Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 269
Filtrar
Más filtros

Base de datos
Tipo del documento
Intervalo de año de publicación
1.
Fish Shellfish Immunol ; 150: 109648, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38777253

RESUMEN

Laminin receptor (LR), which mediating cell adhesion to the extracellular matrix, plays a crucial role in cell signaling and regulatory functions. In the present study, a laminin receptor gene (SpLR) was cloned and characterized from the mud crab (Scylla paramamosain). The full length of SpLR contained an open reading frame (ORF) of 960 bp encoding 319 amino acids, a 5' untranslated region (UTR) of 66 bp and a 3' UTR of 49 bp. The predicted protein comprised two Ribosomal-S2 domains and a 40S-SA-C domain. The mRNA of SpLR was highly expressed in the gill, followed by the hepatopancreas. The expression of SpLR was up-regulated after mud crab dicistrovirus-1(MCDV-1) infection. Knocking down SpLR in vivo by RNA interference significantly down-regulated the expression of the immune genes SpJAK, SpSTAT, SpToll1, SpALF1 and SpALF5. This study shown that the expression level of SpToll1 and SpCAM in SpLR-interfered group significantly increased after MCDV-1 infection. Moreover, silencing of SpLR in vivo decreased the MCDV-1 replication and increased the survival rate of mud crabs after MCDV-1 infection. These findings collectively suggest a pivotal role for SpLR in the mud crab's response to MCDV-1 infection. By influencing the expression of critical innate immune factors and impacting viral replication dynamics, SpLR emerges as a key player in the intricate host-pathogen interaction, providing valuable insights into the molecular mechanisms underlying MCDV-1 pathogenesis in mud crabs.


Asunto(s)
Secuencia de Aminoácidos , Proteínas de Artrópodos , Braquiuros , Regulación de la Expresión Génica , Inmunidad Innata , Filogenia , Receptores de Laminina , Alineación de Secuencia , Animales , Braquiuros/genética , Braquiuros/inmunología , Receptores de Laminina/genética , Receptores de Laminina/inmunología , Proteínas de Artrópodos/genética , Proteínas de Artrópodos/inmunología , Proteínas de Artrópodos/química , Inmunidad Innata/genética , Regulación de la Expresión Génica/inmunología , Alineación de Secuencia/veterinaria , Perfilación de la Expresión Génica/veterinaria , Secuencia de Bases
2.
FEBS Open Bio ; 14(7): 1072-1086, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38702074

RESUMEN

Telomerase activity is directly affected by the laminin receptor precursor (LRP) protein, a highly conserved nonintegrin transmembrane receptor, which has been shown to have therapeutic effects in ageing, and age-related diseases. Recently, it has been found that overexpression of LRP-FLAG, by plasmid transfection, leads to a significant increase in telomerase activity in cell culture models. This may indicate that upregulation of LRP can be used to treat various age-related diseases. However, transfection is not a viable treatment strategy for patients. Therefore, we present a nanoencapsulated protein-based drug synthesised using poly(lactic-co-glycolic acid) (PLGA) nanocapsules for delivery of the 37 kDa LRP protein therapeutic. PLGA nanocapsules were synthesised using the double emulsification-solvent evaporation technique. Different purification methods, including filtration and centrifugation, were tested to ensure that the nanocapsules were within the optimal size range, and the BCA assay was used to determine encapsulation efficiency. The completed drug was tested in a HEK-293 cell culture model, to investigate the effect on cell viability, LRP protein levels and telomerase activity. A significant increase in total LRP protein levels with a concomitant increase in cell viability and telomerase activity was observed. Due to the observed increase in telomerase activity, this approach could represent a safer alternative to plasmid transfection for the treatment of age-related diseases.


Asunto(s)
Supervivencia Celular , Nanocápsulas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Humanos , Nanocápsulas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Células HEK293 , Supervivencia Celular/efectos de los fármacos , Proteínas Recombinantes , Telomerasa/metabolismo , Telomerasa/genética , Ácido Poliglicólico/química , Sistemas de Liberación de Medicamentos/métodos , Ácido Láctico/química , Receptores de Laminina/metabolismo , Receptores de Laminina/genética
3.
Biomol Biomed ; 24(5): 1117-1132, 2024 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-38606907

RESUMEN

The 67 kDa laminin receptor (67LR) was identified as the first laminin receptor shown to be involved in the carcinogenesis of various cancers, including colorectal cancer. While the exact composition of this 67 kDa receptor remains unknown, it has been reported to be formed by the 37 kDa ribosomal protein SA (RPSA) covalently attached to another unidentified protein. The goal of this study was to clarify the molecular structure of 67LR to enhance our understanding of its role in malignancies. Using cell fractionation of colorectal cancer cells, the 67 kDa immunoreactive protein corresponding to 67LR was found in the soluble protein fraction, while some of the 37 kDa RPSA exhibited plasma membrane-like properties. Proteomic analysis of the 67 kDa fraction revealed the absence of RPSA but identified the ß-galactosidase-related 67 kDa elastin-binding protein (67EBP), another laminin binding receptor which presents amino acid sequence similarities that can explain the immune cross reactivity with RPSA. The downregulation of ß-galactosidase through short hairpin RNA (shRNA) led to a reduction in both 67LR and 67EBP immunoreactive proteins, confirming the misidentification of 67LR and 67EBP in colorectal cancer cells. Based on these findings, we propose to redefine the 67LR as the RPSA-containing laminin receptor (RCLR) to avoid confusion with the 67EBP.


Asunto(s)
Neoplasias Colorrectales , Receptores de Laminina , Proteínas Ribosómicas , Humanos , Receptores de Laminina/metabolismo , Receptores de Laminina/genética , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/genética , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Línea Celular Tumoral , beta-Galactosidasa/metabolismo , beta-Galactosidasa/genética
4.
FEBS Lett ; 598(9): 995-1007, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38413095

RESUMEN

Resveratrol prevents various neurodegenerative diseases in animal models despite reaching only low nanomolar concentrations in the brain after oral administration. In this study, based on the quenching of intrinsic tryptophan fluorescence and molecular docking, we found that trans-resveratrol, its conjugates (glucuronide and sulfate), and dihydro-resveratrol (intestinal microbial metabolite) bind with high affinities (Kd, 0.2-2 nm) to the peptide G palindromic sequence (near glycosaminoglycan-binding motif) of the 67-kDa laminin receptor (67LR). Preconditioning with low concentrations (0.01-10 nm) of these polyphenols, especially resveratrol-glucuronide, protected neuronal cells from death induced by serum withdrawal via activation of cAMP-mediated signaling pathways. This protection was prevented by a 67LR-blocking antibody, suggesting a role for this cell-surface receptor in neuroprotection by resveratrol metabolites.


Asunto(s)
Fármacos Neuroprotectores , Receptores de Laminina , Resveratrol , Resveratrol/farmacología , Resveratrol/metabolismo , Resveratrol/química , Receptores de Laminina/metabolismo , Receptores de Laminina/genética , Humanos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/metabolismo , Simulación del Acoplamiento Molecular , Animales , Unión Proteica , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Estilbenos/farmacología , Estilbenos/metabolismo , Estilbenos/química , Neuroprotección/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Sitios de Unión , Glucurónidos/metabolismo , Glucurónidos/química , Proteínas Ribosómicas
5.
Cell Mol Life Sci ; 80(8): 207, 2023 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-37452879

RESUMEN

The cellular prion protein (PrPC) is well-known for its involvement, under its pathogenic protease-resistant form (PrPSc), in a group of neurodegenerative diseases, known as prion diseases. PrPC is expressed in nervous system, as well as in other peripheral organs, and has been found overexpressed in several types of solid tumors. Notwithstanding, studies in recent years have disclosed an emerging role for PrPC in various cancer associated processes. PrPC has high binding affinity for 37/67 kDa laminin receptor (RPSA), a molecule that acts as a key player in tumorigenesis, affecting cell growth, adhesion, migration, invasion and cell death processes. Recently, we have characterized at cellular level, small molecules able to antagonize the direct PrPC binding to RPSA and their intracellular trafficking. These findings are very crucial considering that the main function of RPSA is to modulate key events in the metastasis cascade. Elucidation of the role played by PrPC/RPSA interaction in regulating tumor development, progression and response to treatment, represents a very promising challenge to gain pathogenetic information and discover novel specific biomarkers and/or therapeutic targets to be exploited in clinical settings. This review attempts to convey a detailed description of the complexity surrounding these multifaceted proteins from the perspective of cancer hallmarks, but with a specific focus on the role of their interaction in the control of proliferation, migration and invasion, genome instability and mutation, as well as resistance to cell death controlled by autophagic pathway.


Asunto(s)
Neoplasias , Proteínas PrPC , Enfermedades por Prión , Priones , Humanos , Proteínas Priónicas/genética , Proteínas Priónicas/metabolismo , Enfermedades por Prión/metabolismo , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Neoplasias/genética , Biología , Proteínas PrPC/genética , Proteínas PrPC/metabolismo
6.
FEBS Open Bio ; 13(2): 323-340, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36579897

RESUMEN

The incidence and mortality rates of cancer are growing rapidly worldwide, with lung cancer being the most commonly occurring cancer in males. Human carcinomas circumvent the inhibitory pathways induced by DNA damage and senescence through the upregulation of telomerase activity. The 37 kDa/67 kDa laminin receptor (LRP/LR) is a cell surface receptor which plays a role in several cancer hallmarks, including metastasis, angiogenesis, cell viability maintenance, apoptotic evasion, and mediating telomerase activity. We have previously shown that the knockdown of LRP/LR with an LRP-specific siRNA significantly impedes adhesion and invasion, induces apoptosis, and inhibits telomerase activity in various cancer cell lines in vitro. Here, we investigated the effect of downregulating LRP/LR with LRP-specific siRNA in A549 lung cancer cells. Downregulation of LRP/LR resulted in a significant decrease in cell viability, migration potential, and telomerase activity, as well as a significant increase in apoptosis. Proteomic analysis further suggested the re-establishment of immune control over the lung cancer cells, a previously unidentified facet of LRP downregulation in cancer. Altogether, we suggest that targeting LRP/LR for downregulation may have therapeutic potential for inhibiting several cancer hallmarks.


Asunto(s)
Neoplasias Pulmonares , Telomerasa , Humanos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Regulación hacia Abajo/genética , Telomerasa/genética , Telomerasa/metabolismo , Proteómica , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Neoplasias Pulmonares/genética , Moléculas de Adhesión Celular/genética
7.
Cancer Biomark ; 35(1): 99-109, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35912727

RESUMEN

BACKGROUND: Although lysyl-tRNA synthetase (KARS1) is predominantly located in the cytosol, it is also present in the plasma membrane where it stabilizes the 67-kDa laminin receptor (67LR). This physical interaction is strongly increased under metastatic conditions. However, the dynamic interaction of these two proteins and the turnover of KARS1 in the plasma membrane has not previously been investigated. OBJECTIVE: Our objective in this study was to identify the membranous location of KARS1 and 67LR and investigate if this changes with the developmental stage of epithelial ovarian cancer (EOC) and treatment with the inhibitor BC-K01. In addition, we evaluated the therapeutic efficacy of BC-K01 in combination with paclitaxel, as the latter is frequently used to treat patients with EOC. METHODS: Overall survival and prognostic significance were determined in EOC patients according to KARS1 and 67LR expression levels as determined by immunohistochemistry. Changes in the location and expression of KARS1 and 67LR were investigated in vitro after BC-K01 treatment. The effects of this compound on tumor growth and apoptosis were evaluated both in vitro and in vivo. RESULTS: EOC patients with high KARS1 and high 67LR expression had lower progression-free survival rates than those with low expression levels of these two markers. BC-K01 reduced cell viability and increased apoptosis in combination with paclitaxel in EOC cell xenograft mouse models. BC-K01 decreased membranous KARS1 expression, causing a reduction in 67LR membrane expression in EOC cell lines. BC-K01 significantly decreased in vivo tumor weight and number of nodules, especially when used in combination with paclitaxel. CONCLUSIONS: Co-localization of KARS1 and 67LR in the plasma membrane contributes to EOC progression. Inhibition of the KARS1-67LR interaction by BC-K01 suppresses metastasis in EOC.


Asunto(s)
Lisina-ARNt Ligasa , Neoplasias Ováricas , Animales , Carcinoma Epitelial de Ovario/tratamiento farmacológico , Moléculas de Adhesión Celular , Femenino , Humanos , Lisina-ARNt Ligasa/metabolismo , Ratones , Neoplasias Ováricas/tratamiento farmacológico , Paclitaxel/farmacología , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Proteínas Ribosómicas/genética
8.
FEBS Lett ; 596(22): 2914-2927, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35971617

RESUMEN

Previous studies have shown that amyloid-ß oligomers (AßO) bind with high affinity to cellular prion protein (PrPC ). The AßO-PrPC complex binds to cell-surface co-receptors, including the laminin receptor (67LR). Our current studies revealed that in Neuroscreen-1 cells, 67LR is the major co-receptor involved in the cellular uptake of AßO and AßΟ-induced cell death. Both pharmacological (dibutyryl-cAMP, forskolin and rolipram) and physiological (pituitary adenylate cyclase-activating polypeptide) cAMP-elevating agents decreased cell-surface PrPC and 67LR, thereby attenuating the uptake of AßO and the resultant neuronal cell death. These cAMP protective effects are dependent on protein kinase A, but not dependent on the exchange protein directly activated by cAMP. Conceivably, cAMP protects neuronal cells from AßO-induced cytotoxicity by decreasing cell-surface-associated PrPC and 67LR.


Asunto(s)
Péptidos beta-Amiloides , Proteínas PrPC , Péptidos beta-Amiloides/metabolismo , Proteínas Priónicas , Proteínas PrPC/metabolismo , Laminina/metabolismo , Muerte Celular , Receptores de Laminina/genética , Polipéptido Hipofisario Activador de la Adenilato-Ciclasa
9.
Food Funct ; 13(8): 4421-4431, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35302141

RESUMEN

Prostate cancer is a major cause of morbidity and mortality in men. Theaflavin-3,3'-digallate (TF-3) is an important functional ingredient of black tea. We aimed to evaluate the cytotoxic effects of TF-3 on prostate cancer and to identify the underlying molecular mechanism. In this study, we explored the effects of TF-3 on prostate cancer in PC-3 cells and in NOD/SCID mice with prostate cancer. The results demonstrated that TF-3 inhibited prostate cancer cell proliferation by regulating the PKCδ/aSMase signaling pathway. The anti-prostate cancer effect of TF-3 was attributed to the expression of the 67 kDa laminin receptor (67LR), which is overexpressed in various cancers, playing a vital role in the growth and metastasis of tumor cells. Stable knockdown of 67LR could efficiently inhibit TF-3 induced apoptosis and cell cycle arrest in PC-3 cells, through interacting with the PKCδ/aSMase signaling pathway. In vivo studies also confirmed the above findings that TF-3 effectively inhibited tumor growth in terms of tumor volume. TF-3 treatment can significantly inhibit tumor growth and up-regulate the phosphorylation of PKCδ and the expression of aSMase in tumor xenografts developed by subcutaneously implanting PC-3 cells and 67LR-overexpressing PC-3 cells in mice. However, in tumor xenografts formed by subcutaneously implanting 67LR-knockdown PC-3 cells, TF-3 has no significant effect on PKCδ/aSMase pathway regulation and tumor growth inhibition.


Asunto(s)
Catequina , Neoplasias de la Próstata , Animales , Antioxidantes/farmacología , Biflavonoides , Catequina/farmacología , Línea Celular Tumoral , Humanos , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/genética , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Transducción de Señal
10.
BMC Cancer ; 21(1): 392, 2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33836696

RESUMEN

BACKGROUND: The 37 kDa/67 kDa laminin receptor (LRP/LR) is involved in several tumourigenic-promoting processes including cellular viability maintenance and apoptotic evasion. Thus, the aim of this study was to assess the molecular mechanism of LRP/LR on apoptotic pathways in late stage (DLD-1) colorectal cancer cells upon siRNA-mediated down-regulation of LRP/LR. METHODS: siRNAs were used to down-regulate the expression of LRP/LR in DLD-1 cells which was assessed using western blotting and qPCR. To evaluate the mechanistic role of LRP/LR, proteomic analysis of pathways involved in proliferation and apoptosis were investigated. The data from the study was analysed using a one-way ANOVA, followed by a two-tailed student's t-test with a confidence interval of 95%. RESULTS: Here we show that knock-down of LRP/LR led to significant changes in the proteome of DLD-1 cells, exposing new roles of the protein. Moreover, analysis showed that LRP/LR may alter components of the MAPK, p53-apoptotic and autophagic signalling pathways to aid colorectal cancer cells in continuous growth and survival. Knock-down of LRP/LR also resulted in significant decreases in telomerase activity and telomerase-related proteins in the DLD-1 cells. CONCLUSIONS: These findings show that LRP/LR is critically implicated in apoptosis and cell viability maintenance and suggest that siRNA-mediated knock-down of LRP/LR may be a possible therapeutic strategy for the treatment of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Técnicas de Silenciamiento del Gen , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Transducción de Señal , Apoptosis/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Neoplasias Colorrectales/patología , Perfilación de la Expresión Génica , Humanos , Estadificación de Neoplasias , Proteoma , Proteómica/métodos , ARN Interferente Pequeño/genética , Telomerasa/metabolismo , Transcriptoma , Células Tumorales Cultivadas
11.
EBioMedicine ; 65: 103251, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33639401

RESUMEN

BACKGROUND: The presence of no-reflow can increase the risk of major adverse cardiac events and is widely regarded as an important sign of serious prognosis. Previous studies show that laminin receptor (LR) is closely related to the morphology and function of microvessels. However, whether LR is involved in the occurrence and development of no-reflow is still unknown. METHODS: In vivo, positron emission tomography (PET) perfusion imaging was performed to detect the effects of intramyocardial gene (LR-AAV and LR-siRNA-AAV) delivery treatment on the degree of no-reflow. In vitro, LC-MS/MS analysis was conducted to identify the LR phosphorylation sites of human cardiac microvascular endothelial cells (HCMECs) treated with oxygen-glucose deprivation (OGD) for 4 h. Western blot analyses were used to evaluate the phosphorylation levels of LR at residues Tyr47 (phospho-Tyr47-LR/pY47-LR) and Thr125 (phospho-Thr125-LR/pT125-LR) and their effects on the phosphorylation of VE-cadherin residue Ser665 (phospho-Ser665-VE-cad). FINDINGS: LR over-expression, LRT125A (phosphonull) and LRY47A (phosphonull) treatments were found to reduce the level of phospho-Ser665-VE-cad, and subsequently maintain adherent junctions and endothelial barrier integrity in hypoxic environments. Mechanistically, TIMAP/PP1c can combine with LR on the cell membrane to form a novel LR-TIMAP/PP1c complex. The level of pY47-LR determined the stability of LR-TIMAP/PP1c complex. The binding of TIMAP/PP1c on LR activated the protein phosphatase activity of PP1c and regulated the level of pT125-LR. INTERPRETATION: This study demonstrates that low level of phospho-LR reduces no-reflow area through stabilizing the LR-TIMAP/PP1c complex and promoting the stability of adherens junctions, and may help identify new therapeutic targets for the treatment of no-reflow.


Asunto(s)
Proteínas de la Membrana/metabolismo , Proteína Fosfatasa 1/metabolismo , Receptores de Laminina/metabolismo , Animales , Antígenos CD/metabolismo , Cadherinas/metabolismo , Hipoxia de la Célula , Línea Celular , Modelos Animales de Enfermedad , Humanos , Masculino , Proteínas de la Membrana/antagonistas & inhibidores , Proteínas de la Membrana/genética , Infarto del Miocardio/metabolismo , Infarto del Miocardio/fisiopatología , Miocardio/metabolismo , Fosforilación , Unión Proteica , Proteína Fosfatasa 1/antagonistas & inhibidores , Proteína Fosfatasa 1/genética , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores de Laminina/antagonistas & inhibidores , Receptores de Laminina/genética , Transducción de Señal
12.
Biomed Res Int ; 2020: 3280530, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32964027

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most highly aggressive cancer worldwide with an extremely poor prognosis. Evidence has revealed that microRNA-587 (miR-587) is abnormally expressed in a series of cancers. However, its expressions and functions in HCC have not been clearly acknowledged. METHODS: We detected the expression level of miR-587 both in the Gene Expression Omnibus (GEO) database and 86 paired clinical HCC tissues together with paired adjacent normal tissues by quantitative real-time PCR (qRT-PCR). Afterwards, the transfected HCC cell line SMMC-7721 cells were collected for the cell proliferation assay, cell-cycle arrest, cell migration, and invasion assays to explore the roles of miR-587 in regulating cellular function. In addition, bioinformatics analysis, combined with qRT-PCR and dual-luciferase reporter assays, were performed to confirm whether ribosomal protein SA (RPSA) mRNA was the direct target gene of miR-587. Moreover, the Cancer Genome Atlas (TCGA) and GEO databases as well as 86 paired clinical HCC tissues were used to verify the negative regulation between miR-587 and RPSA. RESULTS: In the present study, both the GEO database (GSE36915 and GSE74618) analysis and qRT-PCR analysis of 86 paired clinical tissues showed that miR-587 was significantly downregulated in HCC tissues. The overexpression of miR-587 inhibited proliferation, cell cycle, migration, and invasion in SMMC-7721 cells. In addition, miR-587 directly interacted with the 3'-untranslated region (UTR) of RPSA. Moreover, miR-587 overexpression directly suppressed RPSA expression, and the two genes were inversely expressed in HCC based on the analyses in TCGA and GEO (GSE36376) databases and qPCR analysis of 86 paired clinical tissues. CONCLUSION: Our results demonstrate that miR-587 is downexpressed in HCC and regulates the cellular function by targeting RPSA.


Asunto(s)
Carcinoma Hepatocelular/genética , Genes Supresores de Tumor/fisiología , Neoplasias Hepáticas/genética , MicroARNs/genética , Receptores de Laminina/genética , Proteínas Ribosómicas/genética , Regiones no Traducidas 3'/genética , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación hacia Abajo/genética , Regulación Neoplásica de la Expresión Génica/genética , Humanos , ARN Mensajero/genética
13.
Am J Physiol Heart Circ Physiol ; 319(1): H183-H191, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32469637

RESUMEN

In pulmonary hypertension (PH) a proinflammatory milieu drives pulmonary vascular remodeling, maladaptive right ventricular (RV) remodeling, and right-sided heart failure. There is an unmet need for RV-targeted pharmaco-therapies to improve mortality. Targeting of the P2X7 receptor (P2X7R) reduces pulmonary pressures; however, its effects on the RV are presently unknown. We investigated the effect of P2X7 receptor (P2X7R) inhibition on the pulmonary vasculature and RV remodeling using the novel P2X7R antagonist PKT100. C57BL/6 mice were administered intratracheal bleomycin or saline and treated with PKT100 (0.2 mg·kg-1·day-1) or DMSO vehicle. RV was assessed by right heart catheterization and echocardiography, 21 days posttreatment. Cytokines in serum and bronchoalveolar lavage fluid (BALF) were analyzed by ELISA and flow cytometry. Lungs and hearts were analyzed histologically for pulmonary vascular and RV remodeling. Focused-PCR using genes involved in RV remodeling was performed. Right ventricular systolic pressure (RVSP) was elevated in bleomycin-treated mice (30.2 ± 1.1; n = 7) compared with control mice (23.5 ± 1.0; n = 10; P = 0.008). PKT100 treatment did not alter RVSP (32.4 ± 1.8; n = 9), but it substantially improved survival (93% vs. 57% DMSO). There were no differences between DMSO and PKT100 bleomycin mice in pulmonary inflammation or remodeling. However, RV hypertrophy was reduced in PKT100 mice. Bleomycin decreased echocardiographic surrogates of RV systolic performance, which were significantly improved with PKT100. Four genes involved in RV remodeling (RPSA, Rplp0, Add2, and Scn7a) were differentially expressed between DMSO and PKT100-treated groups. The novel P2X7R inhibitor, PKT100, attenuates RV hypertrophy and improves RV contractile function and survival in a mouse model of PH independently of effects on the pulmonary vasculature. PKT100 may improve ventricular response to increased afterload and merits further investigation into the potential role of P2X7R antagonists as direct RV-focused therapies in PH.NEW & NOTEWORTHY This study demonstrates the therapeutic potential for right-sided heart failure of a novel inhibitor of the P2X7 receptor (P2X7R). Inflammatory signaling and right ventricular function were improved in a mouse model of pulmonary fibrosis with secondary pulmonary hypertension when treated with this inhibitor. Importantly, survival was also improved, suggesting that this inhibitor, and other P2X7R antagonists, could be uniquely effective in right ventricle (RV)-targeted therapy in pulmonary hypertension. This addresses a major limitation of current treatment options, where the significant improvements in pulmonary pressures ultimately do not prevent mortality due to RV failure.


Asunto(s)
Ventrículos Cardíacos/efectos de los fármacos , Hipertensión Pulmonar/tratamiento farmacológico , Antagonistas del Receptor Purinérgico P2X/uso terapéutico , Animales , Presión Sanguínea , Líquido del Lavado Bronquioalveolar/citología , Citocinas/sangre , Proteínas del Citoesqueleto/genética , Proteínas del Citoesqueleto/metabolismo , Ventrículos Cardíacos/metabolismo , Ventrículos Cardíacos/patología , Ventrículos Cardíacos/fisiopatología , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Antagonistas del Receptor Purinérgico P2X/farmacología , Receptores de Laminina/genética , Receptores de Laminina/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Remodelación Ventricular , Canales de Sodio Activados por Voltaje/genética , Canales de Sodio Activados por Voltaje/metabolismo
14.
mSphere ; 5(2)2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32238570

RESUMEN

Treponema pallidum subsp. pallidum is the causative agent of syphilis, a human-specific sexually transmitted infection that causes a multistage disease with diverse clinical manifestations. Treponema pallidum undergoes rapid vascular dissemination to penetrate tissue, placental, and blood-brain barriers and gain access to distant tissue sites. The rapidity and extent of T. pallidum dissemination are well documented, but the molecular mechanisms have yet to be fully elucidated. One protein that has been shown to play a role in treponemal dissemination is Tp0751, a T. pallidum adhesin that interacts with host components found within the vasculature and mediates bacterial adherence to endothelial cells under shear flow conditions. In this study, we further explore the molecular interactions of Tp0751-mediated adhesion to the vascular endothelium. We demonstrate that recombinant Tp0751 adheres to human endothelial cells of macrovascular and microvascular origin, including a cerebral brain microvascular endothelial cell line. Adhesion assays using recombinant Tp0751 N-terminal truncations reveal that endothelial binding is localized to the lipocalin fold-containing domain of the protein. We also confirm this interaction using live T. pallidum and show that spirochete attachment to endothelial monolayers is disrupted by Tp0751-specific antiserum. Further, we identify the 67-kDa laminin receptor (LamR) as an endothelial receptor for Tp0751 using affinity chromatography, coimmunoprecipitation, and plate-based binding methodologies. Notably, LamR has been identified as a receptor for adhesion of other neurotropic invasive bacterial pathogens to brain endothelial cells, including Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae, suggesting the existence of a common mechanism for extravasation of invasive extracellular bacterial pathogens.IMPORTANCE Syphilis is a sexually transmitted infection caused by the spirochete bacterium Treponema pallidum subsp. pallidum. The continued incidence of syphilis demonstrates that screening and treatment strategies are not sufficient to curb this infectious disease, and there is currently no vaccine available. Herein we demonstrate that the T. pallidum adhesin Tp0751 interacts with endothelial cells that line the lumen of human blood vessels through the 67-kDa laminin receptor (LamR). Importantly, LamR is also a receptor for meningitis-causing neuroinvasive bacterial pathogens such as Neisseria meningitidis, Haemophilus influenzae, and Streptococcus pneumoniae Our findings enhance understanding of the Tp0751 adhesin and present the intriguing possibility that the molecular events of Tp0751-mediated treponemal dissemination may mimic the endothelial interaction strategies of other invasive pathogens.


Asunto(s)
Adhesinas Bacterianas/metabolismo , Células Endoteliales/microbiología , Interacciones Huésped-Patógeno/genética , Receptores de Laminina/genética , Proteínas Ribosómicas/genética , Treponema/patogenicidad , Adhesión Bacteriana , Línea Celular , Células Cultivadas , Humanos
15.
Biochem Biophys Res Commun ; 525(4): 974-981, 2020 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-32173528

RESUMEN

Targeting proteins that are overexpressed in cancer cells is the major strategy of molecular imaging and drug delivery systems. The 67-kDa laminin receptor (67LR), also known as oncofetal antigen, is overexpressed in several types of cancer, including melanoma, multiple myeloma, cervical cancer and bile duct carcinoma. 67LR is involved in tumour growth, tumour metastasis and drug resistance. Green tea polyphenol (-)-epigallocatechin-3-O-gallate (EGCG) directly binds to cell-surface 67LR and induces apoptosis through the protein kinase B (Akt)/endothelial nitric oxide synthase/nitric oxide/cyclic GMP (cGMP) axis. Here we report the optimum hydroxyl group for the utilization of EGCG as a novel fluorescent EGCG-mimic imaging probe based on 67LR agonist characters, including Akt activation and inhibitory effect on viable cell number in cancer cells. 67LR specific targeting is unambiguously confirmed with the use of a non-labelled EGCG competitive assay and 67LR knockdown. Importantly, this probe strongly binds to multiple myeloma cells compared with its binding to normal cells.


Asunto(s)
Anticarcinógenos/farmacología , Antioxidantes/farmacología , Catequina/análogos & derivados , Mieloma Múltiple/metabolismo , Receptores de Laminina/metabolismo , Animales , Catequina/química , Catequina/farmacología , Línea Celular Tumoral , Fluorescencia , Técnicas de Silenciamiento del Gen , Humanos , Ratones , Mieloma Múltiple/genética , Unión Proteica , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Laminina/agonistas , Receptores de Laminina/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
16.
Mol Nutr Food Res ; 64(7): e1901036, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31978263

RESUMEN

SCOPE: Epigallocatechin gallate (EGCG), an active polyphenol in green tea, exhibits various physiological effects, including activation of low-density lipoprotein receptors (LDLR). The previous studies have suggested that EGCG activates LDLR via extracellular signal-regulated kinase (ERK) pathway in HepG2 cells. However, the detailed molecular mechanism remains unclear. Recently, 67 kDa laminin receptor (67LR) is identified as a receptor for EGCG. Therefore, this study aims to determine whether 67LR is involved in the mechanism of LDLR activation by EGCG. METHODS AND RESULTS: EGCG induces upregulation of LDLR when 67LR is knocked down in HepG2 cells. Similar effect is observed after the cells are treated with 67LR monoclonal antibody. The loss of antiallergic effect following 67LR siRNA knockdown and 67LR antibody treatment confirms the results since the antiallergic effect of EGCG is known to be mediated by 67LR. CONCLUSION: EGCG activates LDLR expression via 67LR-independent pathway in HepG2 cells.


Asunto(s)
Catequina/análogos & derivados , Receptores de LDL/metabolismo , Receptores de Laminina/metabolismo , Proteínas Ribosómicas/metabolismo , Anticuerpos/farmacología , Catequina/farmacología , Colesterol/metabolismo , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Cadenas Ligeras de Miosina/metabolismo , Fosforilación/efectos de los fármacos , Receptores de LDL/genética , Receptores de Laminina/genética , Receptores de Laminina/inmunología , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/inmunología , Regulación hacia Arriba/efectos de los fármacos
17.
Hum Mutat ; 41(1): 196-202, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31498527

RESUMEN

Idiopathic intestinal varicosis is a developmental disorder defined by dilated and convoluted submucosal veins in the colon or small bowel. A limited number of families with idiopathic intestinal varices has been reported, but the genetic cause has not yet been identified. We performed whole-exome and targeted Sanger sequencing of candidate genes in five intestinal varicosis families. In four families, mutations in the RPSA gene were found, a gene previously linked to congenital asplenia. Individuals in these pedigrees had intestinal varicose veins and angiodysplasia, often in combination with asplenia. In a further four-generation pedigree that only showed intestinal varicosities, the RPSA gene was normal. Instead, a nonsense mutation in the homeobox gene NKX2-3 was detected which cosegregated with the disease in this large family with a LOD (logarithm of the odds) score of 3.3. NKX2-3 is a component of a molecular pathway underlying spleen and gut vasculature development in mice. Our results provide a molecular basis for familial idiopathic intestinal varices. We provide evidence for a relationship between the molecular pathways underlying the development of the spleen and intestinal mucosal vasculature that is conserved between humans and mice. We propose that clinical management of intestinal varices, should include assessment of a functional spleen.


Asunto(s)
Vasos Sanguíneos/anomalías , Proteínas de Homeodominio/genética , Intestinos/irrigación sanguínea , Mutación , Organogénesis/genética , Receptores de Laminina/genética , Proteínas Ribosómicas/genética , Bazo/irrigación sanguínea , Factores de Transcripción/genética , Vasos Sanguíneos/metabolismo , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Variación Genética , Humanos , Masculino , Linaje , Análisis de Secuencia de ADN , Secuenciación del Exoma
18.
Psychol Med ; 50(8): 1267-1277, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31155012

RESUMEN

BACKGROUND: Schizophrenia is associated with robust hippocampal volume deficits but subregion volume deficits, their associations with cognition, and contributing genes remain to be determined. METHODS: Hippocampal formation (HF) subregion volumes were obtained using FreeSurfer 6.0 from individuals with schizophrenia (n = 176, mean age ± s.d. = 39.0 ± 11.5, 132 males) and healthy volunteers (n = 173, mean age ± s.d. = 37.6 ± 11.3, 123 males) with similar mean age, gender, handedness, and race distributions. Relationships between the HF subregion volume with the largest between group difference, neuropsychological performance, and single-nucleotide polymorphisms were assessed. RESULTS: This study found a significant group by region interaction on hippocampal subregion volumes. Compared to healthy volunteers, individuals with schizophrenia had significantly smaller dentate gyrus (DG) (Cohen's d = -0.57), Cornu Ammonis (CA) 4, molecular layer of the hippocampus, hippocampal tail, and CA 1 volumes, when statistically controlling for intracranial volume; DG (d = -0.43) and CA 4 volumes remained significantly smaller when statistically controlling for mean hippocampal volume. DG volume showed the largest between group difference and significant positive associations with visual memory and speed of processing in the overall sample. Genome-wide association analysis with DG volume as the quantitative phenotype identified rs56055643 (ß = 10.8, p < 5 × 10-8, 95% CI 7.0-14.5) on chromosome 3 in high linkage disequilibrium with MOBP. Gene-based analyses identified associations between SLC25A38 and RPSA and DG volume. CONCLUSIONS: This study suggests that DG dysfunction is fundamentally involved in schizophrenia pathophysiology, that it may contribute to cognitive abnormalities in schizophrenia, and that underlying biological mechanisms may involve contributions from MOBP, SLC25A38, and RPSA.


Asunto(s)
Giro Dentado/patología , Esquizofrenia/genética , Esquizofrenia/patología , Adulto , Estudios de Casos y Controles , Cognición , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Proteínas de Transporte de Membrana Mitocondrial/genética , Proteínas de la Mielina/genética , Tamaño de los Órganos , Receptores de Laminina/genética , Análisis de Regresión , Proteínas Ribosómicas/genética
19.
Int J Mol Sci ; 22(1)2020 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-33396450

RESUMEN

The demise of retinal ganglion cells (RGCs) is characteristic of diseases of the retina such as glaucoma and diabetic or ischemic retinopathies. Pigment epithelium-derived factor (PEDF) is a multifunctional secreted protein that mediates neuroprotection and inhibition of angiogenesis in the retina. We have studied expression and regulation of two of several receptors for PEDF, patatin-like phospholipase 2 gene product/PEDF-R and laminin receptor (LR), in serum-starved RGC under normoxia and hypoxia and investigated their involvement in the survival of retinal neuronal cells. We show that PEDF-R and LR are co-expressed in RGC and R28 retinal precursor cells. Expression of both receptors was enhanced in the presence of complex secretions from retinal glial (Müller) cells and upregulated by VEGF and under hypoxic conditions. PEDF-R- and LR-knocked-down cells demonstrated a markedly attenuated expression of anti-apoptotic Bcl-2 family members (Bcl-2, Bcl-xL) and neuroprotective mediators (PEDF, VEGF, BDNF) suggesting that both PEDF-R and LR mediate pro-survival effects of PEDF on RGC. While this study does not provide evidence for a differential survival-promoting influence of either PEDF-R or LR, it nevertheless highlights the importance of both PEDF receptors for the viability of retinal neurons.


Asunto(s)
Proteínas del Ojo/metabolismo , Factores de Crecimiento Nervioso/metabolismo , Neuroprotección , Receptores de Laminina/metabolismo , Receptores de Neuropéptido/metabolismo , Células Ganglionares de la Retina/citología , Neuronas Retinianas/citología , Serpinas/metabolismo , Animales , Células Cultivadas , Proteínas del Ojo/genética , Ratones , Factores de Crecimiento Nervioso/genética , Receptores de Laminina/genética , Receptores de Neuropéptido/genética , Células Ganglionares de la Retina/metabolismo , Neuronas Retinianas/metabolismo , Serpinas/genética
20.
Biomolecules ; 11(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396696

RESUMEN

Oral tongue squamous cell carcinoma is one of the most prevalent head and neck cancers. During tumor progression, elastin fragments are released in the tumor microenvironment. Among them, we previously identified a nonapeptide, AG-9, that stimulates melanoma progression in vivo in a mouse melanoma model. In the present paper, we studied AG-9 effect on tongue squamous cell carcinoma invasive properties. We demonstrated that AG-9 stimulates cell invasion in vitro in a modified Boyen chamber model. It increases MMP-2 secretion, analyzed by zymography and MT1-MMP expression, studied by Western blot. The stimulatory effect was mediated through Ribosomal Protein SA (RPSA) receptor binding as demonstrated by SiRNA experiments. The green tea-derived polyphenol, (-)-epigallocatechin-3-gallate (EGCG), was previously shown to bind RPSA. Molecular docking experiments were performed to compare the preferred areas of interaction of AG-9 and EGCG with RPSA and suggested overlapping areas. This was confirmed by competition assays. EGCG abolished AG-9-induced invasion, MMP-2 secretion, and MT1-MMP expression.


Asunto(s)
Metaloproteinasa 14 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/genética , Receptores de Laminina/genética , Proteínas Ribosómicas/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Elastina/genética , Elastina/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Ratones , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología , Péptidos/genética , Péptidos/farmacología , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA