMEN

In Sjögren's disease (SjD), the salivary glandular epithelial cells can induce the chemotaxis of B cells by secreting B-cell chemokines such as C-X-C motif chemokine ligand 13 (CXCL13). Syndecan-1 (SDC-1) is a major transmembrane heparan sulfate proteoglycan (HSPG) predominantly expressed on epithelial cells that binds to and regulates heparan sulfate (HS)-binding molecules, including chemokines. We aimed to determine whether SDC-1 plays a role in the pathogenesis of SjD by acting on the binding of HS to B-cell chemokines. To assess changes in glandular inflammation and SDC-1 concentrations in the submandibular gland (SMG) and blood, female NOD/ShiLtJ and sex- and age-matched C57BL/10 mice were used. In the SMG of NOD/ShiLtJ mice, inflammatory responses were identified at 8 weeks of age, but increased SDC-1 concentrations in the SMG and blood were observed at 6 weeks of age, when inflammation had not yet started. As the inflammation of the SMG worsened, the SDC-1 concentrations in the SMG and blood increased. The expression of the CXCL13 and its receptor C-X-C chemokine receptor type 5 (CXCR5) began to increase in the SMG at 6 weeks of age and continued until 12 weeks of age. Immunofluorescence staining in SMG tissue and normal murine mammary gland cells confirmed the co-localization of SDC-1 and CXCL13, and SDC-1 formed a complex with CXCL13 in an immunoprecipitation assay. Furthermore, NOD/ShiLtJ mice were treated with 5 mg/kg HS intraperitoneally thrice per week for 6-10 weeks of age, and the therapeutic effects in the SMG were assessed at the end of 10 weeks of age. NOD/ShiLtJ mice treated with HS showed attenuated salivary gland inflammation with reduced B-cell infiltration, germinal center formation and CXCR5 expression. These findings suggest that SDC-1 plays a pivotal role in the pathogenesis of SjD by binding to CXCL13 through the HS chain.


Asunto(s)
Linfocitos B , Quimiocina CXCL13 , Heparitina Sulfato , Síndrome de Sjögren , Sindecano-1 , Sindecano-1/metabolismo , Animales , Quimiocina CXCL13/metabolismo , Ratones , Femenino , Linfocitos B/metabolismo , Linfocitos B/inmunología , Síndrome de Sjögren/metabolismo , Síndrome de Sjögren/patología , Heparitina Sulfato/metabolismo , Ratones Endogámicos C57BL , Quimiotaxis , Ratones Endogámicos NOD , Glándula Submandibular/metabolismo , Glándula Submandibular/patología , Humanos , Receptores CXCR5/metabolismo , Unión Proteica
5.
Nat Microbiol ; 9(9): 2308-2322, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39227714

RESUMEN

Swimming bacteria navigate chemical gradients using temporal sensing to detect changes in concentration over time. Here we show that surface-attached bacteria use a fundamentally different mode of sensing during chemotaxis. We combined microfluidic experiments, massively parallel cell tracking and fluorescent reporters to study how Pseudomonas aeruginosa senses chemical gradients during pili-based 'twitching' chemotaxis on surfaces. Unlike swimming cells, we found that temporal changes in concentration did not induce motility changes in twitching cells. We then quantified the chemotactic behaviour of stationary cells by following changes in the sub-cellular localization of fluorescent proteins as cells are exposed to a gradient that alternates direction. These experiments revealed that P. aeruginosa cells can directly sense differences in concentration across the lengths of their bodies, even in the presence of strong temporal fluctuations. Our work thus overturns the widely held notion that bacterial cells are too small to directly sense chemical gradients in space.


Asunto(s)
Quimiotaxis , Pseudomonas aeruginosa , Pseudomonas aeruginosa/fisiología , Fimbrias Bacterianas/metabolismo , Microfluídica/métodos , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética
6.
Nat Commun ; 15(1): 7994, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39266555

RESUMEN

Lignin, a major plant cell wall component, has an important role in plant-defense mechanisms against pathogens and is a promising renewable carbon source to produce bio-based chemicals. However, our understanding of microbial metabolism is incomplete regarding certain lignin-related compounds like p-coumaryl and sinapyl alcohols. Here, we reveal peripheral pathways for the catabolism of the three main lignin precursors (p-coumaryl, coniferyl, and sinapyl alcohols) in the plant pathogen Xanthomonas citri. Our study demonstrates all the necessary enzymatic steps for funneling these monolignols into the tricarboxylic acid cycle, concurrently uncovering aryl aldehyde reductases that likely protect the pathogen from aldehydes toxicity. It also shows that lignin-related aromatic compounds activate transcriptional responses related to chemotaxis and flagellar-dependent motility, which might play an important role during plant infection. Together our findings provide foundational knowledge to support biotechnological advances for both plant diseases treatments and conversion of lignin-derived compounds into bio-based chemicals.


Asunto(s)
Lignina , Xanthomonas , Xanthomonas/metabolismo , Xanthomonas/genética , Lignina/metabolismo , Enfermedades de las Plantas/microbiología , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Ciclo del Ácido Cítrico , Quimiotaxis , Aldehído Oxidorreductasas/metabolismo , Aldehído Oxidorreductasas/genética
7.
J Transl Med ; 22(1): 840, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267037

RESUMEN

BACKGROUND: The tumor microenvironment (TME) exerts profound effects on tumor progression and therapeutic efficacy. In hepatocellular carcinoma (HCC), the TME is enriched with cancer-associated fibroblasts (CAFs), which secrete a plethora of cytokines, chemokines, and growth factors that facilitate tumor cell proliferation and invasion. However, the intricate architecture of the TME in HCC, as well as the mechanisms driving interactions between tumor cells and CAFs, remains largely enigmatic. METHODS: We analyzed 10 spatial transcriptomics and 12 single-cell transcriptomics samples sourced from public databases, complemented by 20 tumor tissue samples from liver cancer patients obtained in a clinical setting. RESULTS: Our findings reveal that tumor cells exhibiting high levels of SPP1 are preferentially localized adjacent to hepatic stellate cells (HSCs). The SPP1 secreted by these tumor cells interacts with the CD44 receptor on HSCs, thereby activating the PI3K/AKT signaling pathway, which promotes the differentiation of HSCs into CAFs. Notably, blockade of the CD44 receptor effectively abrogates this interaction. Furthermore, in vivo studies demonstrate that silencing SPP1 expression in tumor cells significantly impairs HSC differentiation into CAFs, leading to a reduction in tumor volume and collagen deposition within the tumor stroma. CONCLUSIONS: This study delineates the SPP1-CD44 signaling axis as a pivotal mechanism underpinning the interaction between tumor cells and CAFs. Targeting this pathway holds potential to mitigate liver fibrosis and offers novel therapeutic perspectives for liver cancer management.


Asunto(s)
Carcinoma Hepatocelular , Quimiotaxis , Células Estrelladas Hepáticas , Neoplasias Hepáticas , Transcriptoma , Microambiente Tumoral , Carcinoma Hepatocelular/patología , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Humanos , Transcriptoma/genética , Células Estrelladas Hepáticas/metabolismo , Células Estrelladas Hepáticas/patología , Animales , Quimiotaxis/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Línea Celular Tumoral , Transducción de Señal , Receptores de Hialuranos/metabolismo , Fibroblastos Asociados al Cáncer/metabolismo , Fibroblastos Asociados al Cáncer/patología , Diferenciación Celular , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Regulación Neoplásica de la Expresión Génica
8.
PLoS One ; 19(9): e0289435, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39240956

RESUMEN

Mutations in the presenilin (PS) genes are a predominant cause of familial Alzheimer's disease (fAD). An ortholog of PS in the genetic model organism Caenorhabditis elegans (C. elegans) is sel-12. Mutations in the presenilin genes are commonly thought to lead to fAD by upregulating the expression of amyloid beta (Aß), however this hypothesis has been challenged by recent evidence. As C. elegans lack amyloid beta (Aß), the goal of this work was to examine Aß-independent effects of mutations in sel-12 and PS1/PS2 on behaviour and sensory neuron morphology across the lifespan in a C. elegans model. Olfactory chemotaxis experiments were conducted on sel-12(ok2078) loss-of-function mutant worms. Adult sel-12 mutant worms showed significantly lower levels of chemotaxis to odorants compared to wild-type worms throughout their lifespan, and this deficit increased with age. The chemotaxis phenotype in sel-12 mutant worms is rescued by transgenic over-expression of human wild-type PS1, but not the classic fAD-associated variant PS1C410Y, when expression was driven by either the endogenous sel-12 promoter (Psel-12), a pan-neuronal promoter (Primb-1), or by a promoter whose primary expression was in the sensory neurons responsible for the chemotaxis behavior (Psra-6, Podr-10). The behavioural phenotype was also rescued by over-expressing an atypical fAD-linked mutation in PS1 (PS1ΔS169) that has been reported to leave the Notch pathway intact. An examination of the morphology of polymodal nociceptive (ASH) neurons responsible for the chemotaxis behavior also showed increased neurodegeneration over time in sel-12 mutant worms that could be rescued by the same transgenes that rescued the behaviour, demonstrating a parallel with the observed behavioral deficits. Thus, we report an Aß-independent neurodegeneration in C. elegans that was rescued by cell specific over-expression of wild-type human presenilin.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Mutación , Presenilina-1 , Animales , Humanos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales Modificados Genéticamente , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Quimiotaxis/genética , Modelos Animales de Enfermedad , Presenilina-1/genética , Células Receptoras Sensoriales/metabolismo , Células Receptoras Sensoriales/patología
9.
Int Rev Cell Mol Biol ; 388: 162-205, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39260936

RESUMEN

Prostate cancer (PCa) stands as a significant global health concern, ranking among the leading causes of cancer deaths in men. While there are several treatment modalities for localized PCa, metastatic castration-resistant PCa (mCRPC) remains incurable. Despite therapeutic advancements showing promise in mCRPC, their impact on overall survival has been limited. This chapter explores the process by which tumors form, reviews our current understanding of PCa progression to mCRPC, and addresses the challenges of boosting anti-tumor immune responses in these tumors. It specifically discusses how chemotactic signaling affects the tumor microenvironment and its role in immune evasion and cancer progression. The chapter further examines the rationale of directly or indirectly targeting these pathways as adjuvant therapies for mCRPC, highlighting recent pre-clinical and clinical studies currently underway. The discussion emphasizes the potential of targeting specific chemokines and chemokine receptors as combination therapies with mainstream treatments for PCa and mCRPC to maximize long-term survival for this deadly disease.


Asunto(s)
Neoplasias de la Próstata , Transducción de Señal , Microambiente Tumoral , Humanos , Masculino , Neoplasias de la Próstata/patología , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/terapia , Neoplasias de la Próstata/tratamiento farmacológico , Animales , Quimiotaxis , Terapia Molecular Dirigida , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico
10.
Bull Math Biol ; 86(11): 129, 2024 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-39306809

RESUMEN

Formation of organs and specialized tissues in embryonic development requires migration of cells to specific targets. In some instances, such cells migrate as a robust cluster. We here explore a recent local approximation of non-local continuum models by Falcó et al. (SIAM J Appl Math 84:17-42, 2023). We apply their theoretical results by specifying biologically-based cell-cell interactions, showing how such cell communication results in an effective attraction-repulsion Morse potential. We then explore the clustering instability, the existence and size of the cluster, and its stability. For attractant-repellent chemotaxis, we derive an explicit condition on cell and chemical properties that guarantee the existence of robust clusters. We also extend their work by investigating the accuracy of the local approximation relative to the full non-local model.


Asunto(s)
Comunicación Celular , Movimiento Celular , Quimiotaxis , Conceptos Matemáticos , Modelos Biológicos , Comunicación Celular/fisiología , Movimiento Celular/fisiología , Animales , Quimiotaxis/fisiología , Simulación por Computador , Desarrollo Embrionario/fisiología , Humanos , Análisis por Conglomerados
11.
Nat Commun ; 15(1): 7927, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39256376

RESUMEN

Detecting chemical signals is important for identifying food sources and avoiding harmful agents. Like many animals, C. elegans use olfaction to chemotax towards their main food source, bacteria. However, little is known about the bacterial compounds governing C. elegans attraction to bacteria and the physiological importance of these compounds to bacteria. Here, we address these questions by investigating the function of a small RNA, P11, in the pathogen, Pseudomonas aeruginosa, that was previously shown to mediate learned pathogen avoidance. We discovered that this RNA also affects the attraction of untrained C. elegans to P. aeruginosa and does so by controlling production of ammonia, a volatile odorant produced during nitrogen assimilation. We describe the complex regulation of P. aeruginosa nitrogen assimilation, which is mediated by a partner-switching mechanism involving environmental nitrates, sensor proteins, and P11. In addition to mediating C. elegans attraction, we demonstrate that nitrogen assimilation mutants perturb bacterial fitness and pathogenesis during C. elegans infection by P. aeruginosa. These studies define ammonia as a major mediator of trans-kingdom signaling, implicate nitrogen assimilation as important for both bacteria and host organisms, and highlight how a bacterial metabolic pathway can either benefit or harm a host in different contexts.


Asunto(s)
Amoníaco , Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Nitrógeno , Pseudomonas aeruginosa , Caenorhabditis elegans/microbiología , Caenorhabditis elegans/metabolismo , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/fisiología , Animales , Nitrógeno/metabolismo , Amoníaco/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Infecciones por Pseudomonas/microbiología , Infecciones por Pseudomonas/metabolismo , Nitratos/metabolismo , Transducción de Señal , Interacciones Huésped-Patógeno , Quimiotaxis
12.
Int J Mol Sci ; 25(17)2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-39273598

RESUMEN

C-C Chemokine Receptor 7 (CCR7) mediates T-cell acute lymphoblastic leukemia (T-ALL) invasion of the central nervous system (CNS) mediated by chemotactic migration to C-C chemokine ligand 19 (CCL19). To determine if a CCL19 antagonist, CCL198-83, could inhibit CCR7-induced chemotaxis and signaling via CCL19 but not CCL21, we used transwell migration and Ca2+ mobilization signaling assays. We found that in response to CCL19, human T-ALL cells employ ß2 integrins to invade human brain microvascular endothelial cell monolayers. In vivo, using an inducible mouse model of T-ALL, we found that we were able to increase the survival of the mice treated with CCL198-83 when compared to non-treated controls. Overall, our results describe a targetable cell surface receptor, CCR7, which can be inhibited to prevent ß2-integrin-mediated T-ALL invasion of the CNS and potentially provides a platform for the pharmacological inhibition of T-ALL cell entry into the CNS.


Asunto(s)
Antígenos CD18 , Quimiocina CCL19 , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores CCR7 , Receptores CCR7/metabolismo , Receptores CCR7/genética , Animales , Humanos , Ratones , Leucemia-Linfoma Linfoblástico de Células T Precursoras/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Quimiocina CCL19/metabolismo , Antígenos CD18/metabolismo , Sistema Nervioso Central/metabolismo , Sistema Nervioso Central/patología , Línea Celular Tumoral , Quimiotaxis/efectos de los fármacos , Quimiocina CCL21/metabolismo , Movimiento Celular/efectos de los fármacos , Invasividad Neoplásica
13.
Eur Phys J E Soft Matter ; 47(9): 59, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39331274

RESUMEN

Motile biological cells can respond to local environmental cues and exhibit various navigation strategies to search for specific targets. These navigation strategies usually involve tuning of key biophysical parameters of the cells, such that the cells can modulate their trajectories to move in response to the detected signals. Here we introduce a reinforcement learning approach to modulate key biophysical parameters and realize navigation strategies reminiscent to those developed by biological cells. We present this approach using sperm chemotaxis toward an egg as a paradigm. By modulating the trajectory curvature of a sperm cell model, the navigation strategies informed by reinforcement learning are capable to resemble sperm chemotaxis observed in experiments. This approach provides an alternative method to capture biologically relevant navigation strategies, which may inform the necessary parameter modulations required for obtaining specific navigation strategies and guide the design of biomimetic micro-robotics.


Asunto(s)
Biomimética , Quimiotaxis , Modelos Biológicos , Espermatozoides , Masculino , Espermatozoides/fisiología , Espermatozoides/citología , Biomimética/métodos , Animales
14.
Bioessays ; 46(10): e2400055, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39093597

RESUMEN

In textbook illustrations of migrating cells, actomyosin contractility is typically depicted as the contraction force necessary for cell body retraction. This dogma has been transformed by the molecular clutch model, which acknowledges that actomyosin traction forces also generate and transmit biomechanical signals at the leading edge, enabling cells to sense and shape their migratory path in mechanically complex environments. To fulfill these complementary functions, the actomyosin system assembles a gradient of contractile energy along the front-rear axis of migratory cells. Here, we highlight the hierarchic assembly and self-regulatory network structure of the actomyosin system and explain how the kinetics of different nonmuscle myosin II (NM II) paralogs synergize during contractile force generation. Our aim is to emphasize how protrusion formation, cell adhesion, contraction, and retraction are spatiotemporally integrated during different modes of migration, including chemotaxis and durotaxis. Finally, we hypothesize how different NM II paralogs might tune aspects of migration in vivo, highlighting future research directions.


Asunto(s)
Actomiosina , Movimiento Celular , Actomiosina/metabolismo , Movimiento Celular/fisiología , Animales , Humanos , Adhesión Celular/fisiología , Miosina Tipo II/metabolismo , Quimiotaxis/fisiología , Fenómenos Biomecánicos
15.
Methods Mol Biol ; 2828: 23-36, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39147967

RESUMEN

Cell-cell interaction mediated by secreted and adhesive signaling molecules forms the basis of the coordinated cell movements (i.e., collective cell migration) observed in developing embryos, regenerating tissues, immune cells, and metastatic cancer. Decoding the underlying input/output rules at the single-cell level, however, remains a challenge due to the vast complexity in the extracellular environments that support such cellular behaviors. The amoebozoa Dictyostelium discoideum uses GPCR-mediated chemotaxis and cell-cell contact signals mediated by adhesion proteins with immunoglobulin-like folds to form a collectively migrating slug. Coordinated migration and repositioning of the cells in this relatively simple morphogenetic system are driven strictly by regulation of actin cytoskeleton by these signaling factors. Its unique position in the eukaryotic tree of life outside metazoa points to basic logics of tissue self-organization that are common across taxa. Here, we describe a method to reconstitute intercellular contact signals and the resulting cell polarization using purified adhesion proteins. In addition, a protocol using a microfluidic chamber is laid out where one can study how the cell-cell contact signal and chemoattractant signals, when simultaneously presented, are interpreted. Quantitative image analysis for obtaining cell morphology features is also provided. A similar approach should be applicable to study other collectively migrating cells.


Asunto(s)
Comunicación Celular , Movimiento Celular , Quimiotaxis , Dictyostelium , Dictyostelium/fisiología , Dictyostelium/citología , Adhesión Celular , Transducción de Señal , Polaridad Celular
16.
Methods Mol Biol ; 2828: 1-9, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39147965

RESUMEN

Immune responses rely on efficient and coordinated migration of immune cells to the site of infection or injury. To reach the site of immunological threat often requires long-range navigation of immune cells through complex tissue and vascular networks. Chemotaxis, cell migration steered by gradients of cell-attractive chemicals that bind sensory receptors, is central to this response. Chemoattractant receptors mostly belong to the G-protein-coupled receptor (GPCR) family, but the way attractant-receptor signaling directs cell migration is not fully understood. Direct-viewing chemotaxis chambers combined with time-lapse microscopy give a powerful tool to study the dynamic details of cells' responses to different attractant landscapes. Here, we describe the application of one such chamber (the Dunn chamber) to study bone marrow-derived macrophage chemotaxis to gradients of complement C5a.


Asunto(s)
Quimiotaxis , Macrófagos , Quimiotaxis/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/citología , Macrófagos/efectos de los fármacos , Animales , Ratones , Complemento C5a/metabolismo , Complemento C5a/farmacología , Imagen de Lapso de Tiempo/métodos , Movimiento Celular , Células de la Médula Ósea/citología , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/efectos de los fármacos , Receptores Acoplados a Proteínas G/metabolismo
17.
Methods Mol Biol ; 2828: 37-43, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39147968

RESUMEN

Collective cell migration occurs when the orientation of cell polarity is aligned with each other in a group of cells. Such collective polarization depends on a reciprocal process between cell intrinsic mechanisms such as cell-cell adhesion and extracellular guidance mechanism such as wound healing and chemotaxis. As part of its development life cycle, individual single cells of Dictyostelium discoideum exhibit chemotaxis toward cAMP, which is secreted from a certain population of cells. During the formation of multicellular body by chemotaxis-dependent cell aggregation, D. discoideum is also known to relay on multiple cell-cell adhesion mechanisms. In particular, tail-following behavior at the contact site, called contact following of locomotion (CFL), plays a pivotal role on the formation of the multicellular body. However, whether and how CFL alone can lead to a formation of collective behavior was not well understood. KI cell is a mutant of D. discoideum that lacks all chemotactic activity. Yet, it can exhibit the CFL activity and show nontrivial collective cell migration. This mutant provides an excellent model system to analyze the mechanism of the CFL and the macroscopic phenomena brought by the CFL. This chapter describes protocols for using KI cell to understand the biophysics and cell biology behind the collective cell migration induced by CFL.


Asunto(s)
Movimiento Celular , Quimiotaxis , Dictyostelium , Dictyostelium/genética , Dictyostelium/fisiología , Dictyostelium/citología , Quimiotaxis/genética , Movimiento Celular/genética , Mutación , AMP Cíclico/metabolismo , Polaridad Celular/genética , Adhesión Celular , Modelos Biológicos
18.
Methods Mol Biol ; 2828: 69-78, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39147971

RESUMEN

The acellular slime mold Physarum polycephalum is a large, unicellular amoeba, which, due to its huge size, is well suited to investigate chemotaxis and cellular locomotion. The myxomycete has an astonishing behavioral repertoire and is highly responsive to changes in its environment, which map to changes in its tubular network, internal cytoplasm flow, and cytoskeleton. The behavioral repertoire includes problem-solving, decision-making, and memory. P. polycephalum's chemo- and phototaxis are especially well studied. This chapter describes how to cultivate different morphotypes of P. polycephalum (micro-, meso-, and macroplasmodia). Furthermore, the setup of a chemotaxis experiment and the acquisition and analysis of chemotaxis data is described.


Asunto(s)
Quimiotaxis , Locomoción , Physarum polycephalum , Physarum polycephalum/fisiología , Physarum polycephalum/citología , Quimiotaxis/fisiología , Locomoción/fisiología
19.
Methods Mol Biol ; 2828: 147-157, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39147976

RESUMEN

Normal-sized cells of Dictyostelium build up a front-tail polarity when they respond to a gradient of chemoattractant. To challenge the polarity-generating system, cells are fused to study the chemotactic response of oversized cells that extend multiple fronts toward the source of attractant. An aspect that can be explored in these cells is the relationship of spontaneously generated actin waves to actin reorganization in response to chemoattractant.


Asunto(s)
Quimiotaxis , Dictyostelium , Dictyostelium/fisiología , Dictyostelium/citología , Factores Quimiotácticos/farmacología , Factores Quimiotácticos/metabolismo , Actinas/metabolismo , Fusión Celular/métodos , Células Gigantes/citología , Células Gigantes/metabolismo , Polaridad Celular
20.
Methods Mol Biol ; 2828: 185-204, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39147978

RESUMEN

Amoeboid cells such as the protist Dictyostelium, human neutrophils, and the fungus B.d. chytrid move by extending pseudopods. The trajectories of cell movement depend on the size, rhythm, and direction of long series of pseudopods. These pseudopod properties are regulated by internal factors such as memory of previous directions and by external factors such as gradients of chemoattractants or electric currents. Here a simple method is described that defines the X, Y time coordinates of a pseudopod at the start and the end of the extension phase. The connection between the start and end of an extending pseudopod defines a vector, which is the input of different levels of analysis that defines cell movement. The primary information of the vector is its spatial length (pseudopod size), temporal length (extension time), extension rate (size divided by time), and direction. The second layer of information describes the sequence of two (or more) pseudopods: the direction of the second pseudopod relative to the direction of the first pseudopod, the start of the second pseudopod relative to the extension phase of the first pseudopod (the second starts while the first is still extending or after the first has stopped), and the alternating right/left extension of pseudopods. The third layer of information is provided by specific and detailed statistical analysis of these data and addresses question such as: is pseudopod extension in buffer in random direction or has the system internal directional memory, and how do shallow external electrical or chemical gradients bias the intrinsic pseudopod extension. The method is described for Dictyostelium, but has been used successfully for fast-moving neutrophils, slow-moving stem cells, and the fungus B.d. chytrid.


Asunto(s)
Quimiotaxis , Dictyostelium , Quimiotaxis/fisiología , Dictyostelium/fisiología , Dictyostelium/citología , Seudópodos/fisiología , Movimiento Celular/fisiología , Humanos , Tampones (Química) , Neutrófilos/citología , Neutrófilos/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA