RESUMEN
Salmonella enterica, a prominent foodborne pathogen, contributes significantly to global foodborne illnesses annually. This species exhibits significant genetic diversity, potentially impacting its infectivity, disease severity, and antimicrobial resistance. Whole genome sequencing (WGS) offers comprehensive genetic insights that can be utilized for virulence assessment. However, existing bioinformatic tools for studying Salmonella virulence have notable limitations. To address this gap, a Salmonella Virulence Database with a non-redundant, comprehensive list of putative virulence factors was constructed. Two bioinformatic analysis tools, Virulence Factor Profile Assessment and Virulence Factor Profile Comparison tools, were developed. The former provides data on similarity to the reference genes, e-value, and bite score, while the latter assesses the presence/absence of virulence genes in Salmonella isolates and facilitates comparison of virulence profiles across multiple sequences. To validate the database and associated bioinformatic tools, WGS data from 43,853 Salmonella isolates spanning 14 serovars was extracted from GenBank, and WGS data previously generated in our lab was used. Overall, the Salmonella Virulence database and our bioinformatic tools effectively facilitated virulence assessment, enhancing our understanding of virulence profiles among Salmonella isolates and serovars. The public availability of these resources will empower researchers to assess Salmonella virulence comprehensively, which could inform strategies for pathogen control and risk evaluations associated with human illnesses.
Asunto(s)
Biología Computacional , Salmonella enterica , Factores de Virulencia , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Biología Computacional/métodos , Factores de Virulencia/genética , Virulencia/genética , Genoma Bacteriano , Bases de Datos Genéticas , Secuenciación Completa del Genoma/métodos , Humanos , Infecciones por Salmonella/microbiologíaAsunto(s)
Salmonella enterica , Salmonella enterica/patogenicidad , Salmonella enterica/efectos de los fármacos , Salmonella enterica/aislamiento & purificación , Humanos , Uganda/epidemiología , Virulencia , Farmacorresistencia Bacteriana , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Microbiología de AlimentosRESUMEN
Pathogenic bacteria in food or environment, can pose threats to public health, highlighting the requirement of tools for rapid and accurate detection of viable pathogenic bacteria. Herein, we report a sequential endoprotein RNase H2-activating DNAzyme assay (termed epDNAzyme) that enables nucleic acid extraction- and amplification-free detection of viable Salmonella enterica (S. enterica). The direct detection allows for a rapid detection of viable S. enterica within 25 min. Besides, the assay, based on sequential reporting strategy, circumvents internal modifications in the DNAzyme's active domain and improve its catalytic activity. The multiple-turnover DNAzyme cutting and the enhanced catalytic activity of DNAzyme render the epDNAzyme assay to be highly sensitive, and enables the detection of 190 CFU/mL and 0.1% viable S. enterica. The assay has been utilized to detect S. enterica contamination in food and clinical samples, indicating its potential as a promising tool for monitoring pathogen-associated biosafety.
Asunto(s)
Técnicas Biosensibles , ADN Catalítico , Salmonella enterica , ADN Catalítico/química , Técnicas Biosensibles/métodos , Salmonella enterica/aislamiento & purificación , Salmonella enterica/patogenicidad , Salmonella enterica/genética , Humanos , Ribonucleasa H/metabolismo , Ribonucleasa H/química , Microbiología de Alimentos , Límite de Detección , Infecciones por Salmonella/microbiología , ADN Bacteriano/análisis , ADN Bacteriano/aislamiento & purificación , ADN Bacteriano/genéticaRESUMEN
BACKGROUND: Salmonella entericaserovar Choleraesuis (S.C) is a swine enteric pathogen causing paratyphoid fever, enterocolitis, and septicemia in piglets. S. C is mainly transmitted through the fecal-oral route. Vaccination is an effective strategy for preventing and controlling Salmonella infection. RESULTS: Herein, we used CRISPR-Cas9 technology to knockout the virulence regulatory genes, rpoS, and slyA of S. C and constructed the ∆rpoS, ∆slyA, and ∆rpoS ∆slyA strains. The phenotypic characteristics of the mutant strains remained unchanged compared with the parental wild-type strain. In vivo study, unlike the wild-type strain, the ∆slyA and ∆rpoS ∆slyA strains alleviated splenomegaly, colon atrophy, and lower bacterial loads in the spleen, liver, ileum, and colon. These mutant strains survived in Peyer's patches (PPs) and mesenteric lymph nodes (MLN) for up to 15 days post-infection. Furthermore, the immunization of the ∆rpoS ∆slyA strain induced robust humoral and cellular immune responses. CONCLUSIONS: Consequently, vaccination with ∆rpoS ∆slyA conferred a high percentage of protection against lethal invasive Salmonella, specifically S. C, in mice. This study provided novel insights into the development of live-attenuated vaccines against the infection of S. C.
Asunto(s)
Salmonelosis Animal , Vacunas contra la Salmonella , Vacunas Atenuadas , Animales , Vacunas Atenuadas/inmunología , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas contra la Salmonella/inmunología , Vacunas contra la Salmonella/administración & dosificación , Vacunas contra la Salmonella/genética , Ratones , Salmonelosis Animal/prevención & control , Salmonelosis Animal/inmunología , Salmonelosis Animal/microbiología , Femenino , Ratones Endogámicos BALB C , Mutación , Virulencia/genética , Salmonella enterica/inmunología , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Sistemas CRISPR-Cas , Porcinos , Inmunidad Humoral , Inmunidad CelularRESUMEN
Salmonella enterica serotype Cerro (S. Cerro) is an emerging Salmonella serotype isolated from cattle, but the association of S. Cerro with disease is not well understood. While comparative genomic analyses of bovine S. Cerro isolates have indicated mutations in elements associated with virulence, the correlation of S. Cerro fecal shedding with clinical disease in cattle varies between epidemiologic studies. The primary objective of this study was to characterize the infection-relevant phenotypes of S. Cerro fecal isolates obtained from neonatal calves born on a dairy farm in Wisconsin, USA. The S. Cerro isolates varied in biofilm production and sensitivity to the bile salt deoxycholate. All S. Cerro isolates were sensitive to sodium hypochlorite, hydrogen peroxide, and acidic shock. However, S. Cerro isolates were resistant to nitric oxide stress. Two S. Cerro isolates were unable to compete with S. Typhimurium during infection of calf ligated intestinal loops, indicating decreased fitness in vivo. Together, our data suggest that S. Cerro is sensitive to some innate antimicrobial defenses present in the gut, many of which are also used to control Salmonella in the environment. The observed phenotypic variation in S. Cerro isolates from a single farm suggest phenotypic plasticity that could impact infectious potential, transmission, and persistence on a farm.IMPORTANCESalmonella enterica is a zoonotic pathogen that threatens both human and animal health. Salmonella enterica serotype Cerro is being isolated from cattle at increasing frequency over the past two decades; however, its association with clinical disease is unclear. The goal of this study was to characterize infection-relevant phenotypes of S. Cerro isolates obtained from dairy calves from a single farm. Our work shows that there can be variation among temporally related S. Cerro isolates and that these isolates are sensitive to killing by toxic compounds of the innate immune system and those used for environmental control of Salmonella. This work contributes to our understanding of the pathogenic potential of the emerging pathogen S. Cerro.
Asunto(s)
Enfermedades de los Bovinos , Salmonelosis Animal , Salmonella enterica , Serogrupo , Bovinos , Animales , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Salmonella enterica/efectos de los fármacos , Salmonella enterica/aislamiento & purificación , Salmonella enterica/clasificación , Salmonelosis Animal/microbiología , Enfermedades de los Bovinos/microbiología , Heces/microbiología , Biopelículas/crecimiento & desarrollo , Wisconsin , Virulencia , Estrés Fisiológico , Antibacterianos/farmacologíaRESUMEN
Salmonellosis associated with reptiles is a well-researched topic, particularly in China and the United States, but it occurs less frequently in Europe. The growth of the human population and changes in the environment could potentially increase the interaction between humans and free-living reptiles, which are an unidentified source of Salmonella species. In this study, we sought to explore this issue by comparing the microbiota of free-living European grass snakes, scientifically known as Natrix natrix, with that of captive banded water snakes, or Nerodia fasciata. We were able to isolate 27 strains of Salmonella species from cloacal swabs of 59 N. natrix and 3 strains from 10 N. fasciata. Our findings revealed that free-living snakes can carry strains of Salmonella species that are resistant to normal human serum (NHS). In contrast, all the Salmonella species strains isolated from N. fasciata were sensitive to the action of the NHS, further supporting our findings. We identified two serovars from N. natrix: Salmonella enterica subspecies diarizonae and S. enterica subspecies houtenae. Additionally, we identified three different virulotypes (VT) with invA, sipB, prgH, orgA, tolC, iroN, sitC, sifA, sopB, spiA, cdtB and msgA genes, and ß-galactosidase synthesised by 23 serovars. The identification of Salmonella species in terms of their VT is a relatively unknown aspect of their pathology. This can be specific to the serovar and pathovar and could be a result of adaptation to a new host or environment.
Asunto(s)
Salmonella , Factores de Virulencia , Animales , Factores de Virulencia/genética , Salmonella/aislamiento & purificación , Salmonella/genética , Salmonella/clasificación , Humanos , Salmonelosis Animal/microbiología , Colubridae/microbiología , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Salmonella enterica/clasificación , Salmonella enterica/crecimiento & desarrollo , Salmonella enterica/patogenicidad , Serpientes/microbiología , Cloaca/microbiologíaRESUMEN
The bacterial species Salmonella enterica (S. enterica) is a highly diverse pathogen containing more than 2600 distinct serovars, which can infect a wide range of animal and human hosts. Recent global emergence of multidrug resistant strains, from serovars Infantis and Muenchen is associated with acquisition of the epidemic megaplasmid, pESI that augments antimicrobial resistance and pathogenicity. One of the main pESI's virulence factors is the potent iron uptake system, yersiniabactin encoded by fyuA, irp2-irp1-ybtUTE, ybtA, and ybtPQXS gene cluster. Here we show that yersiniabactin, has an underappreciated distribution among different S. enterica serovars and subspecies, integrated in their chromosome or carried by different conjugative plasmids, including pESI. While the genetic organization and the coding sequence of the yersiniabactin genes are generally conserved, a 201-bp insertion sequence upstream to ybtA, was identified in pESI. Despite this insertion, pESI-encoded yersiniabactin is regulated by YbtA and the ancestral Ferric Uptake Regulator (Fur), which binds directly to the ybtA and irp2 promoters. Furthermore, we show that yersiniabactin genes are specifically induced during the mid-late logarithmic growth phase and in response to iron-starvation or hydrogen peroxide. Concurring, yersiniabactin was found to play a previously unknown role in oxidative stress tolerance and to enhance intestinal colonization of S. Infantis in mice. These results indicate that yersiniabactin contributes to Salmonella fitness and pathogenicity in vivo and is likely to play a role in the rapid dissemination of pESI among globally emerging Salmonella lineages.
Asunto(s)
Proteínas Bacterianas , Regulación Bacteriana de la Expresión Génica , Hierro , Estrés Oxidativo , Salmonella enterica , Animales , Hierro/metabolismo , Ratones , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Salmonella enterica/genética , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidad , Virulencia/genética , Fenoles/metabolismo , Tiazoles/metabolismo , Humanos , Infecciones por Salmonella/microbiología , Transferencia de Gen Horizontal , Femenino , Factores de Virulencia/genética , Factores de Virulencia/metabolismo , Plásmidos/genéticaRESUMEN
Salmonella diarizonae (IIIb) is frequently isolated from reptiles and less frequently from birds and mammals. However, its isolation from invasive human infections has not been widely reported. Migratory mallard ducks are excellent bioindicators of pathogen presence and pathogen antibiotic resistance (AMR). We present the first isolation from a mallard duck in central Europe of the antibiotic-resistant Salmonella enterica subsp. diarizonae with the unique antigenic pattern 58:r:z53 and report its whole-genome sequencing, serosequencing, and genotyping, which enabled the prediction of its pathogenicity and comparison with phenotypic AMR. The isolated strain was highly similar to S. diarizonae isolated from humans and food. Twenty-four AMR genes were detected, including those encoding aminoglycoside, fluoroquinolone, macrolide, carbapenem, tetracycline, cephalosporin, nitroimidazole, peptide antibiotic, and disinfecting agent/antiseptic resistance. Six Salmonella pathogenicity islands were found (SPI-1, SPI-2, SPI-3, SPI-5, SPI-9, and SPI-13). An iron transport system was detected in SPI-1 centisome C63PI. Plasmid profile analyses showed three to be present. Sequence mutations in the invA and invF genes were noted, which truncated and elongated the proteins, respectively. The strain also harbored genes encoding type-III secretion-system effector proteins and many virulence factors found in S. diarizonae associated with human infections. This study aims to elucidate the AMR and virulence genes in S. enterica subsp. diarizonae that may most seriously threaten human health.
Asunto(s)
Patos , Animales , Patos/microbiología , Humanos , Salmonella/genética , Salmonella/patogenicidad , Salmonella/aislamiento & purificación , Salmonella/efectos de los fármacos , Secuenciación Completa del Genoma , Islas Genómicas/genética , Salmonelosis Animal/microbiología , Antibacterianos/farmacología , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Salmonella enterica/aislamiento & purificación , Salmonella enterica/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano , Filogenia , Farmacorresistencia Bacteriana/genética , Plásmidos/genéticaRESUMEN
The aim of this study was to identify virulence and antimicrobial resistance profiles and determine the sequence type (ST) by multilocus sequence typing (MLST) of Salmonella enterica isolates from bovine carcasses from slaughterhouse located in Minas Gerais state, Brazil, and its relationship with bovine isolates obtained on the American continent based on sequence type profile. The MLST results were compared with all Salmonella STs associated with cattle on American continent, and a multi-locus sequence tree (MS tree) was built. Among the 17 S. enterica isolates, five ST profiles identified, and ST10 were the most frequent, grouping seven (41.2%) isolates. The isolates presented 11 different profiles of virulence genes, and six different antibiotics resistance profiles. The survey on Enterobase platform showed 333 Salmonella STs from American continent, grouped into four different clusters. Most of the isolates in the present study (13/17), were concentrated in a single cluster (L4) composed by 74 STs. As a conclusion, five different STs were identified, with ST10 being the most common. The isolates showed great diversity of virulence genes and antibiotics resistance profiles. Most of the isolates of this study were grouped into a single cluster composed by 74 STs formed by bovine isolates obtained on the American continent.
Asunto(s)
Antibacterianos , Tipificación de Secuencias Multilocus , Salmonelosis Animal , Salmonella enterica , Factores de Virulencia , Animales , Bovinos , Salmonella enterica/genética , Salmonella enterica/efectos de los fármacos , Salmonella enterica/aislamiento & purificación , Salmonella enterica/patogenicidad , Salmonella enterica/clasificación , Brasil , Antibacterianos/farmacología , Salmonelosis Animal/microbiología , Virulencia/genética , Factores de Virulencia/genética , Pruebas de Sensibilidad Microbiana , Farmacorresistencia Bacteriana/genética , Enfermedades de los Bovinos/microbiología , MataderosRESUMEN
Salmonella enterica serovar Dublin (S. Dublin) is an important enteric pathogen affecting cattle and poses increasing public health risks. Understanding the pathophysiology and host-pathogen interactions of S. Dublin infection are critical for developing effective control strategies, yet studies are hindered by the lack of physiologically relevant in vitro models. This study aimed to generate a robust ileal monolayer derived from adult bovine organoids, validate its feasibility as an in vitro infection model with S. Dublin, and evaluate the epithelial response to infection. A stable, confluent monolayer with a functional epithelial barrier was established under optimized culture conditions. The model's applicability for studying S. Dublin infection was confirmed by documenting intracellular bacterial invasion and replication, impacts on epithelial integrity, and a specific inflammatory response, providing insights into the pathogen-epithelium interactions. The study underscores the utility of organoid-derived monolayers in advancing our understanding of enteric infections in livestock and highlights implications for therapeutic strategy development and preventive measures, with potential applications extending to both veterinary and human medicine. The established bovine ileal monolayer offers a novel and physiologically relevant in vitro platform for investigating enteric pathogen-host interactions, particularly for pathogens like S. Dublin.
Asunto(s)
Interacciones Huésped-Patógeno , Íleon , Organoides , Salmonelosis Animal , Animales , Bovinos , Organoides/microbiología , Íleon/microbiología , Íleon/patología , Salmonelosis Animal/microbiología , Salmonella enterica/patogenicidad , Salmonella enterica/fisiología , Inflamación/microbiología , Inflamación/patología , Mucosa Intestinal/microbiología , Enfermedades de los Bovinos/microbiologíaRESUMEN
AIMS: Our aim is to characterize through whole-genome sequencing (WGS) the antimicrobial resistance (AMR) and heavy metal tolerance (HMT) genes content, plasmid presence, virulence potential and genomic diversity of the rare non-typhoid Salmonella enterica serovar Orion (S. Orion) from 19 countries of the African, American, Eastern Mediterranean, European, Southeastern Asia and Western Pacific regions. METHODS AND RESULTS: Totally 324 S. Orion genomes were screened for AMR, HMT and virulence genes, plasmids and Salmonella Pathogenicity Islands (SPIs). Genomic diversity was investigated using Multi-Locus Sequence Typing (MLST) and core-genome MLST (cgMLST). Efflux pump encoding genes mdsA and mdsB were present in all genomes analysed, while quinolone chromosomal point mutations and aminoglycoside, beta-lactam, colistin, lincosamide, macrolide, phenicol, sulphonamide, trimethoprim, tetracycline and disinfectant resistance genes were found in 0.3%-5.9%. A total of 17 genomes (5.2%) from Canada, the United Kingdom, the USA and Tanzania showed a potential multi-drug resistance profile. Gold tolerance genes golS and golT were detected in all genomes analysed, while arsenic, copper, mercury, silver and tellurium tolerance genes were found in 0.3%-35.5%. Col(MGD2) was the most frequently detected plasmid, in 15.4% of the genomes. Virulence genes related to adherence, macrophage induction, magnesium uptake, regulation, serum resistance, stress adaptation, type III secretion systems and six SPIs (1, 2, 3, 4, 5, 9, 12, 13, 14 and C63PI) were detected. ST639 was assigned to 89.2% of the S. Orion genomes, while cgMLST showed core-genome STs and clusters of strains specific by countries. CONCLUSION: The high virulence factor frequencies, the genomic similarity among some non-clinical and clinical strains circulating worldwide and the presence of a strain carrying a resistance gene against a last resource antimicrobial like colistin, highlight the potential risk of S. Orion strains for public health and food safety and reinforce the importance to not underestimate the potential hazard of rare non-typhoid Salmonella serovars.
Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana , Genoma Bacteriano , Salmonella enterica , Salmonella enterica/genética , Salmonella enterica/efectos de los fármacos , Salmonella enterica/patogenicidad , Virulencia/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana/genética , Humanos , Secuenciación Completa del Genoma , Animales , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/epidemiología , Serogrupo , Plásmidos/genéticaRESUMEN
Salmonella enterica is a pathogenic bacterium known for causing severe typhoid fever in humans, making it important to study due to its potential health risks and significant impact on public health. This study provides evolutionary classification of proteins from Salmonella enterica pangenome. We classified 17,238 domains from 13,147 proteins from 79,758 Salmonella enterica strains and studied in detail domains of 272 proteins from 14 characterized Salmonella pathogenicity islands (SPIs). Among SPIs-related proteins, 90 proteins function in the secretion machinery. 41% domains of SPI proteins have no previous sequence annotation. By comparing clinical and environmental isolates, we identified 3682 proteins that are overrepresented in clinical group that we consider as potentially pathogenic. Among domains of potentially pathogenic proteins only 50% domains were annotated by sequence methods previously. Moreover, 36% (1330 out of 3682) of potentially pathogenic proteins cannot be classified into Evolutionary Classification of Protein Domains database (ECOD). Among classified domains of potentially pathogenic proteins the most populated homology groups include helix-turn-helix (HTH), Immunoglobulin-related, and P-loop domains-related. Functional analysis revealed overrepresentation of these protein in biological processes related to viral entry into host cell, antibiotic biosynthesis, DNA metabolism and conformation change, and underrepresentation in translational processes. Analysis of the potentially pathogenic proteins indicates that they form 119 clusters or novel potential pathogenicity islands (NPPIs) within the Salmonella genome, suggesting their potential contribution to the bacterium's virulence. One of the NPPIs revealed significant overrepresentation of potentially pathogenic proteins. Overall, our analysis revealed that identified potentially pathogenic proteins are poorly studied.
Asunto(s)
Proteínas Bacterianas , Genoma Bacteriano , Islas Genómicas , Salmonella enterica , Islas Genómicas/genética , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Salmonella enterica/clasificación , Proteínas Bacterianas/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Humanos , Dominios ProteicosRESUMEN
Antimicrobial resistance (AMR) poses an escalating global public health threat. Canals are essential in Thailand, including the capital city, Bangkok, as agricultural and daily water sources. However, the characteristic and antimicrobial-resistance properties of the bacteria in the urban canals have never been elucidated. This study employed whole genome sequencing to characterize 30 genomes of a causal pathogenic bacteria, Salmonella enterica, isolated from Bangkok canal water between 2016 and 2020. The dominant serotype was Salmonella Agona. In total, 35 AMR genes and 30 chromosomal-mediated gene mutations were identified, in which 21 strains carried both acquired genes and mutations associated with fluoroquinolone resistance. Virulence factors associated with invasion, adhesion, and survival during infection were detected in all study strains. 75.9% of the study stains were multidrug-resistant and all the strains harbored the necessary virulence factors associated with salmonellosis. One strain carried 20 resistance genes, including mcr-3.1, mutations in GyrA, ParC, and ParE, and typhoid toxin-associated genes. Fifteen plasmid replicon types were detected, with Col(pHAD28) being the most common type. Comparative analysis of nine S. Agona from Bangkok and 167 from public databases revealed that specific clonal lineages of S. Agona might have been circulating between canal water and food sources in Thailand and globally. These findings provide insight into potential pathogens in the aquatic ecosystem and support the inclusion of environmental samples into comprehensive AMR surveillance initiatives as part of a One Health approach. This approach aids in comprehending the rise and dissemination of AMR and devising sustainable intervention strategies.IMPORTANCEBangkok is the capital city of Thailand and home to a large canal network that serves the city in various ways. The presence of pathogenic and antimicrobial-resistant Salmonella is alarming and poses a significant public health risk. The present study is the first characterization of the genomic of Salmonella strains from Bangkok canal water. Twenty-two of 29 strains (75.9%) were multidrug-resistant Salmonella and all the strains carried essential virulence factors for pathogenesis. Various plasmid types were identified in these strains, potentially facilitating the horizontal transfer of AMR genes. Additional investigations indicated a potential circulation of S. Agona between canal water and food sources in Thailand. The current study underscores the role of environmental water in an urban city as a reservoir of pathogens and these data obtained can serve as a basis for public health risk assessment and help shape intervention strategies to combat AMR challenges in Thailand.
Asunto(s)
Antibacterianos , Farmacorresistencia Bacteriana Múltiple , Genoma Bacteriano , Factores de Virulencia , Secuenciación Completa del Genoma , Tailandia/epidemiología , Factores de Virulencia/genética , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Genoma Bacteriano/genética , Microbiología del Agua , Plásmidos/genética , Salmonella enterica/genética , Salmonella enterica/aislamiento & purificación , Salmonella enterica/efectos de los fármacos , Salmonella enterica/clasificación , Salmonella enterica/patogenicidad , Salmonella/genética , Salmonella/aislamiento & purificación , Salmonella/clasificación , Salmonella/efectos de los fármacos , Pruebas de Sensibilidad Microbiana , Genómica , Humanos , Filogenia , Infecciones por Salmonella/microbiología , SerogrupoRESUMEN
Salmonella enterica is a leading cause of bacterial food-borne illness in humans and is responsible for millions of cases annually. A critical strategy for the survival of this pathogen is the translocation of bacterial virulence factors termed effectors into host cells, which primarily function via protein-protein interactions with host proteins. The Salmonella genome encodes several paralogous effectors believed to have arisen from duplication events throughout the course of evolution. These paralogs can share structural similarities and enzymatic activities but have also demonstrated divergence in host cell targets or interaction partners and contributions to the intracellular lifecycle of Salmonella. The paralog effectors SopD and SopD2 share 63% amino acid sequence similarity and extensive structural homology yet have demonstrated divergence in secretion kinetics, intracellular localization, host targets, and roles in infection. SopD and SopD2 target host Rab GTPases, which represent critical regulators of intracellular trafficking that mediate diverse cellular functions. While SopD and SopD2 both manipulate Rab function, these paralogs display differences in Rab specificity, and the effectors have also evolved multiple mechanisms of action for GTPase manipulation. Here, we highlight this intriguing pair of paralog effectors in the context of host-pathogen interactions and discuss how this research has presented valuable insights into effector evolution.
Asunto(s)
Proteínas Bacterianas , Interacciones Huésped-Patógeno , Infecciones por Salmonella , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Humanos , Interacciones Huésped-Patógeno/genética , Infecciones por Salmonella/microbiología , Infecciones por Salmonella/metabolismo , Salmonella enterica/metabolismo , Salmonella enterica/genética , Salmonella enterica/patogenicidad , Factores de Virulencia/metabolismo , Factores de Virulencia/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Animales , Evolución MolecularRESUMEN
Lipopolysaccharides (LPS) is one of the most potent pathogen-associated signals for the immune system of vertebrates. In addition to the canonical pathway of LPS detection mediated by toll-like receptor 4 (TLR4) signaling pathway, TRP channel-mediated pathways endow sensory neurons and epithelial cells with the ability to detect and react to bacterial endotoxins. Previous work revealed that LPS triggers TRPV4-dependent calcium influx in urothelial cells (UCs) and mouse tracheobronchial epithelial cells (mTEC). In marked contrast, here we show that most subtypes of LPS could not directly activate TRPV4 channel. Although LPS from Salmonella enterica serotype Minnesota evoked a [Ca2+]i response in freshly isolated human bronchial epithelial cells (ECs), freshly isolated mouse ear skin single-cell suspensions, or HEK293T cells transiently transfected with mTRPV4, this activation occurred in a TRPV4-independent manner. Additionally, LPS from either E. coli strains or Salmonella enterica serotype Minnesota did not evoke significant difference in inflammation and pain hyperalgesia between wild type and TRPV4 deficient mice. In summary, our results demonstrate that in vitro and in vivo effects induced by LPS are independent of TRPV4, thus providing a clarity to the questioned role of LPS in TRPV4 activation.
Asunto(s)
Señalización del Calcio , Lipopolisacáridos , Canales Catiónicos TRPV , Animales , Humanos , Ratones , Calcio/metabolismo , Señalización del Calcio/fisiología , Escherichia coli/patogenicidad , Células HEK293 , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/farmacología , Salmonella enterica/patogenicidadRESUMEN
The envelope of Gram-negative bacteria is a vital barrier that must balance protection and nutrient uptake. Small RNAs are crucial regulators of the envelope composition and function. Here, using RIL-seq to capture the Hfq-mediated RNA-RNA interactome in Salmonella enterica, we discover envelope-related riboregulators, including OppX. We show that OppX acts as an RNA sponge of MicF sRNA, a prototypical porin repressor. OppX originates from the 5' UTR of oppABCDF, encoding the major inner-membrane oligopeptide transporter, and sequesters MicF's seed region to derepress the synthesis of the porin OmpF. Intriguingly, OppX operates as a true sponge, storing MicF in an inactive complex without affecting its levels or stability. Conservation of the opp-OppX-MicF-ompF axis in related bacteria suggests that it serves an important mechanism, adjusting envelope porosity to specific transport capacity. These data also highlight the resource value of this Salmonella RNA interactome, which will aid in unraveling RNA-centric regulation in enteric pathogens.
Asunto(s)
Regiones no Traducidas 5' , Membrana Celular/genética , Proteínas de Escherichia coli/genética , Proteína de Factor 1 del Huésped/genética , ARN Bacteriano/genética , Salmonella enterica/genética , Transporte Biológico , Membrana Celular/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Proteína de Factor 1 del Huésped/metabolismo , Interacciones Huésped-Patógeno , Permeabilidad , Porinas/genética , Porinas/metabolismo , ARN Bacteriano/metabolismo , RNA-Seq , Salmonella enterica/metabolismo , Salmonella enterica/patogenicidadRESUMEN
Ingestion of food- or waterborne antibiotic-resistant bacteria may lead to dissemination of antibiotic resistance genes (ARGs) in the gut microbiota. The gut microbiota often suffers from various disturbances. It is not clear whether and how disturbed microbiota may affect ARG mobility under antibiotic treatments. For proof of concept, in the presence or absence of streptomycin pre-treatment, mice were inoculated orally with a ß-lactam-susceptible Salmonella enterica serovar Heidelberg clinical isolate (recipient) and a ß-lactam resistant Escherichia coli O80:H26 isolate (donor) carrying a blaCMY-2 gene on an IncI2 plasmid. Immediately following inoculation, mice were treated with or without ampicillin in drinking water for 7 days. Faeces were sampled, donor, recipient and transconjugant were enumerated, blaCMY-2 abundance was determined by quantitative PCR, faecal microbial community composition was determined by 16S rRNA amplicon sequencing and cecal samples were observed histologically for evidence of inflammation. In faeces of mice that received streptomycin pre-treatment, the donor abundance remained high, and the abundance of S. Heidelberg transconjugant and the relative abundance of Enterobacteriaceae increased significantly during the ampicillin treatment. Co-blooming of the donor, transconjugant and commensal Enterobacteriaceae in the inflamed intestine promoted significantly (P<0.05) higher and possibly wider dissemination of the blaCMY-2 gene in the gut microbiota of mice that received the combination of streptomycin pre-treatment and ampicillin treatment (Str-Amp) compared to the other mice. Following cessation of the ampicillin treatment, faecal shedding of S. Heidelberg transconjugant persisted much longer from mice in the Str-Amp group compared to the other mice. In addition, only mice in the Str-Amp group shed a commensal E. coli O2:H6 transconjugant, which carries three copies of the blaCMY-2 gene, one on the IncI2 plasmid and two on the chromosome. The findings highlight the significance of pre-existing gut microbiota for ARG dissemination and persistence during and following antibiotic treatments of infectious diseases.
Asunto(s)
Ampicilina/administración & dosificación , Escherichia coli/genética , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Salmonella enterica/genética , Estreptomicina/administración & dosificación , Resistencia betalactámica , beta-Lactamasas/genética , Ampicilina/farmacología , Animales , Profilaxis Antibiótica , Modelos Animales de Enfermedad , Escherichia coli/efectos de los fármacos , Escherichia coli/patogenicidad , Heces/microbiología , Femenino , Transferencia de Gen Horizontal , Infecciones por Bacterias Gramnegativas/microbiología , Ratones , Prueba de Estudio Conceptual , ARN Ribosómico 16S/genética , Infecciones por Salmonella , Salmonella enterica/efectos de los fármacos , Salmonella enterica/patogenicidad , Estreptomicina/farmacología , Secuenciación Completa del GenomaRESUMEN
Non-typhoid Salmonella (NTS) represents one of the major causes of foodborne diseases, which are made worse by the increasing emergence of antibiotic resistance. Thus, NTS are a significant and common public health concern. The purpose of this study is to investigate whether selection for phage-resistance alters bacterial phenotype, making this approach suitable for candidate vaccine preparation. We therefore compared two strains of Salmonella enterica serovar Rissen: RR (the phage-resistant strain) and RW (the phage-sensitive strain) in order to investigate a potential cost associated with the bacterium virulence. We tested the ability of both RR and RW to infect phagocytic and non-phagocytic cell lines, the activity of virulence factors associated with the main Type-3 secretory system (T3SS), as well as the canonic inflammatory mediators. The mutant RR strain-compared to the wildtype RW strain-induced in the host a weaker innate immune response. We suggest that the mitigated inflammatory response very likely is due to structural modifications of the lipopolysaccharide (LPS). Our results indicate that phage-resistance might be exploited as a means for the development of LPS-based antibacterial vaccines.
Asunto(s)
Bacteriófagos/fisiología , Infecciones por Salmonella/inmunología , Infecciones por Salmonella/microbiología , Salmonella enterica/virología , Humanos , Inmunidad Innata , Salmonella enterica/genética , Salmonella enterica/inmunología , Salmonella enterica/patogenicidad , VirulenciaRESUMEN
Mitigation strategies to prevent microbial contamination of crops are lacking. We tested the hypothesis that induction of plant systemic resistance by biological (induced systemic resistance [ISR]) and chemical (systemic acquired resistance [SAR]) elicitors reduces endophytic colonization of leaves by Salmonella enterica serovars Senftenberg and Typhimurium. S. Senftenberg had greater endophytic fitness than S. Typhimurium in basil and lettuce. The apoplastic population sizes of serovars Senftenberg and Typhimurium in basil and lettuce, respectively, were significantly reduced approximately 10- to 100-fold by root treatment with microbial inducers of systemic resistance compared to H2O treatment. Rhodotorula glutinis effected the lowest population increases of S. Typhimurium in lettuce and S. Senftenberg in basil leaves, respectively 120- and 60-fold lower than those seen with the H2O treatment over 10 days postinoculation. Trichoderma harzianum and Pichia guilliermondii did not have any significant effect on S. Senftenberg in the basil apoplast. The chemical elicitors acidobenzolar-S-methyl and dl-ß-amino-butyric acid inhibited S. Typhimurium multiplication in the lettuce apoplast 10- and 2-fold, respectively, compared to H2O-treated plants. All ISR and SAR inducers applied to lettuce roots in this study increased leaf expression of the defense gene PR1, as did Salmonella apoplastic colonization in H2O-treated lettuce plants. Remarkably, both acidobenzolar-S-methyl upregulation and R. glutinis upregulation of PR1 were repressed by the presence of Salmonella in the leaves. However, enhanced PR1 expression was sustained longer and at greater levels upon elicitor treatment than by Salmonella induction alone. These results serve as a proof of concept that priming of plant immunity may provide an intrinsic hurdle against the endophytic establishment of enteric pathogens in leafy vegetables. IMPORTANCE Fruit and vegetables consumed raw have become an important vehicle of foodborne illness despite a continuous effort to improve their microbial safety. Salmonella enterica has caused numerous recalls and outbreaks of infection associated with contaminated leafy vegetables. Evidence is increasing that enteric pathogens can reach the leaf apoplast, where they confront plant innate immunity. Plants may be triggered for induction of their defense signaling pathways by exposure to chemical or microbial elicitors. This priming for recognition of microbes by plant defense pathways has been used to inhibit plant pathogens and limit disease. Given that current mitigation strategies are insufficient in preventing microbial contamination of produce and associated outbreaks, we investigated the effect of plant-induced resistance on S. enterica colonization of the lettuce and basil leaf apoplast in order to gain a proof of concept for the use of such an intrinsic approach to inhibit human pathogens in leafy vegetables.
Asunto(s)
Resistencia a la Enfermedad , Lactuca , Ocimum basilicum , Salmonella enterica , Lactuca/inmunología , Lactuca/microbiología , Ocimum basilicum/inmunología , Ocimum basilicum/microbiología , Inmunidad de la Planta , Hojas de la Planta , Proteínas de Plantas , Salmonella enterica/patogenicidad , Salmonella typhimuriumRESUMEN
The rck open reading frame (ORF) on the pefI-srgC operon encodes an outer membrane protein responsible for invasion of nonphagocytic cell lines and resistance to complement-mediated killing. Until now, the rck ORF was only detected on the virulence plasmids of three serovars of Salmonella subsp. enterica (i.e., Bovismorbificans, Enteritidis, and Typhimurium). The increasing number of Salmonella genome sequences allowed us to use a combination of reference sequences and whole-genome multilocus sequence typing (wgMLST) data analysis to probe the presence of the operon and of rck in a wide array of isolates belonging to all Salmonella species and subspecies. We established the presence of partial or complete operons in 61 subsp. enterica serovars as well as in 4 other subspecies with various syntenies and frequencies. The rck ORF itself was retrieved in 36 subsp. enterica serovars and in two subspecies with either chromosomal or plasmid-borne localization. It displays high conservation of its sequence within the genus, and we demonstrated that most of the allelic variations identified did not alter the virulence properties of the protein. However, we demonstrated the importance of the residue at position 38 (at the level of the first extracellular loop of the protein) in the invasin function of Rck. Altogether, our results highlight that rck is not restricted to the three formerly identified serovars and could therefore have a more important role in virulence than previously expected. Moreover, this work raises questions about the mechanisms involved in rck acquisition and about virulence plasmid distribution and evolution. IMPORTANCE The foodborne pathogen Salmonella is responsible for a wide variety of pathologies depending on the infected host, the infecting serovars, and its set of virulence factors. However, the implication of each of these virulence factors and their role in the specific host-pathogen interplay are not fully understood. The significance of our research is in determining the distribution of one of these factors, the virulence plasmid-encoded invasin and resistance to complement killing protein Rck. In addition to providing elements of reflection concerning the mechanisms of acquisition of specific virulence genes in certain serotypes, this work will help to understand the role of Rck in the pathogenesis of Salmonella.