Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.211
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Environ Sci (China) ; 147: 498-511, 2025 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-39003065

RESUMEN

The land application of livestock manure has been widely acknowledged as a beneficial approach for nutrient recycling and environmental protection. However, the impact of residual antibiotics, a common contaminant of manure, on the degradation of organic compounds and nutrient release in Eutric Regosol is not well understood. Here, we studied, how oxytetracycline (OTC) and ciprofloxacin (CIP) affect the decomposition, microbial community structure, extracellular enzyme activities and nutrient release from cattle and pig manure using litterbag incubation experiments. Results showed that OTC and CIP greatly inhibited livestock manure decomposition, causing a decreased rate of carbon (28%-87%), nitrogen (15%-44%) and phosphorus (26%-43%) release. The relative abundance of gram-negative (G-) bacteria was reduced by 4.0%-13% while fungi increased by 7.0%-71% during a 28-day incubation period. Co-occurrence network analysis showed that antibiotic exposure disrupted microbial interactions, particularly among G- bacteria, G+ bacteria, and actinomycetes. These changes in microbial community structure and function resulted in decreased activity of urease, ß-1,4-N-acetyl-glucosaminidase, alkaline protease, chitinase, and catalase, causing reduced decomposition and nutrient release in cattle and pig manures. These findings advance our understanding of decomposition and nutrient recycling from manure-contaminated antibiotics, which will help facilitate sustainable agricultural production and soil carbon sequestration.


Asunto(s)
Antibacterianos , Ganado , Estiércol , Microbiología del Suelo , Animales , Suelo/química , Secuestro de Carbono , Carbono/metabolismo , Fósforo , Reciclaje , Contaminantes del Suelo/metabolismo , Bovinos , Porcinos , Nitrógeno/análisis , Oxitetraciclina
2.
Orthod Fr ; 95(2): 169-175, 2024 08 06.
Artículo en Francés | MEDLINE | ID: mdl-39106191

RESUMEN

Introduction: The aligner is a thermoformed plastic device composed of various chemical components: polyurethane, polyethylene terephthalate glycol, polypropylene… All these plastics must be sufficiently resistant to abrasion and translucent for aesthetic purposes, but their solubility to salivary enzymes, insertion-disinsertion fatigue and recyclability vary according to material. From an orthodontic point of view, they must facilitate tooth movement. However, their behavior differs from that of orthodontic archwires: their Young's modulus, resilience and unloading curve are distinct, resulting in mechanical properties that fall significantly below the orthodontic requirements of multi-bracket systems. Objective: The aim of this article was to review the chemical composition, recycling and mechanical properties of aligners, and to put them into perspective with therapeutic indications. Materials and Methods: Literature data were approximated to orthodontic needs. Results: Neither plastic nor direct printing can match the mechanical properties of our archwires or the procedures of a reliable vestibular multi-attachment appliance. Discussion: Aligners remain an interesting tool in targeted indications.


Introduction: L'aligneur est un dispositif en plastique thermoformé dont la composition chimique est diverse : polyuréthane, polyéthylène téréphtalate glycol, polypropylène… Tous ces plastiques doivent être suffisamment résistants à l'abrasion et translucides pour être esthétiques mais ils présentent une solubilité aux enzymes salivaires, une fatigue liée à l'insertion-désinsertion et une recyclabilité qui sont variables selon le matériau. D'un point de vue orthodontique, ils doivent permettre de déplacer les dents. Mais leur comportement ne ressemble pas à celui des arcs orthodontiques : leur module de Young, leur résilience et leur courbe de décharge en sont éloignés et confèrent des propriétés mécaniques très inférieures aux exigences orthodontiques des appareils multi-attaches. Objectif: L'objectif de l'article était de faire le point sur la composition chimique, le recyclage, les propriétés mécaniques des aligneurs et de les mettre en perspective avec les indications thérapeutiques. Matériel et méthode: Les données de la littérature sont approchées des besoins orthodontiques. Résultats: Ni le plastique, ni l'impression directe ne sont en capacité de rivaliser avec les propriétés mécaniques de nos arcs ou avec les procédures d'un appareil multi-attache vestibulaire fiables. Discussion: Les aligneurs restent un outil intéressant dans des indications ciblées.


Asunto(s)
Técnicas de Movimiento Dental , Humanos , Técnicas de Movimiento Dental/métodos , Técnicas de Movimiento Dental/instrumentación , Reciclaje/métodos , Poliuretanos/química , Alambres para Ortodoncia , Diseño de Aparato Ortodóncico , Módulo de Elasticidad , Polietilenglicoles/química , Ensayo de Materiales/métodos , Tereftalatos Polietilenos
3.
BMC Public Health ; 24(1): 2108, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39103827

RESUMEN

BACKGROUND: Lead, a potent neurotoxin, causes irreversible damage to the nervous system, and low- and middle-income countries face huge health and economic productivity losses due to childhood lead exposure. In Bangladesh, informal Used Lead Acid Battery (ULAB) recycling sites are an important source of lead pollution. Little is known about lead awareness among communities exposed to ULAB recycling. Therefore, this study aims to assess knowledge, attitudes, and practices related to lead pollution among caregivers of young children and adolescents living adjacent to informal ULAB sites. METHODS: A cross-sectional study was conducted among 732 mothers of young children and adolescents in 4 districts of Bangladesh (survey and observation). Simple and multiple linear regression was conducted to describe patterns and predictors of lead-related knowledge and practices. RESULTS: 60% of respondents had heard the name 'lead' ("shisha"). The mean knowledge score was low (19 out of 44). Residents of high-risk districts, male respondents, and those with more than 5 years of schooling were significantly more likely to have higher knowledge scores than others. In terms of attitude, 52% of respondents perceived lead to be risky for human health but 43% thought lead pollution was controllable. Observation of households for lead exposure revealed that 63% of children and adolescents play or pass by ULAB sites, 29% ate non-food items, 41% of households had visible paint chips on the walls, 59% households used polished turmeric and 15% used lead-soldered cans to store foods. Among protective practices, 70% reported cleaning floors, 84% consumed iron-rich foods, and 48% consumed calcium-rich foods. CONCLUSIONS: The population had a high potential for lead exposure. Their knowledge about lead was limited, and risk perception was moderate. To reduce lead exposure and increase knowledge and awareness among the at-risk population, it is crucial to take measures such as mass awareness campaigns through media and schools. It is important to strengthen the implementation of existing policies, such as policies on leaded gasoline, paints, and lead-acid batteries, that can address the sources of lead exposure for the community.


Asunto(s)
Conocimientos, Actitudes y Práctica en Salud , Plomo , Reciclaje , Humanos , Bangladesh , Estudios Transversales , Femenino , Adolescente , Masculino , Plomo/análisis , Adulto , Cuidadores/estadística & datos numéricos , Cuidadores/psicología , Niño , Exposición a Riesgos Ambientales/efectos adversos , Intoxicación por Plomo/epidemiología , Adulto Joven , Persona de Mediana Edad
4.
J Environ Manage ; 367: 122015, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39102783

RESUMEN

In response to global challenges in resource supply, many industries are adopting the principles of the Circular Economy (CE) to improve their resource acquisition strategies. This paper introduces an innovative approach to address the environmental impact of waste Glass Fiber Reinforced-Polymer (GFRP) pipes and panels by repurposing them to manufacture structural components for new bicycle and pedestrian bridges. The study covers the entire process, including conceptualization, analysis, design, and testing of a deck system, with a focus on the manufacturing process for a 7-m-long prototype bridge. The study shows promising results in the concept of a sandwich structure utilizing discarded GFRP pipes and panels, which has the flexibility to account for variabilities in dimensions of incoming products while still meeting mechanical requirements. The LCA analysis shows that the transportation of materials is the governing contributing factor. It was concluded that further development of this concept should be accompanied by a business model that considers the importance of the contributions from the whole value chain.


Asunto(s)
Polímeros , Polímeros/química , Reciclaje , Peatones , Transportes , Vidrio/química
5.
Food Res Int ; 192: 114741, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39147548

RESUMEN

Significant volumes of agricultural and industrial waste are produced annually. With the global focus shifting towards sustainable and environmentally friendly practices, there is growing emphasis on recycling and utilizing materials derived from such waste, such as cellulose and lignin. In response to this imperative situation, nanocellulose materials have surfaced attracting heightened attention and research interest owing to their superior properties in terms of strength, stiffness, biodegradability, and water resistance. The current manuscript provided a comprehensive review encompassing the resources of nanocellulose, detailed pretreatment and extraction methods, and present applications of nanocellulose. More importantly, it highlighted the challenges related to its processing and utilization, along with potential solutions. After evaluating the benefits and drawbacks of different methods for producing nanocellulose, ultrasound combined with acid hydrolysis emerges as the most promising approach for large-scale production. While nanocellulose has established applications in water treatment, its potential within the food industry appears even more encouraging. Despite the numerous potential applications across various sectors, challenges persist regarding its modification, characterization, industrial-scale manufacturing, and regulatory policies. Overcoming these obstacles requires the development of new technologies and assessment tools aligned with policy. In essence, nanocellulose presents itself as an eco-friendly material with extensive application possibilities, prompting the need for additional research into its extraction, application suitability, and performance enhancement. This review focused on the wide application scenarios of nanocellulose, the challenges of nanocellulose application, and the possible solutions.


Asunto(s)
Agricultura , Celulosa , Residuos Industriales , Celulosa/química , Reciclaje , Nanoestructuras/química , Hidrólisis
6.
Water Environ Res ; 96(8): e11098, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39138812

RESUMEN

Complete retention lagoons with wastewater reuse for agricultural purposes may offer sustainability advantages over alternative systems for small communities in semiarid regions. This study quantifies the environmental life cycle impact of adopting agriculture water reuse systems using case study data to estimate operating and building infrastructure impacts and spatial-temporal modeling to quantify resource trade-offs. Water reuse system benefits are highly dependent on supply-storage-demand dynamics. The relative size of irrigated agricultural land to the lagoon size was the most significant factor influencing site water application rates. The benefits are sensitive to changes in air emissions occurring from the agricultural land and further emphasize the importance of proper fertilizer management when adopting water reuse systems. Wastewater reuse from complete retention lagoons reduce life cycle GHG emissions, primarily through excavation reductions, offset fertilizer use, and especially from increased crop yields from wastewater reuse at previously rainfed sites. PRACTITIONER POINTS: Seven case studies and spatial-temporal modeling quantified resource trade-offs for water reuse to reduce lagoon size. Excavation reductions and offset fertilizer compensated for emissions from electricity and construction. Crop yield increases were the largest environmental benefit of adopting water reuse. System benefits are highly dependent on supply-storage-demand dynamics. Designers should use climatic data to help estimate potential variability in available water for reuse and associated energy and crop production.


Asunto(s)
Modelos Teóricos , Aguas Residuales , Eliminación de Residuos Líquidos/métodos , Agricultura/métodos , Reciclaje , Conservación de los Recursos Naturales/métodos
7.
J Hazard Mater ; 477: 135400, 2024 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-39096634

RESUMEN

Resource recovery of valuable metals from spent lithium batteries is an inevitable trend for sustainable development. In this study, external regulation was used to enhance the tolerance and stability of strains in the leaching of spent lithium batteries to radically improve the bioleaching efficiency. The leaching of Li, Ni, Co and Mn increased to 100 %, 85.06 %, 74.25 % and 69.44 % respectively after targeted cultivation with HA as compared to the undomesticated strain. In the process of microbial leaching of spent lithium batteries, the metabolites in the Ⅰ, Ⅳ, and Ⅴ regions of the metabolism of the undomesticated bacterial colony had a positive correlation to the dissolution of spent lithium batteries. The metabolites of Ⅰ, Ⅱ, and Ⅴ regions were directly affected by the HA domesticated flora on the dissolution of spent lithium batteries. The excess metabolism of protein substances can significantly promote the reduction of Ni, Co, Mn leaching, and at the same time in the role of a large number of humic substances complexed the toxic metal ions in the system, to ensure the activity of the bacterial colony. It can be seen that the bacteria were domesticated by humic acid, which promoted the bacteria's own metabolism, and the super-metabolised EPS promoted the solubilisation of spent lithium batteries.


Asunto(s)
Suministros de Energía Eléctrica , Sustancias Húmicas , Litio , Litio/química , Biodegradación Ambiental , Bacterias/metabolismo , Reciclaje , Metales Pesados/química
8.
J Environ Manage ; 367: 122012, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39094417

RESUMEN

Recycling spent batteries is increasingly important for the sustainable use of Li-ion batteries (LIBs) and for countering the supply uncertainty of critical raw minerals (Li, Co, and Ni). Bioleaching, which uses microorganisms to extract valuable metals, is both economical and environmentally safe compared to other recycling methods, but its practical application is impaired by slow kinetics. Accelerating the process is a key for bioleaching spent LIBs on an industrial scale. Acidithiobacillus ferrooxidans (A. ferrooxidans), which thrives in extremely low pH conditions, has long been explored for bioleaching of spent LIBs. Metabolism of A. ferrooxidans involves the oxidation of magnetic Fe2+ and produces intracellular magnetic nanoparticles. The possibility of accelerating the leaching kinetics of A. ferrooxidans by the application of an external magnetic field is explored in this work. A weak static magnetic field is applied during the bioleaching of spent LIBs to recover Li, Ni, and Co using A. ferrooxidans. It is determined that 3 mT is the optimal field strength which allows the leaching efficiency of Li to reach 100% after only 2 days of leaching at a pulp density of 3 w/v % while without the external magnetic field, the leaching efficiency is limited to 57% even after 4 days. The leaching efficiency of Ni and Co also increases by nearly three-fold to >80% after 4 days of leaching. The proposed magnetic field-assisted bioleaching of spent LIBs using A. ferrooxidans substantially improves the leaching kinetics and thus the cost-effectiveness of the bioleaching process with minimal environmental impact, hence enabling environment-friendly recycling of raw materials that are increasingly becoming scarce. The positive effect of an external magnetic field on the metabolism of A. ferrooxidans demonstrated in this work provide a new set of tools to engineer the bioleaching process and the possibility for genetic modification of acidophile bacteria, especially targeted for magnetic enhancement.


Asunto(s)
Acidithiobacillus , Suministros de Energía Eléctrica , Litio , Reciclaje , Acidithiobacillus/metabolismo , Campos Magnéticos
9.
J Environ Manage ; 367: 121738, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39096721

RESUMEN

This article introduces a green centralized supply chain in a two-stage stochastic programming model using deteriorating products. The model reduces the cost of purchasing, transporting, storing, product recovery and shortages. This cuts down on greenhouse emission related to transportation, product recovery, and recycling programs. On the basis of this, we explore the utilization of the circular economy to the damages that could occur from used products. Furthermore, revenue sharing and quantity discount contracts are examined in the business models between the members of the supply chain and the external manufacturer. Demand is assumed to be uncertain, and scenarios are created to account this. The model specifies the optimal order quantities, transportation modes and contract terms that minimize costs and environmental impacts. Numerical examples analyze the trade-offs between economic and environmental objectives under different supply chain parameters. The results provide insights for circular supply chains that reconcile economic incentives with environmental responsibility for deteriorating product.


Asunto(s)
Reciclaje , Reciclaje/economía , Modelos Teóricos , Transportes/economía , Ambiente
10.
Water Sci Technol ; 90(3): 807-823, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39141036

RESUMEN

The concrete industry is a significant consumer of drinking water and natural aggregates, such as sand and gravel. However, the scarcity of water and aggregate resources and the challenges associated with the disposal of construction and demolition waste prompted the exploration of alternative materials. This study investigates the feasibility of incorporating secondary treated wastewater from UASB reactors followed by trickling filters and mixed recycled aggregates as potential alternatives. To assess the viability of these alternatives, the study considered the replacement of 100% potable water with treated wastewater, as well as varying proportions of recycled gravel (20, 40, 60, 80, and 100%) and recycled sand (10, 20, 30, 40, and 100%). Physical and mechanical properties were negatively affected, but it was possible to reach compressive results over 40 MPa and splitting tensile strength over 4 MPa for almost all mixes. Regarding physical properties, the use of alternative materials caused poorer outcomes for density, water absorption, and air-void ratio. The limited magnitude of these detrimental effects indicates the potential of manufacturing concrete with the addition of combined treated wastewater and recycled aggregate as a viable strategy while enhancing reuse practices.


Asunto(s)
Materiales de Construcción , Reciclaje , Aguas Residuales , Reciclaje/métodos , Aguas Residuales/química , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos
11.
J Environ Manage ; 365: 121685, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38963964

RESUMEN

Ternary alkali-activated binder was prepared by blast furnace slag (GGBS), recycled powder (RP) and waste glass powder (WGP) using simplex centroid design method. By measuring the fluidity, setting time, drying shrinkage and mechanical property of specimen, the complementary effect of GGBS, RP and WGP was discussed. The reaction mechanism and microstructure were explored by X-ray diffraction and scanning electron microscopy. The results reveal that the addition of RP could significantly reduce the fluidity and setting time of paste, while WGP can obviously improve the rheological property and play a retarding role. The workability of paste can be effectively regulated by mixing RP and WGP together. Whether added alone or in combination, RP and WGP can effectively improve the shrinkage performance. In the ternary system, GGBS can be rapidly activated and form a skeleton structure. The fine RP particles can play a good role in filling the structure, and the pozzolanic reaction of WGP gradually occurs, which makes the microstructure more compact. The incorporation of GGBS, RP and WGP can promote the growth of hydration products, improve the density of microstructure, and form a certain complementary effect.


Asunto(s)
Álcalis , Vidrio , Polvos , Reciclaje , Vidrio/química , Álcalis/química , Difracción de Rayos X , Microscopía Electrónica de Rastreo
12.
Environ Sci Pollut Res Int ; 31(31): 44348-44360, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38951394

RESUMEN

Aluminum electrolyte is a necessity for aluminum reduction cells; however, its stock is rising every year due to several factors, resulting in the accumulation of solid waste. Currently, it has become a favorable material for the resources of lithium, potassium, and fluoride. In this study, the calcification roasting-two-stage leaching process was introduced to extract lithium and potassium separately from aluminum electrolyte wastes, and the fluoride in the form of CaF2 was recycled. The separation behaviors of lithium and potassium under different conditions were investigated systematically. XRD and SEM-EDS were used to elucidate the phase evolution of the whole process. During calcification roasting-water leaching, the extraction efficiency of potassium was 98.7% under the most suitable roasting parameters, at which the lithium extraction efficiency was 6.6%. The mechanism analysis indicates that CaO combines with fluoride to form CaF2, while Li-containing and K-containing fluorides were transformed into water-insoluble LiAlO2 phase and water-soluble KAlO2 phase, respectively, thereby achieving the separation of two elements by water leaching. In the second acid-leaching stage, the extraction efficiency of lithium was 98.8% from water-leached residue under the most suitable leaching conditions, and CaF2 was obtained with a purity of 98.1%. The present process can provide an environmentally friendly and promising method to recycle aluminum electrolyte wastes and achieve resource utilization.


Asunto(s)
Aluminio , Fluoruros , Litio , Potasio , Fluoruros/química , Litio/química , Aluminio/química , Potasio/química , Electrólitos/química , Reciclaje
13.
Environ Sci Technol ; 58(28): 12297-12303, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38968232

RESUMEN

The ongoing transition toward electric vehicles (EVs) is changing materials used for vehicle production, of which the consequences for the environmental performance of EVs are not well understood and managed. We demonstrate that electrification coupled with lightweighting of automobiles will lead to significant changes in the industry's demand not only for battery materials but also for other materials used throughout the entire vehicle. Given the automotive industry's substantial consumption of raw materials, changes in its material demands are expected to trigger volatilities in material prices, consequently impacting the material composition and attractiveness of EVs. In addition, the materials recovered during end-of-life recycling of EVs as the vehicle fleet turns over will impact recycled material supplies both positively and negatively, impacting material availabilities and the economic incentive to engage in recycling. These supply chain impacts will influence material usage and the associated environmental performance of not only the automotive sector but also other metal-heavy industries such as construction. In light of these challenges, we propose the need for new research to understand the dynamic materials impacts of the EV transition that encompasses its implications on EV adoption and fleet life cycle environmental performance. Effectively coordinating the coevolution of material supply chains is crucial for making the sustainable transition to EVs a reality.


Asunto(s)
Automóviles , Reciclaje , Electricidad
14.
Molecules ; 29(13)2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38998958

RESUMEN

Films for coffee-pod packaging usually contain aluminium as an impermeable foil that is not recyclable and has to be discharged as waste. In this study, a recyclable polypropylene multilayer film is proposed as an alternative. The performance on the chemical composition of coffee was evaluated and compared to that of film containing aluminium (standard). The oxygen in the headspace, moisture, lipidic oxidation, and volatile organic compounds were studied in coffee pods during storage for 12 months at 25 and 40 °C. In addition, the acidity and acceptability of extracted coffee were evaluated. In the polypropylene-packaged pods, the percentage of oxygen during storage at 25 °C was lower than that in the standard. Moisture was not affected by the type of packaging materials. No differences were found between the peroxide values, except in pods stored for 3, 10, and 11 months at 25 °C, where they were even lower than the standard. Furans and pyrazines were the main volatile organic compounds detected. No differences were found in the pH and titratable acidity of the coffee brew either. All samples were well accepted by consumers without any perceived difference related to the packaging film. The polypropylene multilayer film is a sustainable recyclable material with high performance, in particular, against oxygen permeation.


Asunto(s)
Café , Embalaje de Alimentos , Odorantes , Polipropilenos , Compuestos Orgánicos Volátiles , Polipropilenos/química , Café/química , Compuestos Orgánicos Volátiles/análisis , Compuestos Orgánicos Volátiles/química , Odorantes/análisis , Almacenamiento de Alimentos/métodos , Oxígeno/análisis , Oxígeno/química , Reciclaje
15.
Appl Microbiol Biotechnol ; 108(1): 404, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38953996

RESUMEN

Polyethylene terephthalate (PET) is a major component of plastic waste. Enzymatic PET hydrolysis is the most ecofriendly recycling technology. The biorecycling of PET waste requires the complete depolymerization of PET to terephthalate and ethylene glycol. The history of enzymatic PET depolymerization has revealed two critical issues for the industrial depolymerization of PET: industrially available PET hydrolases and pretreatment of PET waste to make it susceptible to full enzymatic hydrolysis. As none of the wild-type enzymes can satisfy the requirements for industrialization, various mutational improvements have been performed, through classical technology to state-of-the-art computational/machine-learning technology. Recent engineering studies on PET hydrolases have brought a new insight that flexibility of the substrate-binding groove may improve the efficiency of PET hydrolysis while maintaining sufficient thermostability, although the previous studies focused only on enzymatic thermostability above the glass transition temperature of PET. Industrial biorecycling of PET waste is scheduled to be implemented, using micronized amorphous PET. Next stage must be the development of PET hydrolases that can efficiently degrade crystalline parts of PET and expansion of target PET materials, not only bottles but also textiles, packages, and microplastics. This review discusses the current status of PET hydrolases, their potential applications, and their profespectal goals. KEY POINTS: • PET hydrolases must be thermophilic, but their operation must be below 70 °C • Classical and state-of-the-art engineering approaches are useful for PET hydrolases • Enzyme activity on crystalline PET is most expected for future PET biorecycling.


Asunto(s)
Hidrolasas , Tereftalatos Polietilenos , Tereftalatos Polietilenos/metabolismo , Tereftalatos Polietilenos/química , Hidrolasas/metabolismo , Hidrolasas/química , Hidrolasas/genética , Hidrólisis , Ingeniería de Proteínas/métodos , Biodegradación Ambiental , Reciclaje
16.
Environ Sci Pollut Res Int ; 31(33): 46073-46086, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38980488

RESUMEN

The rapid increase in aquaculture over the last several decades has led to concerns about the environmental impact of fish feeds relying on marine resources for fishmeal (FM). We aim to assess Nannochloropsis sp. QH25 co-product as a viable and sustainable replacement for FM in juvenile rainbow trout, Oncorhynchus mykiss, feeds. We formulated four experimental diets: a reference (FM based), 33N, 66N, and 100N diet (33%, 66%, and 100% co-product replacement). Rainbow trout were randomly assigned to one of 16 tanks and randomly assigned an experimental diet to consume throughout the experiment (64 days total), with four replicate tanks per diet. We compared the phosphorus (P) and nitrogen (N) digestibility, emissions, and growth between diets and, compared six environmental impacts (biotic resource use (BRU), global warming potential (GWP), water use, land use, marine eutrophication potential (MEP), and freshwater eutrophication potential (FEP)) of each diet. Our results indicate that replacing FM with co-product did not significantly alter growth. P digestibility of the experimental and reference diets was comparable. BRU conversion ratio was significantly lower in the experimental diets. However, there were significantly higher water and land use conversion ratios but insignificantly higher results in GWP, MEP, and FEP between the reference and 100N diet.


Asunto(s)
Alimentación Animal , Acuicultura , Microalgas , Oncorhynchus mykiss , Animales , Reciclaje , Nitrógeno
17.
J Environ Manage ; 366: 121758, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986372

RESUMEN

The agricultural processing industry produces a large amount of waste on a global scale whose disposal is simultaneously a nuisance and of special interest. The by-products are rich in bioactive phytoconstituents that might be beneficial to the production of bio-functional textiles. The present work uses agricultural wastes for the eco-friendly dyeing of woolen yarns. Response surface methodology based on 23- Central Composite Design was used to design experiments, evaluate the main dyeing parameters, develop efficient mathematical models to predict the dyeing process, and optimize the procedure. The quadratic regression models developed were found to be statistically significant using ANOVA, with R2 -value of 0.9734 and 0.9820 for color strength and lightness responses, respectively. Also, eye-soothing tone and hues with a good resistance to durability (4-5) and light (4) were achieved. The banana shell and gallnut bio-mordants improved UV protection by up to 25.33% and 59.79%, respectively. Generally speaking, the results showed that C. Oblonga leaf as well as gallnut and banana shells could be used as whole crop products in an ecologically sound textile dyeing process through a sustainable approach and that the proposed innovative application might serve as an attractive procedure for recycling and green waste management.


Asunto(s)
Agricultura , Reciclaje , Textiles , Colorantes/química
18.
J Environ Manage ; 366: 121710, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38986378

RESUMEN

We report an environmentally benign recycling approach for large-capacity nickel manganese cobalt (NMC) batteries through the electrochemical concentration of lithium on the anode and subsequent recovery with only water. Cycling of the NMC pouch cells indicated the potential for maximum lithium recovery at a 5C charging rate. The anodes extracted from discharged and disassembled cells were submerged in deionized water, resulting in lithium dissolution and graphite recovery from the copper foils. A maximum of 13 mg of lithium salts per 100 mg of the anode, copper current collector, and separator was obtained from NMC pouch cell cycled at a 4C charging rate. The lithium salts extracted from batteries cycled at low C-rates were richer in lithium carbonate, while the salts from batteries cycled at high C-rates were richer in lithium oxides and peroxides, as determined by X-Ray photoelectron spectroscopy. The present method can be successfully used to recover all the pouch cell components: lithium, graphite, copper, and aluminum current collectors, separator, and the cathode active material.


Asunto(s)
Suministros de Energía Eléctrica , Litio , Litio/química , Agua/química , Electrodos , Solventes/química , Cobalto/química , Reciclaje , Níquel/química , Manganeso/química , Grafito/química , Cobre/química
19.
J Environ Manage ; 366: 121708, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38996598

RESUMEN

The utilization of rare earth polishing powder waste (RPW) to prepare antibacterial ceramics can effectively avoid problems of pollution in the recycling process and waste of rare earth resources. Herein, a novel RPW-based antibacterial ceramics was developed, which possesses the core-shell structure with ceramics as the cores and the CeO2/BiOCl as the superficial coating. The antibacterial ceramics display notable antibacterial activity, and the inactivation rates of 3.3 log under visible light irradiation in 30 min and 2.4 log under darkness in 1 h were achieved, and the zone of inhibition values was found to be 16.6 mm for E.coil. The hardness of antibacterial ceramics was measured to be 897 (±38) HV, higher than commercial porcelain's hardness (600 HV). The antibacterial mechanism was verified by the Ce ion release, reactive species, and fluorescence-based live/dead cells. This study presents a novel antibacterial ceramic structure and green economic reuse method of rare earth waste.


Asunto(s)
Antibacterianos , Cerámica , Metales de Tierras Raras , Cerámica/química , Antibacterianos/farmacología , Antibacterianos/química , Metales de Tierras Raras/química , Reciclaje
20.
J Environ Manage ; 366: 121862, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39018847

RESUMEN

Efficient recycling of critical metals from spent lithium-ion batteries is vital for clean energy and sustainable industry growth. Conventional methods often fail to manage large waste volumes, leading to hazardous gas emissions and dangerous materials. This study investigates innovative methods for recovering critical metals from spent LIBs using synergistic leaching. The first step optimized thermal treatment conditions (570 °C for 2 h in air) to remove binder materials while maintaining cathode material crystallinity, confirmed by X-ray diffraction (XRD) analysis. Next, response surface methodology (RSM), I-optimal, was used to examine the synergistic effects of sulfuric acid (SA) and organic acids (Org, citric and acetic acids) and their concentrations (SA: 0.5-2 M and Org: 0.1-2 M) on metal leaching for an eco-friendlier process. Results showed that adding citric acid to SA was more effective, especially at lower concentrations, than using acetic acid. The medium was tested to evaluate the impact of reductant addition. Remarkably, it was discovered that the optimized leaching mixture (1.25 M SA and 0.55 M citric acid) efficiently extracted metals without the need for any reductant like H2O2, highlighting its potential for a simpler and more eco-friendly recycling process. Further optimization identified the ideal solid-to-liquid ratio (62.5 g/L) to minimize acid use. Finally, RSM (D-optimal) was used to investigate the effects of time and temperature on leaching, achieving remarkable recovery rates of 99% ± 0.7 for Li, 98% ± 0.0 for Co, 90% ± 6.6 for Ni, and 92% ± 0.4 for Mn under optimized conditions at 189 min and 95 °C. Chemical cost analysis revealed this method is about 25% more cost-effective than conventional methods.


Asunto(s)
Litio , Metales , Reciclaje , Litio/química , Reciclaje/métodos , Metales/química , Suministros de Energía Eléctrica , Ácidos Sulfúricos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA