RESUMEN
The Rb-E2F pathway drives cell cycle progression and cell proliferation, and the molecular strategies safeguarding its activity are not fully understood. Here we report that E2F1 directly transactivates miR-449a/b. miR-449a/b targets and inhibits oncogenic CDK6 and CDC25A, resulting in pRb dephosphorylation and cell cycle arrest at G1 phase, revealing a negative feedback regulation of the pRb-E2F1 pathway. Moreover, miR-449a/b expression in cancer cells is epigenetically repressed through histone H3 Lys27 trimethylation, and epigenetic drug treatment targeting histone methylation results in strong induction of miR-449a/b. Our study reveals a tumor suppressor function of miR-449a/b through regulating Rb/E2F1 activity, and suggests that escape from this regulation through an aberrant epigenetic event contributes to E2F1 deregulation and unrestricted proliferation in human cancer.
Asunto(s)
Quinasa 6 Dependiente de la Ciclina/metabolismo , Factor de Transcripción E2F1/metabolismo , Retroalimentación Fisiológica/genética , Regulación de la Expresión Génica , MicroARNs/metabolismo , Fosfatasas cdc25/metabolismo , Línea Celular , Línea Celular Tumoral , Quinasa 6 Dependiente de la Ciclina/antagonistas & inhibidores , Epigénesis Genética , Fase G1/fisiología , Histonas/metabolismo , Humanos , Neoplasias/fisiopatología , Fosfatasas cdc25/antagonistas & inhibidoresRESUMEN
A positive-feedback loop is a simple motif that is ubiquitous to the modules and networks that comprise cellular signaling systems. Signaling behaviors that are synonymous with positive feedback include amplification and rapid switching, maintenance, and the coherence of outputs. Recent advances have been made towards understanding how positive-feedback loops function, as well as their mechanistic basis in controlling eukaryotic cell cycle progression. Some of these advances will be reviewed here, including: how cyclin controls passage through Start and maintains coherence of G1/S regulon expression in yeast; how Polo-like kinase 1 activation is driven by Bora and Aurora A, and its expression is stimulated by Forkhead Box M1 in mammalian cells; and how some of the various dynamic behaviors of spindle assembly and anaphase onset can be produced.
Asunto(s)
Ciclo Celular , Retroalimentación Fisiológica , Animales , Ciclo Celular/genética , Retroalimentación Fisiológica/genética , Regulación de la Expresión Génica , Humanos , Mitosis , Regulón/genéticaRESUMEN
Ptf1a, along with an E protein and Rbpj, forms the transcription factor complex PTF1-J that is essential for proper specification of inhibitory neurons in the spinal cord, retina, and cerebellum. Here we show that two highly conserved noncoding genomic regions, a distal 2.3 kb sequence located 13.4 kb 5' and a 12.4 kb sequence located immediately 3' of the Ptf1a coding region, have distinct activity in controlling Ptf1a expression in all of these domains. The 5' 2.3 kb sequence functions as an autoregulatory element and directs reporter gene expression to all Ptf1a domains in the developing nervous system. The autoregulatory activity of this element was demonstrated by binding of the PTF1-J complex in vitro, Ptf1a localization to this genomic region in vivo, and the in vivo requirement of Ptf1a for the activity of the regulatory element in transgenic mice. In contrast, the 12.4 kb 3' regulatory region does not contain any conserved PTF1 sites, and its expression in transgenic mice is independent of Ptf1a. Thus, regulatory information for initiation of Ptf1a expression in the developing nervous system is located within the 12.4 kb sequence 3' of the Ptf1a gene. Together, these results identify multiple transcriptional mechanisms that control Ptf1a levels, one modulating levels by autoregulation through the PTF1-J complex, and the other a Ptf1a-independent mechanism for initial activation.
Asunto(s)
Sistema Nervioso Central/embriología , Sistema Nervioso Central/fisiología , Homeostasis/genética , Neurogénesis/genética , Factores de Transcripción/fisiología , Transcripción Genética/fisiología , Animales , Embrión de Pollo , Retroalimentación Fisiológica/genética , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Transcripción/biosíntesis , Factores de Transcripción/metabolismoRESUMEN
Circadian rhythm is fundamentally important in physiological processes of mammals. To reveal its underlying mechanism, we probed functional interactions among genes, motivated by the basic molecular observation on gene expression data in circadian rhythm that a large number of genes oscillate in a coordinated manner. In this study, a reverse-engineering strategy was applied to infer and analyze the structure and function of a circadian rhythm-related gene regulatory network. Specifically, our method integrated four phase-shift time-course gene expression datasets in rat suprachiasmatic nucleus, protein-protein interactions, phosphorylations of a set of key circadian genes, and prior information of cis-regulatory elements, to construct the gene regulatory network related to circadian rhythm of the rat. By follow-up analysis, we identified four new regulatory hubs that may play crucial roles in the regulation of circadian rhythm. Furthermore, we found that feedback loop motifs were significantly enriched in the predicted network, which may contribute to the genome-wide oscillations of the circadian clock. Compared to the small-scale gene regulatory network conducted by experimental method, our study provides a system-wide overview on the gene regulations, which not only reveals the global network structure but also gives valuable insights into the essential mechanism of circadian rhythm.
Asunto(s)
Relojes Biológicos/genética , Ritmo Circadiano/genética , Retroalimentación Fisiológica/genética , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Animales , Ritmo Circadiano/fisiología , Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , Ratas , Núcleo Supraquiasmático/metabolismoRESUMEN
Upon recognition of viral components by pattern recognition receptors, including TLRs and retinoic acid-inducible gene I (RIG-I)- like helicases, cells are activated to produce type I IFN and proinflammatory cytokines. These pathways are tightly regulated by host to prevent inappropriate cellular response, but viruses can down-regulate these pathways for their survival. Recently, identification of negative regulators for cytoplasmic RNA-mediated antiviral signaling, especially the RIG-I pathway, attract much attention. However, there is no report about negative regulation of RIG-I antiviral pathway by microRNAs (miRNA) to date. We found that vesicular stomatitis virus (VSV) infection up-regulated miR-146a expression in mouse macrophages in TLR-myeloid differentiation factor 88-independent but RIG-I-NF-kappaB-dependent manner. In turn, miR-146a negatively regulated VSV-triggered type I IFN production, thus promoting VSV replication in macrophages. In addition to two known miR-146a targets, TRAF6 and IRAK1, we proved that IRAK2 was another target of miR-146a, which also participated in VSV-induced type I IFN production. Furthermore, IRAK1 and IRAK2 participated in VSV-induced type I IFN production by associating with Fas-associated death domain protein, an important adaptor in RIG-I signaling, in a VSV infection-inducible manner. Therefore, we demonstrate that miR-146a, up-regulated during viral infection, is a negative regulator of the RIG-I-dependent antiviral pathway by targeting TRAF6, IRAK1, and IRAK2.
Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Retroalimentación Fisiológica/genética , Interferón Tipo I/antagonistas & inhibidores , Macrófagos/metabolismo , MicroARNs/fisiología , Animales , Proteína 58 DEAD Box , Retroalimentación Fisiológica/inmunología , Inmunidad , Interferón Tipo I/biosíntesis , Quinasas Asociadas a Receptores de Interleucina-1/antagonistas & inhibidores , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Ratones , MicroARNs/genética , Factor 6 Asociado a Receptor de TNF/antagonistas & inhibidores , Regulación hacia Arriba/efectos de los fármacos , Estomatitis Vesicular/genética , Estomatitis Vesicular/inmunología , Vesiculovirus/efectos de los fármacos , Virosis/genética , Virosis/inmunología , Replicación Viral/efectos de los fármacosRESUMEN
A major flavor of synthetic biology is the creation of artificial gene circuits to perform user-defined tasks. One aspect of this area is to realize ever-increasingly more complicated circuit behavior. Such efforts have led to the identification and evaluation of design strategies that enable robust control of dynamics in single cells and in cell populations. On the other hand, there is increasing emphasis on using artificial systems programmed by simple circuits to explore fundamental biological questions of broad significance.
Asunto(s)
Fenómenos Biológicos/genética , Redes Reguladoras de Genes , Genes Sintéticos , Relojes Biológicos/genética , Comunicación Celular/genética , Retroalimentación Fisiológica/genética , Transducción de Señal/genéticaRESUMEN
MOTIVATION: Spatio-temporal regulation of gene expression is an indispensable characteristic in the development processes of all animals. 'Master switches', a central set of regulatory genes whose states (on/off or activated/deactivated) determine specific developmental fate or cell-fate specification, play a pivotal role for whole developmental processes. In this study on genome-wide integrative network analysis the underlying design principles of developmental gene regulatory networks are examined. RESULTS: We have found an intriguing design principle of developmental networks: hub nodes, genes with high connectivity, equipped with positive feedback loops are prone to function as master switches. This raises the important question of why the positive feedback loops are frequently found in these contexts. The master switches with positive feedback make the developmental signals more decisive and robust such that the overall developmental processes become more stable. This finding provides a new evolutionary insight: developmental networks might have been gradually evolved such that the master switches generate digital-like bistable signals by adopting neighboring positive feedback loops. We therefore propose that the combined presence of positive feedback loops and hub genes in regulatory networks can be used to predict plausible master switches. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)
Retroalimentación Fisiológica/genética , Regulación del Desarrollo de la Expresión Génica , Redes Reguladoras de Genes , Simulación por Computador , Modelos GenéticosRESUMEN
BACKGROUND: Feedback regulation plays crucial roles in the robust control and maintenance of many cellular systems. Negative feedbacks are found to underline both stable and unstable, often oscillatory, behaviours. We explore the dynamical characteristics of systems with single as well as coupled negative feedback loops using a combined approach of analytical and numerical techniques. Particularly, we emphasise how the loop's characterising factors (strength and cooperativity levels) affect system dynamics and how individual loops interact in the coupled-loop systems. RESULTS: We develop an analytical bifurcation analysis based on the stability and the Routh-Hurwitz theorem for a common negative feedback system and a variety of its variants. We demonstrate that different combinations of the feedback strengths of individual loops give rise to different dynamical behaviours. Moreover, incorporating more negative feedback loops always tend to enhance system stability. We show that two mechanisms, in addition to the lengthening of pathway, can lower the Hill coefficient to a biologically plausible level required for sustained oscillations. These include loops coupling and end-product utilisation. We find that the degradation rates solely affect the threshold Hill coefficient for sustained oscillation, while the synthesis rates have more significant roles in determining the threshold feedback strength. Unbalancing the degradation rates between the system species is found as a way to improve stability. CONCLUSION: The analytical methods and insights presented in this study demonstrate that reallocation of the feedback loop may or may not make the system more stable; the specific effect is determined by the degradation rates of the newly inhibited molecular species. As the loop moves closer to the end of the pathway, the minimum Hill coefficient for oscillation is reduced. Furthermore, under general (unequal) values of the degradation rates, system extension becomes more stable only when the added species degrades slower than it is being produced; otherwise the system is more prone to oscillation. The coupling of loops significantly increases the richness of dynamical bifurcation characteristics. The likelihood of having oscillatory behaviour is directly determined by the loops' strength: stronger loops always result in smaller oscillatory regions.
Asunto(s)
Retroalimentación Fisiológica , Redes Reguladoras de Genes , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Retroalimentación Fisiológica/genética , Operón , Triptófano/biosíntesisRESUMEN
Hormetic responses to xenobiotic exposure likely occur as a result of overcompensation by the homeostatic control systems operating in biological organisms. However, the mechanisms underlying overcompensation that leads to hormesis are still unclear. A well-known homeostatic circuit in the cell is the gene induction network comprising phase I, II and III metabolizing enzymes, which are responsible for xenobiotic detoxification, and in many cases, bioactivation. By formulating a differential equation-based computational model, we investigated in this study whether hormesis can arise from the operation of this gene/enzyme network. The model consists of two feedback and one feedforward controls. With the phase I negative feedback control, xenobiotic X activates nuclear receptors to induce cytochrome P450 enzyme, which bioactivates X into a reactive metabolite X'. With the phase II negative feedback control, X' activates transcription factor Nrf2 to induce phase II enzymes such as glutathione S-transferase and glutamate cysteine ligase, etc., which participate in a set of reactions that lead to the metabolism of X' into a less toxic conjugate X''. The feedforward control involves phase I to II cross-induction, in which the parent chemical X can also induce phase II enzymes directly through the nuclear receptor and indirectly through transcriptionally upregulating Nrf2. As a result of the active feedforward control, a steady-state hormetic relationship readily arises between the concentrations of the reactive metabolite X' and the extracellular parent chemical X to which the cell is exposed. The shape of dose-response evolves over time from initially monotonically increasing to J-shaped at the final steady state-a temporal sequence consistent with adaptation-mediated hormesis. The magnitude of the hormetic response is enhanced by increases in the feedforward gain, but attenuated by increases in the bioactivation or phase II feedback loop gains. Our study suggests a possibly common mechanism for the hormetic responses observed with many mutagens/carcinogens whose activities require bioactivation by phase I enzymes. Feedforward control, often operating in combination with negative feedback regulation in a homeostatic system, may be a general control theme responsible for steady-state hormesis.
Asunto(s)
Sistema Enzimático del Citocromo P-450/metabolismo , Retroalimentación Fisiológica , Homeostasis , Estrés Fisiológico , Xenobióticos/metabolismo , Química Física , Sistema Enzimático del Citocromo P-450/química , Relación Dosis-Respuesta a Droga , Retroalimentación Fisiológica/efectos de los fármacos , Retroalimentación Fisiológica/genética , Homeostasis/efectos de los fármacos , Homeostasis/genética , Preparaciones Farmacéuticas/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Estrés Fisiológico/efectos de los fármacos , Estrés Fisiológico/fisiología , Xenobióticos/química , Xenobióticos/farmacologíaRESUMEN
This paper addresses the robust filtering problem for a class of linear genetic regulatory networks (GRNs) with stochastic disturbances, parameter uncertainties and time delays. The parameter uncertainties are assumed to reside in a polytopic region, the stochastic disturbance is state-dependent described by a scalar Brownian motion, and the time-varying delays enter into both the translation process and the feedback regulation process. We aim to estimate the true concentrations of mRNA and protein by designing a linear filter such that, for all admissible time delays, stochastic disturbances as well as polytopic uncertainties, the augmented state estimation dynamics is exponentially mean square stable with an expected decay rate. A delay-dependent linear matrix inequality (LMI) approach is first developed to derive sufficient conditions that guarantee the exponential stability of the augmented dynamics, and then the filter gains are parameterized in terms of the solution to a set of LMIs. Note that LMIs can be easily solved by using standard software packages. A simulation example is exploited in order to illustrate the effectiveness of the proposed design procedures.
Asunto(s)
Redes Reguladoras de Genes/fisiología , Modelos Genéticos , Algoritmos , Simulación por Computador , Retroalimentación Fisiológica/genética , Cinética , Modelos Lineales , Proteínas/metabolismo , ARN Mensajero/metabolismo , Procesos Estocásticos , Factores de TiempoRESUMEN
Regulatory gene networks contain generic modules, like those involving feedback loops, which are essential for the regulation of many biological functions (Guido et al. in Nature 439:856-860, 2006). We consider a class of self-regulated genes which are the building blocks of many regulatory gene networks, and study the steady-state distribution of the associated Gillespie algorithm by providing efficient numerical algorithms. We also study a regulatory gene network of interest in gene therapy, using mean-field models with time delays. Convergence of the related time-nonhomogeneous Markov chain is established for a class of linear catalytic networks with feedback loops.
Asunto(s)
Algoritmos , Redes Reguladoras de Genes/fisiología , Modelos Genéticos , Animales , Simulación por Computador , Doxiciclina/metabolismo , Retroalimentación Fisiológica/genética , Regulación de la Expresión Génica/fisiología , Terapia Genética , Proteínas Fluorescentes Verdes/genética , Humanos , Cinética , Modelos Lineales , Cadenas de Markov , Multimerización de Proteína/fisiología , Proteínas Represoras/metabolismo , Procesos Estocásticos , Transactivadores/metabolismo , Transgenes/genéticaRESUMEN
Serotonergic and endocannabinoid systems are important substrates for the control of emotional behaviour and growing evidence show an involvement in the pathophysiology of mood disorders. In the present study, the absence of the activity of the CB(1) cannabinoid receptor impaired serotonergic negative feedback in mice. Thus, in vivo microdialysis experiments revealed increased basal 5-HT extracellular levels and attenuated fluoxetine-induced increase of 5-HT extracellular levels in the prefrontal cortex of CB(1) knockout compared with wild-type mice. These observations could be related to the significant reduction in the 5-HT transporter binding site density detected in frontal cortex and hippocampus of CB(1) knockout mice. The lack of CB(1) receptor also altered some 5-HT receptors related to the 5-HT feedback. Extracellular recordings in the dorsal raphe nucleus (DRN) revealed that the genetic and pharmacological blockade of CB(1) receptor induced a 5-HT(1A) autoreceptor functional desensitization. In situ hybridization studies showed a reduction in the expression of the 5-HT(2C) receptor within several brain areas related to the control of the emotional responses, such as the DRN, the nucleus accumbens and the paraventricular nucleus of the hypothalamus, whereas an over-expression was observed in the CA3 area of the ventral hippocampus. These results reveal that the lack of CB(1) receptor induces a facilitation of the activity of serotonergic neurons in the DRN by altering different components of the 5-HT feedback as well as an increase in 5-HT extracellular levels in the prefrontal cortex in mice.
Asunto(s)
Líquido Extracelular/metabolismo , Retroalimentación Fisiológica/fisiología , Corteza Prefrontal/citología , Receptor Cannabinoide CB1/deficiencia , Serotonina/metabolismo , Animales , Área Bajo la Curva , Citalopram/metabolismo , Relación Dosis-Respuesta a Droga , Líquido Extracelular/efectos de los fármacos , Retroalimentación Fisiológica/efectos de los fármacos , Retroalimentación Fisiológica/genética , Fluoxetina/farmacología , Expresión Génica/efectos de los fármacos , Expresión Génica/genética , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Masculino , Ratones , Ratones Noqueados , Microdiálisis/métodos , Neuronas/efectos de los fármacos , Neuronas/fisiología , Unión Proteica/efectos de los fármacos , Núcleos del Rafe/citología , Receptor de Serotonina 5-HT2C/metabolismo , Proteínas de Transporte de Serotonina en la Membrana Plasmática/metabolismo , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Tritio/metabolismoRESUMEN
Although several recent studies have focused on gene autoregulation, the effects of negative feedback (NF) on gene expression are not fully understood. Our purpose here was to determine how the strength of NF regulation affects the characteristics of gene expression in yeast cells harboring chromosomally integrated transcriptional cascades that consist of the yEGFP reporter controlled by (i) the constitutively expressed tetracycline repressor TetR or (ii) TetR repressing its own expression. Reporter gene expression in the cascade without feedback showed a steep (sigmoidal) dose-response and a wide, nearly bimodal yEGFP distribution, giving rise to a noise peak at intermediate levels of induction. We developed computational models that reproduced the steep dose-response and the noise peak and predicted that negative autoregulation changes reporter expression from bimodal to unimodal and transforms the dose-response from sigmoidal to linear. Prompted by these predictions, we constructed a "linearizer" circuit by adding TetR autoregulation to our original cascade and observed a massive (7-fold) reduction of noise at intermediate induction and linearization of dose-response before saturation. A simple mathematical argument explained these findings and indicated that linearization is highly robust to parameter variations. These findings have important implications for gene expression control in eukaryotic cells, including the design of synthetic expression systems.
Asunto(s)
Retroalimentación Fisiológica/genética , Regulación Fúngica de la Expresión Génica , Redes Reguladoras de Genes , Saccharomyces cerevisiae/genética , Biología Computacional , Simulación por Computador , Proteínas Represoras , Tetraciclina , Transcripción GenéticaRESUMEN
Tumors with mutant BRAF and those with receptor tyrosine kinase (RTK) activation have similar levels of phosphorylated ERK, but only the former depend on ERK signaling for proliferation. The mitogen-activated protein kinase, extracellular signal-regulated kinase kinase (MEK)/ERK-dependent transcriptional output was defined as the genes whose expression changes significantly 8 h after MEK inhibition. In (V600E)BRAF cells, this output is comprised of 52 genes, including transcription factors that regulate transformation and members of the dual specificity phosphatase and Sprouty gene families, feedback inhibitors of ERK signaling. No such genes were identified in RTK tumor cells, suggesting that ERK pathway signaling output is selectively activated in BRAF mutant tumors. We find that RAF signaling is feedback down-regulated in RTK cells, but is insensitive to this feedback in BRAF mutant tumors. Physiologic feedback inhibition of RAF/MEK signaling down-regulates ERK output in RTK cells; evasion of this feedback in mutant BRAF cells is associated with increased transcriptional output and MEK/ERK-dependent transformation.
Asunto(s)
Retroalimentación Fisiológica , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Mutación Missense , Proteínas Proto-Oncogénicas B-raf/fisiología , Transducción de Señal , Quinasas raf/metabolismo , Animales , Regulación hacia Abajo , Quinasas MAP Reguladas por Señal Extracelular/genética , Retroalimentación Fisiológica/genética , Ratones , Proteínas Proto-Oncogénicas B-raf/genética , Transducción de Señal/genética , Transcripción GenéticaRESUMEN
The Lyme disease spirochete Borrelia burgdorferi is the only known human pathogen that directly activates invariant NKT (iNKT) cells. The number and activation kinetics of iNKT cells vary greatly among different strains of mice. We now report the role of the iNKT cell response in the pathogenesis of Lyme disease using C57BL/6 mice, a strain with optimal iNKT cell activation that is resistant to the development of spirochetal-induced inflammation. During experimental infection of B6 mice with B. burgdorferi, iNKT cells localize to the inflamed heart where they are activated by CD1d-expressing macrophages. Activation of iNKT cells in vivo results in the production of IFN-gamma, which we demonstrate ameliorates the severity of murine Lyme carditis by at least two mechanisms. First, IFN-gamma enhances the recognition of B. burgdorferi by macrophages, leading to increased phagocytosis of the spirochete. Second, IFN-gamma activation of macrophages increases the surface expression of CD1d, thereby facilitating further iNKT activation. Collectively, our data demonstrate that in the resistant background, B6, iNKT cells modulate the severity of murine Lyme carditis through the action of IFN-gamma, which appears to self-renew through a positive feedback loop during infection.
Asunto(s)
Interferón gamma/biosíntesis , Enfermedad de Lyme/inmunología , Enfermedad de Lyme/terapia , Miocarditis/inmunología , Miocarditis/terapia , Células T Asesinas Naturales/inmunología , Células T Asesinas Naturales/metabolismo , Enfermedad Aguda , Animales , Antígenos CD1d/biosíntesis , Antígenos CD1d/genética , Antígenos CD1d/fisiología , Borrelia burgdorferi/inmunología , Movimiento Celular/genética , Movimiento Celular/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Retroalimentación Fisiológica/genética , Retroalimentación Fisiológica/inmunología , Interferón gamma/fisiología , Enfermedad de Lyme/metabolismo , Activación de Linfocitos/genética , Activación de Linfocitos/inmunología , Activación de Macrófagos/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Miocarditis/metabolismo , Células T Asesinas Naturales/patología , Receptores de Antígenos de Linfocitos T alfa-beta/biosíntesis , Receptores de Interferón/deficiencia , Receptores de Interferón/genética , Receptor de Interferón gammaRESUMEN
Activation of T cells leads to the induction of many cytokine genes that are required for appropriate immune responses, including IL-2, a key cytokine for T cell proliferation and homeostasis. The activating transcription factors such as nuclear factor of activated T cells, nuclear factor kappaB/Rel and activated protein-1 family members that regulate inducible IL-2 gene expression have been well documented. However, negative regulation of the IL-2 gene is less studied. Here we examine the role of zinc finger E-box-binding protein (ZEB) 1, a homeodomain/Zn finger transcription factor, as a repressor of IL-2 gene transcription. We show here that ZEB1 is expressed in non-stimulated and stimulated T cells and using chromatin immunoprecipitation assays we show that ZEB1 binds to the IL-2 promoter. Over-expression of ZEB1 can repress IL-2 promoter activity, as well as endogenous IL-2 mRNA production in EL-4 T cells, and this repression is dependent on the ZEB-binding site at -100. ZEB1 cooperates with the co-repressor C-terminal-binding protein (CtBP) 2 and with histone deacetylase 1 to repress the IL-2 promoter and this cooperation depends on the ZEB-binding site in the promoter as well as the Pro-X-Asp-Leu-Ser protein-protein interaction domain in CtBP2. Thus, ZEB1 may function to recruit a repressor complex to the IL-2 promoter.
Asunto(s)
Proteínas de Homeodominio/inmunología , Interleucina-2/genética , Factores de Transcripción de Tipo Kruppel/inmunología , Proteínas Represoras/inmunología , Linfocitos T/metabolismo , Oxidorreductasas de Alcohol , Animales , Sitios de Unión/inmunología , Línea Celular Tumoral , Proteínas Co-Represoras , Proteínas de Unión al ADN/inmunología , Proteínas de Unión al ADN/metabolismo , Retroalimentación Fisiológica/genética , Retroalimentación Fisiológica/inmunología , Histona Desacetilasa 1 , Histona Desacetilasas/inmunología , Histona Desacetilasas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Homeostasis/inmunología , Interleucina-2/inmunología , Interleucina-2/metabolismo , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Ratones , Ratones Endogámicos C57BL , Fosfoproteínas/inmunología , Fosfoproteínas/metabolismo , Regiones Promotoras Genéticas/inmunología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/inmunología , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Linfocitos T/inmunología , Activación Transcripcional/genética , Activación Transcripcional/inmunología , Transfección , Transgenes , Homeobox 1 de Unión a la E-Box con Dedos de ZincRESUMEN
Amyloid-beta (Abeta) peptides, generated through sequential proteolytic cleavage of amyloid precursor protein (APP), aggregate to form amyloid plaques in Alzheimer's disease (AD). Understanding the regulation of Abeta generation and cellular secretion is critical to our understanding of AD pathophysiology. In the present study, we examined the role of the insulin/insulin-like growth factor-1 (IGF-1) signaling pathway in regulating APP trafficking and Abeta secretion. Previous studies have demonstrated that insulin or IGF-1 stimulation can increase Abeta and APP secretion in a phosphoinositide 3-kinase (PI3K) dependent manner. To expand upon these studies and better understand the molecular targets responsible for alterations in APP secretion, we constitutively activated Akt, a downstream component of the insulin/IGF-1 signaling pathway. Counterintuitively, constitutively active Akt (myr-Akt) overexpression produced an opposite effect to insulin/IGF-1 stimulation and inhibited secretion of APP and APP metabolites in multiple cell lines. Myr-Akt overexpression also resulted in increased APP protein stability. Since the insulin/IGF-1 signaling pathway is tightly regulated by feedback inhibition pathways, we hypothesized that myr-Akt overexpression may be inducing feedback inhibition of PI3K, resulting in impaired APP trafficking. In support of this hypothesis, myr-Akt acted at a known node of PI3K inhibition and decreased insulin receptor substrate 1 (IRS1) protein levels. Our studies provide further support for PI3K as a modulator of APP trafficking and demonstrate that overactivation of the insulin/IGF-1 signaling pathway may result in feedback inhibition of PI3K through IRS1 and reduce APP trafficking and Abeta secretion.
Asunto(s)
Precursor de Proteína beta-Amiloide/antagonistas & inhibidores , Precursor de Proteína beta-Amiloide/metabolismo , Retroalimentación Fisiológica/genética , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Proto-Oncogénicas c-akt/biosíntesis , Proteínas Proto-Oncogénicas c-akt/genética , Animales , Células CHO , Línea Celular , Línea Celular Tumoral , Cricetinae , Cricetulus , Humanos , Insulina/fisiología , Factor I del Crecimiento Similar a la Insulina/fisiología , Ratones , Ácido Mirístico/química , Ácido Mirístico/metabolismo , Fosfatidilinositol 3-Quinasas/química , Fosfatidilinositol 3-Quinasas/metabolismo , Transporte de Proteínas/genética , Proteínas Proto-Oncogénicas c-akt/químicaRESUMEN
Hematopoietic stem cell lineage choices are decided by genetic networks that are turned ON/OFF in a switch-like manner. However, prior to lineage commitment, genes are primed at low expression levels. Understanding the underlying molecular circuitry in terms of how it governs both a primed state and, at the other extreme, a committed state is of relevance not only to hematopoiesis but also to developmental systems in general. We develop a computational model for the hematopoietic erythroid-myeloid lineage decision, which is determined by a genetic switch involving the genes PU.1 and GATA-1. Dynamical models based upon known interactions between these master genes, such as mutual antagonism and autoregulation, fail to make the system bistable, a desired feature for robust lineage determination. We therefore suggest a new mechanism involving a cofactor that is regulated as well as recruited by one of the master genes to bind to the antagonistic partner that is necessary for bistability and hence switch-like behavior. An interesting fallout from this architecture is that suppression of the cofactor through external means can lead to a loss of cooperativity, and hence to a primed state for PU.1 and GATA-1. The PU.1-GATA-1 switch also interacts with another mutually antagonistic pair, C/EBPalpha-FOG-1. The latter pair inherits the state of its upstream master genes and further reinforces the decision due to several feedback loops, thereby leading to irreversible commitment. The genetic switch, which handles the erythroid-myeloid lineage decision, is an example of a network that implements both a primed and a committed state by regulating cooperativity through recruitment of cofactors. Perturbing the feedback between the master regulators and downstream targets suggests potential reprogramming strategies. The approach points to a framework for lineage commitment studies in general and could aid the search for lineage-determining genes.
Asunto(s)
Células Precursoras Eritroides/fisiología , Retroalimentación Fisiológica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Hematopoyesis/genética , Modelos Genéticos , Animales , Proteína alfa Potenciadora de Unión a CCAAT/genética , Proteína alfa Potenciadora de Unión a CCAAT/metabolismo , Diferenciación Celular , Linaje de la Célula/genética , Factor de Transcripción GATA1/genética , Factor de Transcripción GATA1/metabolismo , Redes Reguladoras de Genes/fisiología , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Biología de Sistemas/métodos , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética/fisiología , Activación Transcripcional/fisiologíaRESUMEN
Tumor-necrosis factor-alpha (TNF-alpha) is a potent proinflammtory cytokine and a key molecule in the pathogenesis of rheumatoid arthritis (RA). Retinoic acid-inducible gene-I (RIG-I) is a DExH box protein, which is known to play a role in the inflammatory and immune reactions. We previously reported about potential involvement of RIG-I in synovial inflammation in RA. In the present study, we demonstrated the expression of RIG-I in fibroblast-like synoviocytes stimulated with TNF-alpha. RNA interference against interferon (IFN)-beta abolished the TNF-alpha-induced RIG-I expression. In addition, knockdown of RIG-I partially inhibited the TNF-alpha-induced expression of CC chemokine ligand (CCL) 5, a chemokine with chemotactic activity toward lymphocytes and monocytes. These findings suggest that the TNF-alpha/IFN-beta/RIG-I/CCL5 pathway may be involved in the pathogenesis of synovial inflammation in RA.
Asunto(s)
Artritis Reumatoide/inmunología , Fibroblastos/metabolismo , Receptores de Ácido Retinoico/metabolismo , Líquido Sinovial/metabolismo , Factor de Necrosis Tumoral alfa/inmunología , Artritis Reumatoide/genética , Artritis Reumatoide/patología , Proteínas de Unión al Calcio/inmunología , Proteínas de Unión al Calcio/metabolismo , Células Cultivadas , Quimiocina CCL5/genética , Quimiocina CCL5/inmunología , Quimiocina CCL5/metabolismo , Retroalimentación Fisiológica/genética , Retroalimentación Fisiológica/inmunología , Fibroblastos/inmunología , Fibroblastos/patología , Humanos , Interferón beta/genética , Interferón beta/inmunología , Interferón beta/metabolismo , Interferencia de ARN/inmunología , ARN Interferente Pequeño , Receptores de Ácido Retinoico/genética , Receptores de Ácido Retinoico/inmunología , Proteína de Unión al Calcio S100A4 , Transducción de Señal/inmunología , Líquido Sinovial/inmunología , Activación Transcripcional/inmunología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
We study the functional characteristics of a two-gene motif consisting of a double positive feedback loop and an autoregulatory negative feedback loop. The motif appears in the gene regulatory network controlling the functional activity of pancreatic beta-cells. The model exhibits bistability and hysteresis in appropriate parameter regions. The two stable steady states correspond to low (OFF state) and high (ON state) protein levels, respectively. Using a deterministic approach, we show that the region of bistability increases in extent when the copy number of one of the genes is reduced from 2 to 1. The negative feedback loop has the effect of reducing the size of the bistable region. Loss of a gene copy, brought about by mutations, hampers the normal functioning of the beta-cells giving rise to the genetic disorder, maturity-onset diabetes of the young (MODY). The diabetic phenotype makes its appearance when a sizable fraction of the beta-cells is in the OFF state. Using stochastic simulation techniques we show that, on reduction of the gene copy number, there is a transition from the monostable ON to the ON state in the bistable region of the parameter space. Fluctuations in the protein levels, arising due to the stochastic nature of gene expression, can give rise to transitions between the ON and OFF states. We show that as the strength of autorepression increases, the ON --> OFF state transitions become less probable whereas the reverse transitions are more probable. The implications of the results in the context of the occurrence of MODY are pointed out.