Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 120.814
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Ethnopharmacol ; 336: 118704, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39182703

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Viral pneumonia is the leading cause of death after SARS-CoV-2 infection. Despite effective at early stage, long-term treatment with glucocorticoids can lead to a variety of adverse effects and limited benefits. The Chinese traditional herb Pogostemonis Herba is the aerial part of Pogostemon Cablin (Blanco) Benth., which has potent antiviral, antibacterial, anti-inflammatory, and anticancer effects. It was used widely for treating various throat and respiratory diseases, including COVID-19, viral infection, cough, allergic asthma, acute lung injury and lung cancer. AIM OF THE STUDY: To investigate the antiviral and anti-inflammatory effects of chemical compounds from Pogostemonis Herba in SARS-CoV-2-infected hACE2-overexpressing mouse macrophage RAW264.7 cells and hACE2 transgenic mice. MATERIALS AND METHODS: The hACE2-overexpressing RAW264.7 cells were exposed with SARS-CoV-2. The cell viability was detected by CCK8 assay and cell apoptotic rate was by flow cytometric assay. The expressions of macrophage M1 phenotype markers (TNF-α and IL-6) and M2 markers (IL-10 and Arg-1) as well as the viral loads were detected by qPCR. The mice were inoculated intranasally with SARS-CoV-2 omicron variant to induce viral pneumonia. The levels of macrophages, neutrophils, and T cells in the lung tissues of infected mice were analyzed by full spectrum flow cytometry. The expressions of key proteins were detected by Western blot assay. RESULTS: Diosmetin-7-O-ß-D-glucopyranoside (DG) presented the strongest anti-SARS-CoV-2 activity. Intervention with DG at the concentrations of 0.625-2.5 µM not only reduced the viral replication, cell apoptosis, and the productions of inflammatory cytokines (IL-6 and TNF-α) in SARS-CoV-2-infected RAW264.7 cells, but also reversed macrophage polarity from M1 to M2 phenotype. Furthermore, treatment with DG (25-100 mg/kg) alleviated acute lung injury, and reduced macrophage infiltration in SARS-COV-2-infected mice. Mechanistically, DG inhibited SARS-COV-2 gene expression and HK3 translation via targeting YTHDF1, resulting in the inactivation of glycolysis-mediated NF-κB pathway. CONCLUSIONS: DG exerted the potent antiviral and anti-inflammatory activities. It reduced pneumonia in SARS-COV-2-infected mice via inhibiting the viral replication and accelerating M2 macrophage polarization via targeting YTHDF1, indicating its potential for COVID-19 treatment.


Asunto(s)
Antivirales , Tratamiento Farmacológico de COVID-19 , COVID-19 , Macrófagos , SARS-CoV-2 , Replicación Viral , Animales , Ratones , Células RAW 264.7 , Replicación Viral/efectos de los fármacos , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Macrófagos/virología , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Ratones Transgénicos , Pogostemon/química , Citocinas/metabolismo , Apoptosis/efectos de los fármacos , Pulmón/efectos de los fármacos , Pulmón/virología , Pulmón/patología , Glucósidos/farmacología , Glucósidos/aislamiento & purificación , Flavonoides/farmacología , Flavonoides/aislamiento & purificación , Flavonoides/uso terapéutico , Enzima Convertidora de Angiotensina 2/metabolismo , Antiinflamatorios/farmacología , Masculino , Neumonía Viral/tratamiento farmacológico , Neumonía Viral/virología , Humanos
2.
J Ethnopharmacol ; 336: 118741, 2025 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-39197801

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Amyotrophic lateral sclerosis (ALS) is a fetal neuromuscular disorder characterized by the gradual deterioration of motor neurons. Semen Strychni pulveratum (SSP), a processed version of Semen Strychni (SS) powder, is widely used to treat ALS in China. Vomicine is one of the most primary components of SS. However, their pharmacological effects and mechanisms for ALS remain elusive. AIM OF THE STUDY: This study aimed to evaluate the neuroprotective and anti-neuroinflammatory effects of SSP and vomicine, as well as to explore their protective roles in ALS and the underlying mechanisms. MATERIALS AND METHODS: In vivo, 8-week-old hSOD1-WT mice and hSOD1-G93A mice were orally administered different concentrations of SSP (SSP-L = 5.46 mg/ml, SSP-M = 10.92 mg/ml or SSP-H = 16.38 mg/ml) once every other day for 8 weeks. A series of experiments, including body weight measurement, footprint tests, Hematoxylin & Eosin staining, and Nissl staining, were performed to evaluate the preventive effect of SSP. Immunofluorescence staining, western blotting, and RT-qPCR were subsequently performed to evaluate activation of the cGAS-STING-TBK1 pathway in the spinal cord. In vitro, hSOD1G93A NSC-34 cells were treated with vomicine to further explore the pharmacological mechanism of vomicine in the treatment of ALS via the cGAS-STING-TBK1 pathway. RESULTS: SSP improved motor function, body weight loss, gastrocnemius muscle atrophy, and motor neuron loss in the spine and cortex of hSOD1-G93A mice. Furthermore, the cGAS-STING-TBK1 pathway was activated in the spinal cord of hSOD1-G93A mice, with activation predominantly observed in neurons and microglia. However, the levels of cGAS, STING, and pTBK1 proteins and cGAS, IRF3, IL-6, and IL-1ß mRNA were reversed following intervention with SSP. Vomicine not only downregulated the levels of cGAS, TBK1, IL-6 and IFN-ß mRNA, but also the levels of cGAS and STING protein in hSOD1G93A NSC-34 cells. CONCLUSION: This study demonstrated that SSP and vomicine exert neuroprotective and anti-neuroinflammatory effects in the treatment of ALS. SSP and vomicine may reduce neuroinflammation by regulating the cGAS-STING-TBK1 pathway, and could thereby play a role in ALS treatment.


Asunto(s)
Esclerosis Amiotrófica Lateral , Proteínas de la Membrana , Fármacos Neuroprotectores , Nucleotidiltransferasas , Proteínas Serina-Treonina Quinasas , Animales , Proteínas Serina-Treonina Quinasas/metabolismo , Esclerosis Amiotrófica Lateral/tratamiento farmacológico , Esclerosis Amiotrófica Lateral/metabolismo , Ratones , Proteínas de la Membrana/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Nucleotidiltransferasas/metabolismo , Masculino , Transducción de Señal/efectos de los fármacos , Ratones Transgénicos , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Médula Espinal/efectos de los fármacos , Médula Espinal/metabolismo , Médula Espinal/patología , Modelos Animales de Enfermedad
3.
Behav Neurol ; 2024: 5698119, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39233848

RESUMEN

Objective: The objective of the study is to investigate whether quercetin ameliorates Alzheimer's disease (AD)-like pathology in APP/PS1 double transgenic mice and its hypothesized mechanism, contributing to the comprehension of AD pathogenesis. Methods: A total of 30 APP/PS1 transgenic mice were randomized into model group (APP/PS1), quercetin group (APP/PS1+Q), and donepezil hydrochloride group (APP/PS1+DON). Simultaneously, there were 10 C57 mice of the same age served as a control group. Three months posttreatment, the effects of quercetin on AD mice were evaluated using the Morris water maze (MWM) test, Y maze experiment, immunohistochemistry, immunofluorescence, and western blotting. Results: Results from the water maze and Y maze indicated that quercetin significantly improved cognitive impairment in APP/PS1 transgenic AD mice. Additionally, serum enzyme-linked immunosorbent assay (ELISA) results demonstrated that quercetin elevated MDA, superoxide dismutase (SOD), CAT, GSH, acetylcholine (ACh), and acetylcholinesterase (AChE) levels in AD mice. Hematoxylin-eosin (HE) staining, Nissl staining, and hippocampal tissue thioflavine staining revealed that quercetin reduced neuronal damage and Aß protein accumulation in AD mice. Western blot validated protein expression in the Kelch-like ECH-associated protein 1 (Keap1)/nuclear factor erythroid 2-related factor 2 (Nrf2)/HO-1 pathway associated with oxidative stress and apoptosis, confirming quercetin's potential molecular mechanism of enhancing AD mouse cognition. Furthermore, western blot findings indicate that quercetin significantly alters protein expression in the Keap1/Nrf2/HO-1 pathway. Moreover, molecular docking analysis suggests that Keap1, NQO1, HO-1, caspase-3, Bcl-2, and Bax proteins in the Keap1/Nrf2/HO-1 pathway may be potential regulatory targets of quercetin. These findings will provide a molecular basis for quercetin's clinical application in AD treatment. Conclusion: Quercetin can improve cognitive impairment and AD-like pathology in APP/PS1 double transgenic mice, potentially related to quercetin's activation of the Keap1/Nrf2/HO-1 pathway and reduction of cell apoptosis.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Apoptosis , Encéfalo , Disfunción Cognitiva , Modelos Animales de Enfermedad , Hemo-Oxigenasa 1 , Proteína 1 Asociada A ECH Tipo Kelch , Ratones Transgénicos , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Quercetina , Animales , Quercetina/farmacología , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Factor 2 Relacionado con NF-E2/metabolismo , Factor 2 Relacionado con NF-E2/efectos de los fármacos , Factor 2 Relacionado con NF-E2/genética , Estrés Oxidativo/efectos de los fármacos , Ratones , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Hemo-Oxigenasa 1/metabolismo , Apoptosis/efectos de los fármacos , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Transducción de Señal/efectos de los fármacos , Presenilina-1/genética , Presenilina-1/metabolismo , Masculino , Ratones Endogámicos C57BL , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/genética , Antioxidantes/farmacología , Antioxidantes/metabolismo
4.
Proc Natl Acad Sci U S A ; 121(40): e2402368121, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39312666

RESUMEN

There is evidence that transcription factor (TF) encoding genes, which temporally control development in multiple cell types, can have tens of enhancers that regulate their expression. The NR2F1 TF developmentally promotes caudal and ventral cortical regional fates. Here, we epigenomically compared the activity of Nr2f1's enhancers during mouse cortical development with their activity in a transgenic assay. We identified at least six that are likely to be important in prenatal cortical development, with three harboring de novo mutants identified in ASD individuals. We chose to study the function of two of the most robust enhancers by deleting them singly or together. We found that they have distinct and overlapping functions in driving Nr2f1's regional and laminar expression in the developing cortex. Thus, these two enhancers, probably in combination with the others that we defined epigenetically, precisely tune Nr2f1's regional, cell type, and temporal expression during corticogenesis.


Asunto(s)
Factor de Transcripción COUP I , Corteza Cerebral , Elementos de Facilitación Genéticos , Regulación del Desarrollo de la Expresión Génica , Animales , Factor de Transcripción COUP I/metabolismo , Factor de Transcripción COUP I/genética , Ratones , Corteza Cerebral/metabolismo , Corteza Cerebral/embriología , Ratones Transgénicos , Humanos , Femenino
5.
PLoS One ; 19(9): e0310524, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39298444

RESUMEN

BACKGROUND: Alpha-1 antitrypsin deficiency (AATD) is an inherited disease, the common variant caused by a Pi*Z mutation in the SERPINA1 gene. Pi*Z AAT increases the risk of pulmonary emphysema and liver disease. Berberine (BBR) is a nature dietary supplement and herbal remedy. Emerging evidence revealed that BBR has remarkable liver-protective properties against various liver diseases. In the present study, we investigated the therapeutic effects and toxicities of BBR in Pi*Z hepatocytes and Pi*Z transgenic mice. METHODS: Huh7.5 and Huh7.5Z (which carries the Pi*Z mutation) cells were treated with different concentrations of BBR for 48 hours. MTT was performed for cell viability assay. Intracellular AAT levels were evaluated by western blot. In vivo studies were carried out in wild type, native phenotype AAT (Pi*M), and Pi*Z AAT transgenic mice. Mice were treated with 50 mg/kg/day of BBR or solvent only by oral administration for 30 days. Western blot and liver histopathological examinations were performed to evaluate therapeutic benefits and liver toxicity of BBR. RESULTS: BBR reduced intracellular AAT levels in Huh7.5Z cells, meanwhile, no Pi*Z-specific toxicity was observed. However, BBR did not reduce liver AAT load but significantly potentiated liver inflammation and fibrosis accompanying the activation of unfolded protein response and mTOR in Pi*Z mice, but not in wild type and Pi*M mice. CONCLUSIONS: BBR exacerbated liver inflammation and fibrosis specifically in Pi*Z mice. This adverse effect may be associated with the activation of unfolded protein response and mTOR. This study implicates that BBR should be avoided by AATD patients.


Asunto(s)
Berberina , Cirrosis Hepática , Ratones Transgénicos , alfa 1-Antitripsina , Animales , Berberina/farmacología , Ratones , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo , Humanos , Cirrosis Hepática/metabolismo , Cirrosis Hepática/patología , Cirrosis Hepática/tratamiento farmacológico , Cirrosis Hepática/inducido químicamente , Modelos Animales de Enfermedad , Serina-Treonina Quinasas TOR/metabolismo , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Hepatitis/patología , Hepatitis/metabolismo , Hepatitis/tratamiento farmacológico , Hepatitis/etiología , Respuesta de Proteína Desplegada/efectos de los fármacos
6.
Cell Death Dis ; 15(9): 686, 2024 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-39300071

RESUMEN

N-acetylaspartate (NAA) is a neuronal metabolite that can be extruded in extracellular fluids and whose blood concentration increases in several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS). Aspartoacylase (ASPA) is the enzyme responsible for NAA breakdown. It is abundantly expressed in skeletal muscle and most other human tissues, but the role of NAA catabolism in the periphery is largely neglected. Here we demonstrate that NAA treatment of differentiated C2C12 muscle cells increases lipid turnover, mitochondrial biogenesis and oxidative metabolism at the expense of glycolysis. These effects were ascribed to NAA catabolism, as CRISPR/Cas9 ASPA KO cells are insensitive to NAA administration. Moreover, the metabolic switch induced by NAA was associated with an augmented resistance to atrophic stimuli. Consistently with in vitro results, SOD1-G93A ALS mice show an increase in ASPA levels in those muscles undergoing the glycolytic to oxidative switch during the disease course. The impact of NAA on the metabolism and resistance capability of myotubes supports a role for this metabolite in the phenotypical adaptations of skeletal muscle in neuromuscular disorders.


Asunto(s)
Ácido Aspártico , Glucólisis , Fibras Musculares Esqueléticas , Animales , Glucólisis/efectos de los fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/efectos de los fármacos , Ratones , Ácido Aspártico/metabolismo , Ácido Aspártico/análogos & derivados , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Esclerosis Amiotrófica Lateral/genética , Humanos , Oxidación-Reducción , Línea Celular , Ratones Transgénicos
8.
BMC Med ; 22(1): 406, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304892

RESUMEN

BACKGROUND: Physical symptoms and aversion induced by opioid withdrawal strongly affect the management of opioid addiction. YTH N6-methyladenosine (m6A) RNA binding protein 1 (YTHDF1), an m6A-binding protein, from the periaqueductal gray (PAG) reportedly contributes to morphine tolerance and hyperalgesia. However, the role of YTHDF1 in morphine withdrawal remains unclear. METHODS: A naloxone-precipitated morphine withdrawal model was established in C57/BL6 mice or transgenic mice. YTHDF1 was knocked down via adeno-associated virus transfection. Combined with the results of the single-cell RNA sequencing analysis, the changes in morphine withdrawal somatic signs and conditioned place aversion (CPA) scores were compared when YTHDF1 originating from different neurons in the ventrolateral periaqueductal gray (vlPAG) was knocked down. We further explored the role of inflammatory factors and transcription factors related to inflammatory response in morphine withdrawal. RESULTS: Our results revealed that YTHDF1 expression was upregulated in the vlPAG of mice with morphine withdrawal and that the knockdown of vlPAG YTHDF1 attenuated morphine withdrawal-related somatic signs and aversion. The levels of NF-κB and p-NF-κB were reduced after the inhibition of YTHDF1 in the vlPAG. YTHDF1 from vlPAG inhibitory neurons, rather than excitatory neurons, facilitated morphine withdrawal responses. The inhibition of YTHDF1 in vlPAG somatostatin (Sst)-expressing neurons relieved somatic signs of morphine withdrawal and aversion, whereas the knockdown of YTHDF1 in cholecystokinin (Cck)-expressing or parvalbumin (PV)-expressing neurons did not change morphine withdrawal-induced responses. The activity of c-fos + neurons, the intensity of the calcium signal, the density of dendritic spines, and the frequency of mIPSCs in the vlPAG, which were increased in mice with morphine withdrawal, were decreased with the inhibition of YTHDF1 from vlPAG inhibitory neurons or Sst-expressing neurons. Knockdown of NF-κB in Sst-expressing neurons also alleviated morphine withdrawal-induced responses. CONCLUSIONS: YTHDF1 originating from Sst-expressing neurons in the vlPAG is crucial for the modulation of morphine withdrawal responses, and the underlying mechanism might be related to the regulation of the expression and phosphorylation of NF-κB.


Asunto(s)
Ratones Endogámicos C57BL , Morfina , Neuronas , Sustancia Gris Periacueductal , Proteínas de Unión al ARN , Síndrome de Abstinencia a Sustancias , Animales , Síndrome de Abstinencia a Sustancias/metabolismo , Sustancia Gris Periacueductal/metabolismo , Ratones , Morfina/farmacología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Neuronas/metabolismo , Masculino , Ratones Transgénicos , Modelos Animales de Enfermedad
9.
J Nanobiotechnology ; 22(1): 582, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-39304919

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is a neurodegenerative disorder that can result in neurotoxicity and an imbalance in gut microbiota. Probiotics have been shown to play an important role in regulating the gut microbiota, but their viability and bioactivity are often compromised as they traverse the gastrointestinal tract, thereby reducing their efficacy and limiting their clinical utility. RESULTS: In this work, layer-by-layer (LbL) encapsulation technology was used to encapsulate Lactiplantibacillus plantarum (LP) to improve the above shortcomings. Studies in APPswe/PS1dE9 (APP/PS1) transgenic mice show that LbL-encapsulated LP ((CS/SP)2-LP) protects LP from gastrointestinal damage while (CS/SP)2-LP treatment It improves brain neuroinflammation and neuronal damage in AD mice, reduces Aß deposition, improves tau protein phosphorylation levels, and restores intestinal barrier damage in AD mice. In addition, post-synaptic density protein 95 (PSD-95) expression increased in AD mice after treatment, indicating enhanced synaptic plasticity. Fecal metabolomic and microbiological analyzes showed that the disordered intestinal microbiota composition of AD mice was restored and short-chain fatty acids (SCFAs) levels were significantly increased after (CS/SP)2-LP treatment. CONCLUSION: Overall, the above evidence suggests that (CS/SP)2-LP can improve AD symptoms by restoring the balance of intestinal microbiota, and (CS/SP)2-LP treatment will provide a new method to improve the symptoms of AD patients.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Microbioma Gastrointestinal , Ratones Transgénicos , Probióticos , Animales , Ratones , Probióticos/farmacología , Masculino , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Encéfalo/metabolismo , Proteínas tau/metabolismo , Presenilina-1/genética , Péptidos beta-Amiloides/metabolismo , Lactobacillus plantarum
10.
Front Immunol ; 15: 1425670, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39281679

RESUMEN

Rheumatoid arthritis (RA) is a chronic autoimmune disease accompanied by local and systemic bone loss. FcγRs, especially FcγRIIa (hFcγRIIa), have been implicated in the pathogenesis of RA. However, the contribution of hFcγRIIa to bone loss has not been fully elucidated. In the present study, we demonstrated the double-edged sword role of hFcγRIIa on osteoclast differentiation through investigations involving hFcγRIIa-transgenic (hFcγRIIa-Tg) mice. Our findings reveal that hFcγRIIa-Tg mice, previously shown to exhibit heightened susceptibility to collagen-induced arthritis (CIA), displayed increased osteoporosis during CIA or at advanced ages (40 weeks), accompanied by heightened in vivo osteoclast differentiation. Notably, bone marrow cells from hFcγRIIa-Tg mice exhibited enhanced efficiency in differentiating into osteoclasts and bone resorption in vitro compared to wild-type mice when stimulated with receptor activators of NF-κB ligand (RANKL). Additionally, hFcγRIIa-Tg mice exhibited augmented sensitivity to RANKL-induced bone loss in vivo, highlighting the osteoclast-promoting role of hFcγRIIa. Mechanistically, bone marrow cells from hFcγRIIa-Tg mice displayed heightened Syk self-activation, leading to mTOR-pS6 pathway activation, thereby promoting RANKL-driven osteoclast differentiation. Intriguingly, while hFcγRIIa crosslinking hindered RANKL-induced osteoclast differentiation, it activated the kinase cAbl, subsequently triggering STAT5 activation and inhibiting the expression of osteoclast-associated genes. This study provides novel insights into hFcγRIIa-mediated osteoclast biology, suggesting promising therapeutic targets for managing bone remodeling disorders.


Asunto(s)
Resorción Ósea , Diferenciación Celular , Osteoclastos , Osteogénesis , Receptores de IgG , Animales , Ratones , Artritis Experimental/inmunología , Artritis Experimental/genética , Artritis Reumatoide/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/genética , Resorción Ósea/genética , Resorción Ósea/metabolismo , Ratones Transgénicos , Osteoclastos/metabolismo , Osteoporosis/genética , Osteoporosis/etiología , Osteoporosis/metabolismo , Ligando RANK/metabolismo , Ligando RANK/genética , Receptores de IgG/genética , Receptores de IgG/metabolismo , Transducción de Señal
11.
Stem Cell Res Ther ; 15(1): 299, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39267160

RESUMEN

BACKGROUND: The established association between Alzheimer's disease (AD) and compromised neural regeneration is well-documented. In addition to the mitigation of apoptosis in neural stem cells (NSCs), the induction of neurogenesis has been proposed as a promising therapeutic strategy for AD. Our previous research has demonstrated the effective inhibition of NSC injury induced by microglial activation through the repression of oxidative stress and mitochondrial dysfunction by Sirtuin 3 (SIRT3). Nonetheless, the precise role of SIRT3 in neurogenesis remains incompletely understood. METHODS: In vivo, SIRT3 overexpression adenovirus was firstly injected by brain stereotaxic localization to affect the hippocampal SIRT3 expression in APP/PS1 mice, and then behavioral experiments were performed to investigate the cognitive improvement of SIRT3 in APP/PS1 mice, as well as neurogenic changes in hippocampal region by immunohistochemistry and immunofluorescence. In vitro, under the transwell co-culture condition of microglia and neural stem cells, the mechanism of SIRT3 improving neurogenesis of neural stem cells through DVL/GSK3/ISL1 axis was investigated by immunoblotting, immunofluorescence and other experimental methods. RESULTS: Our findings indicate that the overexpression of SIRT3 in APP/PS1 mice led to enhanced cognitive function and increased neurogenesis. Additionally, SIRT3 was observed to promote the differentiation of NSCs into neurons during retinoic acid (RA)-induced NSC differentiation in vitro, suggesting a potential role in neurogenesis. Furthermore, we observed the activation of the Wnt/ß-catenin signaling pathway during this process, with Glycogen Synthase Kinase-3a (GSK3a) primarily governing NSC proliferation and GSK3ß predominantly regulating NSC differentiation. Moreover, the outcomes of our study demonstrate that SIRT3 exerts a protective effect against microglia-induced apoptosis in neural stem cells through its interaction with DVLs. CONCLUSIONS: Our results show that SIRT3 overexpressing APP/PS1 mice have improved cognition and neurogenesis, as well as improved neurogenesis of NSC in microglia and NSC transwell co-culture conditions through the DVL/GSK3/ISL1 axis.


Asunto(s)
Enfermedad de Alzheimer , Células-Madre Neurales , Neurogénesis , Transducción de Señal , Sirtuina 3 , Animales , Sirtuina 3/metabolismo , Sirtuina 3/genética , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/genética , Células-Madre Neurales/metabolismo , Células-Madre Neurales/citología , Glucógeno Sintasa Quinasa 3/metabolismo , Proteínas Dishevelled/metabolismo , Proteínas Dishevelled/genética , Ratones Transgénicos , Microglía/metabolismo , Diferenciación Celular , Hipocampo/metabolismo
12.
Int J Mol Sci ; 25(17)2024 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-39273325

RESUMEN

Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer's disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male APPNL-F/NL-F knock-in (KI) mice bearing humanized ApoE3 or ApoE4 (APP;E3F and APP;E4F). As travel to a specialized facility was required for irradiation, both traveled sham-irradiated C57BL/6J WT and KI mice and non-traveled (NT) KI mice acted as controls for potential effects of travel. Mice underwent four behavioral tests at 20 months of age and were euthanized for pathological and biochemical analyses 1 month later. Fecal samples were collected pre- and post-irradiation at four different time points. GCRsim seemed to impair memory in male APP;E3F mice compared to their sham counterparts. Travel tended to improve cognition in male APP;E3F mice and lowered total Aß in female and male APP;E3F mice compared to their non-traveled counterparts. Sham-irradiated male APP;E4F mice accumulated more fibrillar amyloid than their APP;E3F counterparts. Radiation exposure had only modest effects on behavior and brain changes, but travel-, sex-, and genotype-specific effects were seen. Irradiated mice had immediate and long-term differences in their gut bacterial composition that correlated to Alzheimer's disease phenotypes.


Asunto(s)
Enfermedad de Alzheimer , Precursor de Proteína beta-Amiloide , Cognición , Radiación Cósmica , Ratones Transgénicos , Animales , Femenino , Masculino , Radiación Cósmica/efectos adversos , Ratones , Cognición/efectos de la radiación , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/etiología , Enfermedad de Alzheimer/metabolismo , Técnicas de Sustitución del Gen , Ratones Endogámicos C57BL , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animales de Enfermedad , Factores Sexuales , Disfunción Cognitiva/etiología , Disfunción Cognitiva/metabolismo , Humanos
13.
Int J Mol Sci ; 25(17)2024 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-39273398

RESUMEN

Inflammation with expression of interleukin 6 (IL-6) in the central nervous system (CNS) occurs in several neurodegenerative/neuroinflammatory conditions and may cause neurochemical changes to endogenous neuroprotective systems. Pituitary adenylate cyclase-activating polypeptide (PACAP) and vasoactive intestinal polypeptide (VIP) are two neuropeptides with well-established protective and anti-inflammatory properties. Yet, whether PACAP and VIP levels are altered in mice with CNS-restricted, astrocyte-targeted production of IL-6 (GFAP-IL6) remains unknown. In this study, PACAP/VIP levels were assessed in the brain of GFAP-IL6 mice. In addition, we utilised bi-genic GFAP-IL6 mice carrying the human sgp130-Fc transgene (termed GFAP-IL6/sgp130Fc mice) to determine whether trans-signalling inhibition rescued PACAP/VIP changes in the CNS. Transcripts and protein levels of PACAP and VIP, as well as their receptors PAC1, VPAC1 and VPAC2, were significantly increased in the cerebrum and cerebellum of GFAP-IL6 mice vs. wild type (WT) littermates. These results were paralleled by a robust activation of the JAK/STAT3, NF-κB and ERK1/2MAPK pathways in GFAP-IL6 mice. In contrast, co-expression of sgp130Fc in GFAP-IL6/sgp130Fc mice reduced VIP expression and activation of STAT3 and NF-κB pathways, but it failed to rescue PACAP, PACAP/VIP receptors and Erk1/2MAPK phosphorylation. We conclude that forced expression of IL-6 in astrocytes induces the activation of the PACAP/VIP neuropeptide system in the brain, which is only partly modulated upon IL-6 trans-signalling inhibition. Increased expression of PACAP/VIP neuropeptides and receptors may represent a homeostatic response of the CNS to an uncontrolled IL-6 synthesis and its neuroinflammatory consequences.


Asunto(s)
Encéfalo , Interleucina-6 , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa , Transducción de Señal , Péptido Intestinal Vasoactivo , Animales , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/metabolismo , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Ratones , Péptido Intestinal Vasoactivo/metabolismo , Péptido Intestinal Vasoactivo/genética , Encéfalo/metabolismo , Astrocitos/metabolismo , Humanos , Ratones Transgénicos , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Sistema Nervioso Central/metabolismo , Factor de Transcripción STAT3/metabolismo , Factor de Transcripción STAT3/genética , Masculino , Ratones Endogámicos C57BL
14.
Int J Mol Sci ; 25(17)2024 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-39273422

RESUMEN

Alzheimer's disease (AD), the leading cause of dementia, is a multifactorial disease influenced by aging, genetics, and environmental factors. miRNAs are crucial regulators of gene expression and play significant roles in AD onset and progression. This exploratory study analyzed the expression levels of 28 genes and 5 miRNAs (miR-124-3p, miR-125b-5p, miR-21-5p, miR-146a-5p, and miR-155-5p) related to AD pathology and neuroimmune responses using RT-qPCR. Analyses were conducted in the prefrontal cortex (PFC) and the hippocampus (HPC) of the 5xFAD mouse AD model at 6 and 9 months old. Data highlighted upregulated genes encoding for glial fibrillary acidic protein (Gfap), triggering receptor expressed on myeloid cells (Trem2) and cystatin F (Cst7), in the 5xFAD mice at both regions and ages highlighting their roles as critical disease players and potential biomarkers. Overexpression of genes encoding for CCAAT enhancer-binding protein alpha (Cebpa) and myelin proteolipid protein (Plp) in the PFC, as well as for BCL2 apoptosis regulator (Bcl2) and purinergic receptor P2Y12 (P2yr12) in the HPC, together with upregulated microRNA(miR)-146a-5p in the PFC, prevailed in 9-month-old animals. miR-155 positively correlated with miR-146a and miR-21 in the PFC, and miR-125b positively correlated with miR-155, miR-21, while miR-146a in the HPC. Correlations between genes and miRNAs were dynamic, varying by genotype, region, and age, suggesting an intricate, disease-modulated interaction between miRNAs and target pathways. These findings contribute to our understanding of miRNAs as therapeutic targets for AD, given their multifaceted effects on neurons and glial cells.


Asunto(s)
Enfermedad de Alzheimer , Modelos Animales de Enfermedad , Hipocampo , MicroARNs , Neuroglía , Neuronas , Animales , MicroARNs/genética , MicroARNs/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Ratones , Neuronas/metabolismo , Neuroglía/metabolismo , Hipocampo/metabolismo , Ratones Transgénicos , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo , Regulación de la Expresión Génica , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Corteza Prefrontal/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Proteína Ácida Fibrilar de la Glía/genética , Masculino
15.
J Infect Dis ; 230(Supplement_2): S165-S172, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39255396

RESUMEN

BACKGROUND: Toxoplasma gondii infection of Alzheimer's disease model mice decreases amyloid ß plaques. We aimed to determine if there is a brain regional difference in amyloid ß reduction in the brains of T. gondii-infected compared to control mice. METHOD: Three-month-old 5xFAD (AD model) mice were injected with T. gondii or with phosphate-buffered saline as a control. Intact brains were harvested at 6 weeks postinfection, optically cleared using iDISCO+, and brain-wide amyloid burden was visualized using volumetric light-sheet imaging. Amyloid signal was quantified across each brain and computationally mapped to the Allen Institute Brain Reference Atlas to determine amyloid density in each region. RESULTS: A brain-wide analysis of amyloid in control and T. gondii-infected 5xFAD mice revealed that T. gondii infection decreased amyloid burden in the brain globally as well as in the cortex and hippocampus, and many daughter regions. Daughter regions that showed reduced amyloid burden included the prelimbic cortex, visual cortex, and retrosplenial cortex. The olfactory tubercle, a region known to have increased monocytes following T. gondii infection, also showed reduced amyloid after infection. CONCLUSIONS: T. gondii infection of AD mice reduces amyloid burden in a brain region-specific manner that overlaps with known regions of T. gondii infection and peripheral immune cell infiltration.


Asunto(s)
Enfermedad de Alzheimer , Encéfalo , Modelos Animales de Enfermedad , Ratones Transgénicos , Toxoplasma , Animales , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/parasitología , Enfermedad de Alzheimer/patología , Ratones , Encéfalo/parasitología , Encéfalo/metabolismo , Encéfalo/patología , Péptidos beta-Amiloides/metabolismo , Placa Amiloide/metabolismo , Placa Amiloide/patología , Toxoplasmosis/metabolismo , Femenino
16.
Int J Rheum Dis ; 27(9): e15322, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39221919

RESUMEN

BACKGROUND: Fetal microchimerism occurs in the mother after a pregnancy. To investigate the role of fetal microchimerism cells (FMCs) in rheumatoid arthritis, we analyzed the population of fetal cells in pregnant experimental arthritis mice. METHODS: We used EGFP+ fetuses, which were mated with either healthy female mice or CIA mice, and male C57BL/6J-Tg (Pgk1-EGFP)03Narl mice, to detect the population of FMCs in maternal circulation. The disease progression was determined by measuring the clinical score and histological stains during pregnancy. The fetal cells have been analyzed if expressing EGFP, CD45, and Scal by flow cytometry. We also detected the expression of CD14+ IL-10+ cells in vivo and in vitro. RESULTS: Our data showed that the pregnancy ameliorated the arthritis progression of CIA mice. The IHC stains showed the CD45 -Sca-1+ EGFP+ FMCs were expressed in the bone marrow and peripheral blood mononuclear cells (PBMC) at 14 gestation days. However, Treg and Tc cell populations showed no significant change in the bone marrow. The data showed the H2Kb + fetal cells induced CD14+ IL10+ cell populations increased in the bone marrow in vitro and in vivo. CONCLUSION: Our investigations demonstrated that the FMCs protected the CIA mice from cartilage damage and triggered an immunosuppressive response in them by increasing the number of CD14+ IL10+ cells. In conclusion, the FMCs could potentially exhibit protective properties within the context of inflammatory arthritis that arises during pregnancy.


Asunto(s)
Artritis Experimental , Quimerismo , Progresión de la Enfermedad , Interleucina-10 , Receptores de Lipopolisacáridos , Ratones Endogámicos C57BL , Animales , Femenino , Embarazo , Interleucina-10/metabolismo , Masculino , Receptores de Lipopolisacáridos/metabolismo , Artritis Experimental/inmunología , Artritis Experimental/patología , Células Cultivadas , Ratones Endogámicos DBA , Ratones Transgénicos , Artritis Reumatoide/inmunología , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Edad Gestacional , Intercambio Materno-Fetal , Fenotipo , Antígenos Comunes de Leucocito
17.
Eur J Med Chem ; 278: 116800, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39217860

RESUMEN

Beta-amyloid (Aß), the most pivotal pathological hallmark for Alzheimer's disease (AD) diagnosis and drug evaluation, was recognized by TZ095, a high-affinity fluorescent probe developed by rational molecular design. With a TICT mechanism, TZ095 exhibited remarkable affinity with Aß aggregates (Kd = 81.54 nM for oligomers; Kd = 66.70 nM for fibril) and substantial fluorescence enhancement (F/F0 = 44), enabling real-time monitoring of Aß in live cells and nematodes. Significantly, this work used TZ095 to construct a new protocol that can quickly and conveniently monitor Aß changes at the cellular and nematode levels to evaluate the anti-AD efficacy of candidate compounds, and four reported Aß-lowering drug candidates were administrated for validation. Imaging data demonstrated that TZ095 can visually and quantitatively track the effect of Aß elimination after drug treatment. Furthermore, TZ095 excelled in ex vivo histological staining of 12-month-old APP/PS1 mouse brains, accurately visualizing Aß plaques. Integrating CUBIC technology, TZ095 facilitated whole-brain, 3D imaging of Aß distribution in APP/PS1 mice, enabling high-resolution in situ analysis of Aß plaques. Collectively, these innovative applications of TZ095 offer a promising strategy for rapid, convenient, and real-time monitoring of Aß levels in preclinical therapeutic assessments.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Diseño de Fármacos , Colorantes Fluorescentes , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/farmacología , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Animales , Humanos , Ratones , Estructura Molecular , Ratones Transgénicos , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/efectos de los fármacos , Relación Estructura-Actividad , Encéfalo/metabolismo , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Relación Dosis-Respuesta a Droga , Imagen Óptica
18.
Ultrasonics ; 144: 107449, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-39217855

RESUMEN

BACKGROUND: Amyotrophic lateral sclerosis (ALS) is marked by the deterioration of both cortical and spinal cord motor neurons. Despite the underlying causes of the disease remain elusive, there has been a growing attention on the well-being of cortical motor neurons in recent times. Focused ultrasound combined with microbubbles (FUS/MB) for opening the blood-brain barrier (BBB) provides a means for drug delivery to specific brain regions, holding significant promise for the treatment of neurological disorders. OBJECTIVES: We aim to explore the outcomes of FUS/MB-mediated delivery of arctiin (Arc), a natural compound with anti-inflammatory activities, to the cerebral motor cortex area by using a transgenic ALS mouse model. METHODS: The ALS mouse model with the SOD1G93A mutation was used and subjected to daily Arc administration with FUS/MB treatment twice a week. After six-week treatments, the motor performance was assessed by grip strength, wire hanging, and climbing-pole tests. Mouse brains, spinal cords and gastrocnemius muscle were harvested for histological staining. RESULTS: Compared with the mice given Arc administration only, the combined treatments of FUS/MB with Arc induced further mitigation of the motor function decline, accompanied by improved health of the gastrocnemius muscle. Furthermore, notable neuroprotective effect was evidenced by the amelioration of motor neuron failure in the cortex and lumbar spinal cord. CONCLUSION: These preliminary results indicated that the combined treatment of FUS/MB and arctiin exerted a potentially beneficial effect on neuromuscular function in the ALS disease.


Asunto(s)
Esclerosis Amiotrófica Lateral , Modelos Animales de Enfermedad , Ratones Transgénicos , Corteza Motora , Animales , Ratones , Corteza Motora/efectos de los fármacos , Corteza Motora/fisiopatología , Glucósidos/farmacología , Glucósidos/administración & dosificación , Microburbujas , Sistemas de Liberación de Medicamentos , Terapia por Ultrasonido/métodos , Superóxido Dismutasa-1/genética , Furanos/farmacología , Furanos/administración & dosificación , Masculino , Mutación
19.
Alzheimers Res Ther ; 16(1): 197, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39238036

RESUMEN

BACKGROUND: Alzheimer's disease (AD) is the most common form of dementia. Although drugs focusing on reducing amyloid ß slow progression, they fail to improve cognitive function. Deficits in glucose metabolism are reflected in FDG-PET and parallel the neurodegeneration and synaptic marker loss closely preceding cognitive decline, but the role of metabolic deficits as a cause or consequence of neurodegeneration is unclear. Pyruvate dehydrogenase (PDH) is lost in AD and an important enzyme connecting glycolysis and the tricarboxylic acid (TCA) cycle by converting pyruvate into acetyl-CoA. It is negatively regulated by pyruvate dehydrogenase kinase (PDHK) through phosphorylation. METHODS: In the present study, we assessed the in vitro/ in vivo pharmacological profile of the novel PDHK inhibitor that we discovered, Compound A. We also assessed the effects of Compound A on AD-related phenotypes including neuron loss and cognitive impairment using 5xFAD model mice. RESULTS: Compound A inhibited human PDHK1, 2 and 3 but had no inhibitory activity on PDHK4. In primary neurons, Compound A enhanced pyruvate and lactate utilization, but did not change glucose levels. In contrast, in primary astrocytes, Compound A enhanced pyruvate and glucose utilization and enhanced lactate production. In an efficacy study using 5xFAD mice, Compound A ameliorated the cognitive dysfunction in the novel object recognition test and Morris water maze. Moreover, Compound A prevented neuron loss in the hippocampus and cerebral cortex of 5xFAD without affecting amyloid ß deposits. CONCLUSIONS: These results suggest ameliorating metabolic deficits by activating PDH by Compound A can limit neurodegeneration and is a promising therapeutic strategy for treating AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Modelos Animales de Enfermedad , Ratones Transgénicos , Animales , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Humanos , Ratones , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/antagonistas & inhibidores , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/metabolismo , Péptidos beta-Amiloides/metabolismo , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/metabolismo , Masculino , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéutico
20.
eNeuro ; 11(9)2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39256039

RESUMEN

Alteration of synaptic function in the dorsal horn (DH) has been implicated as a cellular substrate for the development of neuropathic pain, but certain details remain unclear. In particular, the lack of information on the types of synapses that undergo functional changes hinders the understanding of disease pathogenesis from a synaptic plasticity perspective. Here, we addressed this issue by using optogenetic and retrograde tracing ex vivo to selectively stimulate first-order nociceptors expressing Nav1.8 (NRsNav1.8) and record the responses of spinothalamic tract neurons in spinal lamina I (L1-STTNs). We found that spared nerve injury (SNI) increased excitatory postsynaptic currents (EPSCs) in L1-STTNs evoked by photostimulation of NRsNav1.8 (referred to as Nav1.8-STTN EPSCs). This effect was accompanied by a significant change in the failure rate and paired-pulse ratio of synaptic transmission from NRsNav1.8 to L1-STTN and in the frequency (not amplitude) of spontaneous EPSCs recorded in L1-STTNs. However, no change was observed in the ratio of AMPA to NMDA receptor-mediated components of Nav1.8-STTN EPSCs or in the amplitude of unitary EPSCs constituting Nav1.8-STTN EPSCs recorded with extracellular Ca2+ replaced by Sr2+ In addition, there was a small increase (approximately 10%) in the number of L1-STTNs showing immunoreactivity for phosphorylated extracellular signal-regulated kinases in mice after SNI compared with sham. Similarly, only a small percentage of L1-STTNs showed a lower action potential threshold after SNI. In conclusion, our results show that SNI induces presynaptic modulation at NRNav1.8 (consisting of both peptidergic and nonpeptidergic nociceptors) synapses on L1-STTNs forming the lateral spinothalamic tract.


Asunto(s)
Potenciales Postsinápticos Excitadores , Canal de Sodio Activado por Voltaje NAV1.8 , Nociceptores , Tractos Espinotalámicos , Transmisión Sináptica , Animales , Canal de Sodio Activado por Voltaje NAV1.8/metabolismo , Canal de Sodio Activado por Voltaje NAV1.8/genética , Nociceptores/metabolismo , Nociceptores/fisiología , Tractos Espinotalámicos/metabolismo , Potenciales Postsinápticos Excitadores/fisiología , Masculino , Transmisión Sináptica/fisiología , Ratones , Optogenética , Ratones Endogámicos C57BL , Ratones Transgénicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA