Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
PLoS One ; 12(10): e0186187, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29023495

RESUMEN

Many RNA-binding proteins possess domains with a biased amino acid content. A common property of these low complexity domains (LCDs) is that they assemble into an ordered amyloid form, juxtaposing RNA recognition motifs in a subcellular compartment in which RNA metabolism is focused. Yeast Nab3 is one such protein that contains RNA-binding domains and a low complexity, glutamine/proline-rich, prion-like domain that can self-assemble. Nab3 also contains a region of structural homology to human hnRNP-C that resembles a leucine zipper which can oligomerize. Here we show that the LCD and the human hnRNP-C homology domains of Nab3 were experimentally separable, as cells were viable with either segment, but not when both were missing. In exploiting the lethality of deleting these regions of Nab3, we were able to test if heterologous prion-like domains known to assemble into amyloid, could substitute for the native sequence. Those from the hnRNP-like protein Hrp1, the canonical prion Sup35, or the epsin-related protein Ent2, could rescue viability and enable the new Nab3 chimeric protein to support transcription termination. Other low complexity domains from RNA-binding, termination-related proteins or a yeast prion, could not. As well, an unbiased genetic selection revealed a new protein sequence that could rescue the loss of Nab3's essential domain via multimerization. This new sequence and Sup35's prion domain could also rescue the lethal loss of Hrp1's prion-like domain when substituted for it. This suggests there are different cross-functional classes of amyloid-forming LCDs and that appending merely any assembly-competent LCD to Nab3 does not restore function or rescue viability. The analysis has revealed the functional complexity of LCDs and provides a means by which the differing classes of LCD can be dissected and understood.


Asunto(s)
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Factores de Terminación de Péptidos/química , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/crecimiento & desarrollo , Proteínas Adaptadoras del Transporte Vesicular/química , Proteínas Adaptadoras del Transporte Vesicular/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Humanos , Proteínas Nucleares/genética , Factores de Terminación de Péptidos/genética , Dominios Proteicos , Proteínas de Unión al ARN/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Homología de Secuencia de Aminoácido , Transcripción Genética
2.
J Am Chem Soc ; 136(41): 14536-44, 2014 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-25216038

RESUMEN

HnRNP C is a ubiquitous RNA regulatory factor and the principal constituent of the nuclear hnRNP core particle. The protein contains one amino-terminal RNA recognition motif (RRM) known to bind uridine (U)-rich sequences. This work provides a molecular and mechanistic understanding of this interaction. We solved the solution structures of the RRM in complex with poly(U) oligomers of five and seven nucleotides. The five binding pockets of RRM recognize uridines with an unusual 5'-to-3' gradient of base selectivity. The target recognition is therefore strongly sensitive to base clustering, explaining the preference for contiguous uridine tracts. Using a novel approach integrating the structurally derived recognition consensus of the RRM with a thermodynamic description of its multi-register binding, we modeled the saturation of cellular uridine tracts by this protein. The binding pattern is remarkably consistent with the experimentally observed transcriptome-wide cross-link distribution of the full-length hnRNP C on short uridine tracts. This result re-establishes the RRM as the primary RNA-binding domain of the hnRNP C tetramer and provides a proof of concept for interpreting high-throughput interaction data using structural approaches.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Poli U/química , ARN/química , Humanos , Cinética , Modelos Moleculares , Estructura Molecular , Termodinámica
3.
J Proteome Res ; 12(6): 2869-84, 2013 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-23614458

RESUMEN

RALY is a member of the heterogeneous nuclear ribonucleoproteins, a family of RNA-binding proteins generally involved in many processes of mRNA metabolism. No quantitative proteomic analysis of RALY-containing ribonucleoparticles (RNPs) has been performed so far, and the biological role of RALY remains elusive. Here, we present a workflow for the characterization of RALY's interaction partners, termed iBioPQ, that involves in vivo biotinylation of biotin acceptor peptide (BAP)-fused protein in the presence of the prokaryotic biotin holoenzyme synthetase of BirA so that it can be purified using streptavidin-coated magnetic beads, circumventing the need for specific antibodies and providing efficient pulldowns. Protein eluates were subjected to tryptic digestion and identified using data-independent acquisition on an ion-mobility enabled high-resolution nanoUPLC-QTOF system. Using label-free quantification, we identified 143 proteins displaying at least 2-fold difference in pulldown compared to controls. Gene Ontology overrepresentation analysis revealed an enrichment of proteins involved in mRNA metabolism and translational control. Among the most abundant interacting proteins, we confirmed RNA-dependent interactions of RALY with MATR3, PABP1 and ELAVL1. Comparative analysis of pulldowns after RNase treatment revealed a protein-protein interaction of RALY with eIF4AIII, FMRP, and hnRNP-C. Our data show that RALY-containing RNPs are much more heterogeneous than previously hypothesized.


Asunto(s)
Biotina/química , Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Mapeo de Interacción de Proteínas , Proteoma/análisis , Secuencia de Aminoácidos , Bioensayo , Ligasas de Carbono-Nitrógeno/química , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Proteínas ELAV/química , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Proteína 1 Similar a ELAV , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Humanos , Datos de Secuencia Molecular , Proteínas Asociadas a Matriz Nuclear/química , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteína I de Unión a Poli(A)/química , Proteína I de Unión a Poli(A)/genética , Proteína I de Unión a Poli(A)/metabolismo , Unión Proteica , Biosíntesis de Proteínas , Mapas de Interacción de Proteínas , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Represoras/química , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Estreptavidina/química
4.
J Biol Chem ; 288(4): 2111-7, 2013 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-23192344

RESUMEN

Nab3 is an RNA-binding protein whose function is important for terminating transcription by RNA polymerase II. It co-assembles with Nrd1, and the resulting heterodimer of these heterogeneous nuclear ribonucleoprotein-C (hnRNP)-like proteins interacts with the nascent transcript and RNA polymerase II. Previous genetic analysis showed that a short carboxyl-terminal region of Nab3 is functionally important for termination and is located far from the Nab3 RNA recognition domain in the primary sequence. The domain is structurally homologous to hnRNP-C from higher organisms. Here we provide biochemical evidence that this short region is sufficient to enable self-assembly of Nab3 into a tetrameric form in a manner similar to the cognate region of human hnRNP-C. Within this region, there is a stretch of low complexity protein sequence (16 glutamines) adjacent to a putative α-helix that potentiates the ability of the conserved region to self-assemble. The glutamine stretch and the final 18 amino acids of Nab3 are both important for termination in living yeast cells. The findings herein describe an additional avenue by which these hnRNP-like proteins can polymerize on target transcripts. This process is independent of, but acts in concert with, the interactions of the proteins with RNA and RNA polymerase and extends the relationship of Nab3 as a functional orthologue of a higher eukaryotic hnRNP.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Secuencia de Bases , Cromatografía en Gel , Reactivos de Enlaces Cruzados/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Humanos , Modelos Biológicos , Datos de Secuencia Molecular , Oligonucleótidos/genética , Péptidos/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , ARN/metabolismo , ARN Polimerasa II/metabolismo
5.
Science ; 335(6076): 1643-6, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22461616

RESUMEN

Specific RNA recognition is usually achieved by specific RNA sequences and/or structures. However, we show here a mechanism by which RNA polymerase II (Pol II) transcripts are classified according to their length. The heterotetramer of the heterogeneous nuclear ribonucleoprotein (hnRNP) C1/C2 measures the length of the transcripts like a molecular ruler, by selectively binding to the unstructured RNA regions longer than 200 to 300 nucleotides. Thus, the tetramer sorts the transcripts into two RNA categories, to be exported as either messenger RNA or uridine-rich small nuclear RNA (U snRNA), depending on whether or not they are longer than the threshold, respectively. Our findings reveal a new function of the C tetramer and highlight the biological importance of RNA recognition by the length.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , ARN Nuclear Pequeño/metabolismo , Transcripción Genética , Núcleo Celular/metabolismo , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Humanos , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosfoproteínas/metabolismo , Unión Proteica , Multimerización de Proteína , Empalme del ARN , ARN Interferente Pequeño , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/metabolismo
6.
Nucleic Acids Res ; 38(22): 8001-14, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20699271

RESUMEN

T-cell intracellular antigen (TIA)-proteins are known regulators of alternative pre-mRNA splicing. In this study, pull-down experiments and mass spectrometry indicate that TIAR/TIAL1 and hnRNP C1/C2 are associated in HeLa nuclear extracts. Co-immunoprecipitation and GST-pull-down assays confirmed this interaction. Interestingly, binding requires the glutamine-rich (Q-rich) C-terminal domain of TIAR and the leucine-rich plus acidic residues-rich C-terminal domains of hnRNP C1/C2. This interaction also occurs in an RNA-dependent manner. Recombinant GFP-TIAR and RFP-hnRNP C1 proteins display partial nuclear co-localization when overexpressed in HeLa cells, and this requires the Q-rich domain of TIAR. hnRNP C1 overexpression in the presence of rate-limiting amounts of TIAR in HeLa and HEK293 cells affects alternative splicing of Fas and FGFR2 minigenes, promoting Fas exon 6 and FGFR2 exon K-SAM skipping, respectively. The repressor activity of hnRNP C1 on Fas exon 6 splicing is mediated by Hu antigen R (HuR). Experiments involving tethering approaches showed that the repressor capacity of hnRNP C1 is associated with an exonic splicing silencer in Fas exon 6. This effect was reversed by splice-site strengthening and is linked to its basic leucine zipper-like motif. These results suggest that hnRNP C1/C2 acts as a bridge between HuR and TIAR to modulate alternative Fas splicing.


Asunto(s)
Empalme Alternativo , Antígenos de Superficie/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptor fas/genética , Secuencias de Aminoácidos , Núcleo Celular/química , Proteínas ELAV , Proteína 1 Similar a ELAV , Exones , Células HEK293 , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/análisis , Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Humanos , Inmunoprecipitación , Péptidos/análisis , Proteínas de Unión al ARN/análisis , Proteínas de Unión al ARN/química
7.
EMBO J ; 26(1): 158-69, 2007 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-17159903

RESUMEN

The upstream of N-Ras (Unr) protein is involved in translational regulation of specific genes. For example, the Unr protein contributes to translation mediated by several viral and cellular internal ribosome entry sites (IRESs), including the PITSLRE IRES, which is activated at mitosis. Previously, we have shown that translation of the Unr mRNA itself can be initiated through an IRES. Here, we show that UNR mRNA translation and UNR IRES activity are significantly increased during mitosis. Functional analysis identified hnRNP C1/C2 proteins as UNR IRES stimulatory factors, whereas both polypyrimidine tract-binding protein (PTB) and Unr were found to function as inhibitors of UNR IRES-mediated translation. The increased UNR IRES activity during mitosis results from enhanced binding of the stimulatory hnRNP C1/C2 proteins and concomitant dissociation of PTB and Unr from the UNR IRES RNA. Our data suggest the existence of an IRES-dependent cascade in mitosis comprising hnRNP C1/C2 proteins that stimulate Unr expression, and Unr, in turn, contributes to PITSLRE IRES activity. The observation that RNA interference-mediated knockdown of hnRNP C1/C2 and Unr, respectively, abrogates and retards mitosis points out that regulation of IRES-mediated translation by hnRNP C1/C2 and Unr might be important in mitosis.


Asunto(s)
Proteínas de Unión al ADN/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo C/fisiología , Mitosis , Biosíntesis de Proteínas , Proteínas de Unión al ARN/fisiología , División Celular , Línea Celular , Cromatografía de Afinidad , Quinasas Ciclina-Dependientes/metabolismo , Proteínas de Unión al ADN/química , Fase G2 , Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Humanos , Modelos Biológicos , Modelos Genéticos , Polirribosomas/metabolismo , Proteínas de Unión al ARN/química , Ribosomas/metabolismo , Factores de Tiempo
8.
J Biol Chem ; 281(51): 39114-20, 2006 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-17071612

RESUMEN

Clinically apparent hereditary vitamin D-resistant rickets (HVDRR) usually results from a loss of function mutation in the vitamin D receptor (VDR). We recently described a human with the classical HVDRR phenotype but normal VDR function. Hormone resistance resulted from constitutive overexpression of heterogeneous nuclear ribonucleoprotein (hnRNP) that competed with a normally functioning VDR-retinoid X receptor (RXR) dimer for binding to the vitamin D response element (VDRE). Here we describe the purification, molecular cloning, and expression of this vitamin D resistance-causing, competitive response element-binding protein (REBiP) hnRNP C1/C2. When overexpressed in vitamin D-responsive cells, cDNAs for both hnRNPC1 and hnRNPC2 inhibited VDR-VDRE-directed transactivation (28 and 43%, respectively; both p < 0.005). By contrast, transient expression of an hnRNP C1/C2 small interfering RNA increased VDR transactivation by 39% (p < 0.005). Chromatin immunoprecipitation of nucleoproteins bound to the transcriptionally active 1,25-dihydroxy vitamin D-driven CYP24 promoter revealed the presence of REBiP in vitamin D-responsive human cells and indicated that the normal pattern of 1,25-dihydroxy vitamin D-initiated cyclical movement of the VDR on and off the VDRE is legislated by competitive, reciprocal occupancy of the VDRE by hnRNP C1/C2. The temporal and reciprocal pattern of VDR and hnRNPC1/C2 interaction with the VDRE was lost in HVDRR cells overexpressing the hnRNP C1/C2 REBiP. These observations provide further evidence for the functional importance of REBiP as a component of the multiprotein complex involved in the regulation of vitamin D-mediated transcription. In particular, chromatin immunoprecipitation data suggest that, in addition to its RNA-processing functions, hnRNP C1/C2 may be a key determinant of the temporal patterns of VDRE occupancy.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Vitamina D/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Cromatina/química , Clonación Molecular , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Ribonucleoproteínas Nucleares Heterogéneas , Humanos , Datos de Secuencia Molecular , Regiones Promotoras Genéticas , Ratas , Receptores de Calcitriol/genética , Raquitismo/genética , Raquitismo/metabolismo , Esteroide Hidroxilasas/genética , Transcripción Genética , Vitamina D3 24-Hidroxilasa
9.
J Mol Biol ; 350(2): 319-37, 2005 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-15936032

RESUMEN

During active cell division, heterogeneous nuclear ribonucleoprotein (hnRNP) C is one of the most abundant proteins in the nucleus. hnRNP C exists as a stable tetramer that binds about 230 nucleotides of pre-mRNA and functions in vivo to package nascent transcripts and nucleate assembly of the 40 S hnRNP complex. Previous studies have shown that monomers lacking or possessing mutant oligomerization domains bind RNA with low affinity, strongly suggesting a cooperative protomer-RNA binding mode. In order to understand the role of the oligomerization domain in defining the biological functions and structure of hnRNP C tetramers, we have determined the high-resolution NMR structure of the oligomerization interface that is formed at the core of the complex, examining specific molecular interactions that drive assembly and contribute to the structural integrity of the tetramer. The determined structure reveals an antiparallel four-helix coiled coil, where classically described knobs-into-holes packing interactions at interhelical contact surfaces are optimized so that side-chains interdigitate to create an even distribution of hydrophobic surfaces along the core. While the stoichiometry of the complex appears to be primarily specified by occlusion of hydrophobic surfaces, particularly the interfacial residue L198, from solvent, helix orientation is primarily determined by electrostatic attractions across helix interfaces. The creation of potential interaction surfaces for other hnRNP C domains along the coiled coil exterior and the assembly of oligomerization interfaces in an antiparallel orientation shape the tertiary fold of full-length monomers and juxtapose RNA-binding elements at distal surfaces of the tetrameric complex in the quaternary assembly. In addition, we discuss the specific challenges encountered in structure determination of this symmetric oligomer by NMR methods, specifically in sorting ambiguous interatomic distance constraints into classes that define different elements of the coiled coil structure.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Resonancia Magnética Nuclear Biomolecular , Secuencia de Aminoácidos , Animales , Cromatografía en Gel , Dicroismo Circular , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Cuaternaria de Proteína , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Electricidad Estática , Relación Estructura-Actividad
10.
Biochem J ; 388(Pt 1): e1-2, 2005 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15877546

RESUMEN

In response to DNA damage, cells initiate multiple repair mechanisms that all contribute to the survival of both the cell and the organism. These responses are numerous and variable, and can include cell cycle arrest, transcriptional activation of DNA repair genes and relocalization of repair proteins to sites of DNA damage. If all else fails, in multicellular organisms the initiation of apoptosis is also a potential cellular response to DNA damage. Despite a wealth of information about these events, it is clear that we do not yet have a comprehensive picture of the cellular responses to DNA damage. In this issue of the Biochemical Journal, a proteomics approach was used by Lee et al. to identify proteins that bind to chromatin in a DNA damage-inducible manner. The proteins identified, nucleophosmin, hnRNP C1 (heterogeneous nuclear ribonucleoprotein C1) and hnRNP C2, were proteins that would not necessarily have been predicted to behave this way. These studies have the potential to be extended and contribute to our knowledge of the cellular response to DNA damage.


Asunto(s)
Cromatina/química , Daño del ADN , Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Proteínas Nucleares/química , Cromatina/fisiología , Ribonucleoproteína Heterogénea-Nuclear Grupo C/fisiología , Proteínas Nucleares/fisiología , Nucleofosmina , Unión Proteica
11.
Biochem J ; 388(Pt 1): 7-15, 2005 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-15737070

RESUMEN

Double-strand breaks (DSBs) of chromosomal DNA trigger the cellular response that activates the pathways for DNA repair and cell-cycle checkpoints, and sometimes the pathways leading to cell death if the damage is too severe to be tolerated. Evidence indicates that, upon generation of DNA DSBs, many nuclear proteins that are involved in DNA repair and checkpoints are recruited to chromatin around the DNA lesions. In the present study we used a proteomics approach to identify DNA-damage-induced chromatin-binding proteins in a systematic way. Two-dimensional gel analysis for protein extracts of chromatin from DNA-damage-induced and control HeLa cells identified four proteins as the candidates for DNA-damage-induced chromatin-binding proteins. MALDI-TOF (matrix-assisted laser-desorption ionization-time-of-flight) MS analysis identified these proteins to be NPM (nucleophosmin), hnRNP (heterogeneous nuclear ribonucleoprotein) C1, hnRNP C2 and 37-kDa laminin-receptor precursor, and the identity of these proteins was further confirmed by immunoblot analysis with specific antibodies. We then demonstrated with chromatin-binding assays that NPM and hnRNP C1/C2, the abundant nuclear proteins with pleiotropic functions, indeed bind to chromatin in a DNA-damage-dependent manner, implicating these proteins in DNA repair and/or damage response. Immunofluorescence experiments showed that NPM, normally present in the nucleoli, is mobilized into the nucleoplasm after DNA damage, and that neither NPM nor hnRNP C1/C2 is actively recruited to the sites of DNA breaks. These results suggest that NPM and hnRNP C1/C2 may function at the levels of the global context of chromatin, rather than by specifically targeting the broken DNA.


Asunto(s)
Cromatina/química , Daño del ADN , Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Proteínas Nucleares/química , Proteómica , Cromatina/fisiología , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/fisiología , Humanos , Proteínas Nucleares/fisiología , Nucleofosmina , Unión Proteica
12.
J Cell Sci ; 117(Pt 23): 5579-89, 2004 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-15494373

RESUMEN

Using a proteomic approach, we searched for protein changes dependent on Rho-associated kinase (ROCK) during phorbol-12-myristate-13-acetate (PMA)-induced apoptosis. We found that heterogeneous nuclear ribonucleoprotein C1 and C2 (hnRNP C1/C2), two nuclear restricted pre-mRNA binding proteins, are translocated to the cytosolic compartment in a ROCK-dependent manner in PMA-induced pro-apoptotic cells, where nuclear envelopes remain intact. The subcellular localization change of hnRNP C1/C2 appears to be dependent on ROCK-mediated cytoskeletal change and independent of caspase execution and new protein synthesis. Such a ROCK-dependent translocation is also seen in TNFalpha-induced apoptotic NIH3T3 cells. By overexpressing the dominant active form of ROCK, we showed that a ROCK-mediated signal is sufficient to induce translocation of hnRNP C1/C2. Deletion experiments indicated that the C-terminal 40-amino-acid region of hnRNP C1/C2 is required for ROCK-responsive translocation. By using nuclear yellow fluorescent protein (YFP) fusion, we determined that the C-terminal 40-amino-acid region of hnRNP C1/C2 is a novel nuclear export signal responsive to ROCK-activation. We conclude that a novel nuclear export is activated by the ROCK signaling pathway to exclude hnRNP C1/C2 from nucleus, by which the compartmentalization of specific hnRNP components is disturbed in apoptotic cells.


Asunto(s)
Apoptosis/fisiología , Núcleo Celular/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Células 3T3 , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/fisiología , Animales , Apoptosis/efectos de los fármacos , Carcinógenos/farmacología , Compartimento Celular/efectos de los fármacos , Compartimento Celular/fisiología , Núcleo Celular/efectos de los fármacos , Núcleo Celular/ultraestructura , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Citosol/efectos de los fármacos , Citosol/metabolismo , Citosol/ultraestructura , Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Humanos , Péptidos y Proteínas de Señalización Intracelular , Ratones , Microscopía Electrónica de Transmisión , Poro Nuclear/metabolismo , Poro Nuclear/ultraestructura , Estructura Terciaria de Proteína/fisiología , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología , Proteómica , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Acetato de Tetradecanoilforbol/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Quinasas Asociadas a rho
13.
Mol Cell Biol ; 23(2): 708-20, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12509468

RESUMEN

The c-myc proto-oncogene plays a key role in the proliferation, differentiation, apoptosis, and regulation of the cell cycle. Recently, it was demonstrated that the 5' nontranslated region (5' NTR) of human c-myc mRNA contains an internal ribosomal entry site (IRES). In this study, we investigated cellular proteins interacting with the IRES element of c-myc mRNA. Heterogeneous nuclear ribonucleoprotein C (hnRNP C) was identified as a cellular protein that interacts specifically with a heptameric U sequence in the c-myc IRES located between two alternative translation initiation codons CUG and AUG. Moreover, the addition of hnRNP C1 in an in vitro translation system enhanced translation of c-myc mRNA. Interestingly, hnRNP C was partially relocalized from the nucleus, where most of the hnRNP C resides at interphase, to the cytoplasm at the G(2)/M phase of the cell cycle. Coincidently, translation mediated through the c-myc IRES was increased at the G(2)/M phase when cap-dependent translation was partially inhibited. On the other hand, a mutant c-myc mRNA lacking the hnRNP C-binding site, showed a decreased level of translation at the G(2)/M phase compared to that of the wild-type message. Taken together, these findings suggest that hnRNP C, via IRES binding, modulates translation of c-myc mRNA in a cell cycle phase-dependent manner.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regiones no Traducidas 5' , Apoptosis , Sitios de Unión , Biotinilación , Northern Blotting , Ciclo Celular , Diferenciación Celular , División Celular , Separación Celular , Codón Iniciador , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Fase G2 , Genes Reporteros , Glutatión Transferasa/metabolismo , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Humanos , Immunoblotting , Mitosis , Modelos Genéticos , Mutación , Plásmidos/metabolismo , Unión Proteica , Proto-Oncogenes Mas , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Transcripción Genética , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA