Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.691
Filtrar
Más filtros

Intervalo de año de publicación
1.
Sci Rep ; 14(1): 24829, 2024 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-39438506

RESUMEN

This study explores the impact of γ-irradiation on ethanolic extracts of Solanum aculeastrum Dunal. The anti-cancer and antimicrobial properties were investigated. The obtained results revealed that total phenol (TP) and total flavonoid (TF) of total ethanol extract (100%) (FTE) were higher than 70% ethanol extract (SE), and these contents increased after gamma radiation with 5 kGy. The results of minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the Solanum aculeastrum extracts suggested that FTE and 5 kGy-irradiated FTE can be used to control and prevent skin infections caused by MRSA and endocarditis, urinary tract infections, and prostatitis caused by Enterococcus faecalis. The FTE sample irradiated at 5 kGy showed cytotoxicity for A431 and Hct-116 cell lines similar to the control sample and higher than the toxicity revealed by the samples irradiated at 10 kGy. In normal cells (Bj-1), the toxicity was decreased after irradiation (IC50 = 31 µg/ml) compared to the non-irradiated extract (IC50 = 26.1 µg/ml). Molecular docking suggested Sortase A to play a role in chlorogenic acid antibacterial activity towards Staphylococcus aureus. In conclusion, γ-irradiation can be used to enhance the phytoconstituents of Solanum aculeastrum fruit extracts and, consequently, its biological properties.


Asunto(s)
Antibacterianos , Frutas , Pruebas de Sensibilidad Microbiana , Extractos Vegetales , Solanum , Solanum/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Humanos , Frutas/química , Antibacterianos/farmacología , Antibacterianos/química , Rayos gamma , Simulación del Acoplamiento Molecular , Aminoaciltransferasas/antagonistas & inhibidores , Aminoaciltransferasas/metabolismo , Línea Celular Tumoral , Flavonoides/farmacología , Flavonoides/química , Proteínas Bacterianas/metabolismo , Fenoles/farmacología , Fenoles/química , Células HCT116 , Cisteína Endopeptidasas
2.
BMC Plant Biol ; 24(1): 1005, 2024 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-39455908

RESUMEN

BACKGROUND: The presence of potato cyst nematodes (PCN) causes a significant risk to potato crops globally, leading to reduced yields and economic losses. While the plant Solanum sisymbriifolium is known for its resistance to PCN and can be used as a trap crop, the molecular mechanisms behind this resistance remain poorly understood. In this study, genes differentially expressed were identified in control and infected plants during the early stages of the S. sisymbriifolium - G. pallida interaction. RESULTS: Gene expression profiles were characterized for two S. sisymbriifolium cultivars, Melody and Sis6001, uninfected and infected by G. pallida. The comparative transcriptome analysis revealed a total of 4,087 and 2,043 differentially expressed genes (DEGs) in response to nematode infection in the cultivars Melody and Sis6001, respectively. Gene ontology (GO) enrichment analysis provided insights into the response of the plant to nematode infection, indicating an activation of the plant metabolism, oxidative stress leading to defence mechanism activation, and modification of the plant cell wall. Genes associated with the jasmonic and salicylic acid pathways were also found to be differentially expressed, suggesting their involvement in the plant's defence response. In addition, the analysis of NBS-LRR domain-containing transcripts that play an important role in hypersensitive response and programmed cell death led to the identification of ten transcripts that had no annotations from the databases, with emphasis on TRINITY_DN52667_C1_G1, found to be upregulated in both cultivars. CONCLUSIONS: These findings represent an important step towards understanding the molecular basis underlying plant resistance to nematodes and facilitating the development of more effective control strategies against PCN.


Asunto(s)
Resistencia a la Enfermedad , Enfermedades de las Plantas , RNA-Seq , Solanum , Tylenchoidea , Solanum/genética , Solanum/parasitología , Tylenchoidea/fisiología , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Resistencia a la Enfermedad/genética , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Genes de Plantas
3.
Molecules ; 29(20)2024 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-39459292

RESUMEN

Fungal endophytes, symbiotic microorganisms residing within plants, are renowned for producing bioactive secondary metabolites with diverse beneficial properties. We investigated the antimicrobial potential of fungal endophytes isolated from Solanum mauritianum, an invasive weed, against clinically significant bacterial pathogens. Selected fungal endophytes (Penicillium chrysogenum, Fusarium sp., and Paracamarosporium leucadendri) were isolated from the plant's leaves and fruits. Their crude extracts were tested against various referenced strains, such as Mycobacterium species (M. smegmatis ATCC 607 and M. bovis ATCC 27290), Staphylococcus aureus ATCC 6571, Bacillus subtilis ATCC 11774, Klebsiella species (K. pneumoniae ATCC 10031 and K. oxytoca ATCC 8724), Escherichia coli ATCC 10536, and Pseudomonas aeruginosa ATCC 10145, using the Kirby-Bauer disk diffusion method. Resazurin Microtiter Assay was used for the determination of the minimum inhibitory concentration. The chemical nature of the secondary metabolites in the crude extracts produced by fungal endophytes was evaluated using high-resolution liquid chromatography-mass spectrometry (LC-MS) using water and acetonitrile gradient. Liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF-MS/MS) was employed for untargeted metabolomics. LC-QTOF-MS/MS identified 63 bioactive compounds across the three endophytes. P. chrysogenum had the highest activity against S. aureus and M. smegmatis (1.15 mg/mL and 0.02 mg/mL, respectively), while P. leucadendri demonstrated moderate activity against M. smegmatis (2.91 mg/mL) and E. coli (1.16 mg/mL). Fusarium sp. exhibited the broadest spectrum of antibacterial activity, with MIC values ranging from 0.03 mg/mL (B. subtilis) to 10 mg/mL (M. smegmatis). P. leucadendri produced 29 metabolites, Fusarium sp. had 23 identified metabolites, and a total of 11 metabolites were identified from P. chrysogenum. The fruits of the plant, accounting for 60%, appeared to be the most abundant in the endophyte diversity when compared to the stems and leaves. This study highlights the potential of fungal endophytes from S. mauritianum as a source of novel bioactive compounds, particularly against multidrug-resistant pathogens, contributing to the ongoing efforts to combat antimicrobial resistance.


Asunto(s)
Endófitos , Pruebas de Sensibilidad Microbiana , Solanum , Solanum/microbiología , Solanum/química , Endófitos/metabolismo , Metabolismo Secundario , Antibacterianos/farmacología , Antibacterianos/química , Hongos/metabolismo , Metabolómica/métodos , Bacterias/metabolismo , Hojas de la Planta/microbiología , Hojas de la Planta/química , Espectrometría de Masas en Tándem , Fusarium/metabolismo
4.
Cell Mol Biol (Noisy-le-grand) ; 70(9): 106-113, 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39380271

RESUMEN

Finding novel, efficient antimicrobial drugs is crucial in this age of pressing global health challenges. The medicinal qualities of the leaves of the argel plant (Solanum argel, or S. argel) have been recognized in traditional medicine for quite some time. The medicinal potential of these leaves may be due to the presence of bioactive substances such as alkaloids, flavonoids, and phenolic acids. S. argel leaf antibacterial, phytochemical, and gas chromatography-mass spectrometry (GC-MS) characteristics are the focus of this investigation. To conduct the study, bioactive compounds would be extracted from the leaves and tested against a panel of bacterial pathogens. Then, the compounds would be identified using GC-MS analysis. Mean inhibition zones of 15.30±1.0 mm, 14.67±0.42 mm, 15.0±0.01 mm, and 15.56±0.22 mm for the bacteria E. coli, Staph. aureus, and Sal. typhimurium, respectively, were seen in the antibacterial results at a concentration of 3 µg/disc. Secondary metabolites such as alkaloids, flavonoids, phenolic substances, and tannins were identified using phytochemical investigation. Antimicrobial, antioxidant, and anti-inflammatory are just a few of the many bioactivities associated with these phytochemicals. Argel plant leaves contain bioactive chemicals that show they could be a source of new pharmaceuticals. Argel leaves were analyzed using GC-MS and 37 different chemicals were found. The most abundant compounds were 4H-Pyran-4-one and 2,3-dihydro-3.5-hydroxy, followed by 3-Pentanol, 2,2,4,4-tetramethyl, and 2,2-Dimethyl-3-[3-methyl-5-(phenylthio)-, with areas of 11.80%, 10.6%, and 9.47%, respectively. The analysis was performed within a time range of 5.070 to 34.464 minutes. According to the research, Argel leaf has powerful antioxidant and antibacterial capabilities, making it an excellent substance for medical and food preservation applications.


Asunto(s)
Antibacterianos , Antioxidantes , Cromatografía de Gases y Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Fitoquímicos , Extractos Vegetales , Hojas de la Planta , Solanum , Hojas de la Planta/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Antibacterianos/farmacología , Antibacterianos/análisis , Antibacterianos/química , Fitoquímicos/farmacología , Fitoquímicos/análisis , Fitoquímicos/química , Antioxidantes/farmacología , Antioxidantes/química , Antioxidantes/análisis , Extractos Vegetales/farmacología , Extractos Vegetales/química , Solanum/química , Flavonoides/análisis , Flavonoides/farmacología , Flavonoides/química , Staphylococcus aureus/efectos de los fármacos , Alcaloides/análisis , Alcaloides/farmacología , Alcaloides/química , Escherichia coli/efectos de los fármacos
5.
PLoS Genet ; 20(9): e1011402, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39264953

RESUMEN

Nucleotide-binding domain and leucine-rich repeat (NLR) proteins play crucial roles in immunity against pathogens in both animals and plants. In solanaceous plants, activation of several sensor NLRs triggers their helper NLRs, known as NLR-required for cell death (NRC), to form resistosome complexes to initiate immune responses. While the sensor NLRs and downstream NRC helpers display diverse genetic compatibility, molecular evolutionary events leading to the complex network architecture remained elusive. Here, we showed that solanaceous NRC3 variants underwent subfunctionalization after the divergence of Solanum and Nicotiana, altering the genetic architecture of the NRC network in Nicotiana. Natural solanaceous NRC3 variants form three allelic groups displaying distinct compatibilities with the sensor NLR Rpi-blb2. Ancestral sequence reconstruction and analyses of natural and chimeric variants identified six key amino acids involved in sensor-helper compatibility. These residues are positioned on multiple surfaces of the resting NRC3 homodimer, collectively contributing to their compatibility with Rpi-blb2. Upon activation, Rpi-blb2-compatible NRC3 variants form membrane-associated punctate and high molecular weight complexes, and confer resistance to the late blight pathogen Phytophthora infestans. Our findings revealed how mutations in NRC alleles lead to subfunctionalization, altering sensor-helper compatibility and contributing to the increased complexity of the NRC network.


Asunto(s)
Proteínas NLR , Nicotiana , Proteínas de Plantas , Nicotiana/genética , Proteínas NLR/genética , Proteínas NLR/metabolismo , Proteínas NLR/química , Proteínas de Plantas/genética , Solanum/genética , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/inmunología , Evolución Molecular , Inmunidad de la Planta/genética , Resistencia a la Enfermedad/genética , Phytophthora infestans/patogenicidad , Phytophthora infestans/genética , Alelos
6.
Braz J Biol ; 84: e285691, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39292140

RESUMEN

The lulo (Solanum quitoense Lam.) is a fruit tree of great importance for southern Colombia, given its demand and its potential as an exotic fruit in the international market. However, there is no information on variation and heritability, fundamental aspects for evaluating selection. The objective of this research was to estimate the heritability of yield, fruit weight (FW), total soluble solids (TSS) and maturity index (MI) in half-sib families (HSF) of lulo from the first cycle of recurrent selection. Strict sense heritability ( h e 2 ) across four locations in the 50 HSF were low for yield, MI and for FW, while for TSS it was high. The 50 FMH showed a high h e 2 in yield in Arboleda, Cartago, Tangua and La Unión. TSS was high in all four locations. For FW it was moderate in Cartago, Tangua, La Unión and Arboleda. In MI it was high in Tangua and La Unión and low in Arboleda and Cartago. The h e 2 in 10 HSF selected across four locations presented values ​​higher than 50 HSF, with a high value for yield in Arboleda, moderate in Cartago and Tangua and low in La Unión; In FW it was high in Arboleda, Tangua and La Unión, and moderate in Cartago. The results indicate the existence of adequate genetic variance to be able to select and achieve high genetic gain in the traits evaluated in HSF of lulo.


Asunto(s)
Frutas , Solanum , Frutas/genética , Solanum/genética , Solanum/clasificación , Colombia , Fenotipo , Carácter Cuantitativo Heredable
7.
PeerJ ; 12: e17985, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39221264

RESUMEN

Within biology, there have been long-standing goals to understand how traits impact fitness, determine the degree of adaptation, and predict responses to selection. One key step in answering these questions is to study the mode of gene action or genetic architecture of traits. The genetic architecture underlying a trait will ultimately determine whether selection can lead to a change in the phenotype. Theoretical and empirical research have shown that additive architectures are most responsive to selection. The genus Solanum offers a unique system to quantify the genetic architecture of traits. Crosses between Solanum pennellii and S. lycopersicum, which have evolved unique adaptive traits for very different environments, offer an opportunity to investigate the genetic architecture of a variety of morphological traits that often are not variable within species. We generated cohorts between strains of these two Solanum species and collected phenotypic data for eight morphological traits. The genetic architectures underlying these traits were estimated using an information-theoretic approach to line cross analysis. By estimating the genetic architectures of these traits, we were able to show a key role for maternal and epistatic effects and infer the accessibility of these traits to selection.


Asunto(s)
Cruzamientos Genéticos , Fenotipo , Selección Genética , Solanum , Solanum/genética , Solanum/anatomía & histología
8.
Curr Biol ; 34(18): 4104-4113.e3, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-39153483

RESUMEN

Pollinator behavior is vital to plant-pollinator interactions, affecting the acquisition of floral rewards, patterns of pollen transfer, and plant reproductive success. During buzz pollination, bees produce vibrations with their indirect flight muscles to extract pollen from tube-like flowers. Vibrations can be transmitted to the flower via the mandibles, abdomen, legs, or thorax directly. Vibration amplitude at the flower determines the rate of pollen release and should vary with the coupling of bee and flower. This coupling often occurs through anther biting, but no studies have quantified how biting affects flower vibration. Here, we used high-speed filmography to investigate how flower vibration amplitude changes during biting in Bombus terrestris visiting two species of buzz-pollinated flowering plants: Solanum dulcamara and Solanum rostratum (Solanaceae). We found that floral buzzing drives head vibrations up to 3 times greater than those of the thorax, which doubles the vibration amplitude of the anther during biting compared with indirect vibration transmission when not biting. However, the efficiency of this vibration transmission depends on the angle at which the bee bites the anther. Variation in transmission mechanisms, combined with the diversity of vibrations across bee species, yields a rich assortment of potential strategies that bees could employ to access rewards from buzz-pollinated flowers.


Asunto(s)
Flores , Polinización , Solanum , Vibración , Animales , Abejas/fisiología , Flores/fisiología , Solanum/fisiología , Tórax/fisiología
9.
Braz J Biol ; 84: e281628, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39109719

RESUMEN

The increasing need for sustainable alternatives to synthetic insecticides has driven the analysis of extracts from Solanum habrochaites, a wild tomato, through fractionated column chromatography. Potential bioactive compounds for pest management, a clean and promising biotechnological solution, have been reported from this plant. The objective is to provide detailed gas chromatography data, including peaks, structural formulas, and retention indices for the extracts of S. habrochaites aerial parts. Column chromatographic analysis was conducted with five fractions (F1, F2, F5, F3, and F4) of S. habrochaites extracts. Long-chain hydrocarbons such as hexadecanoic acid and docosano were identified in the F1 fraction; fatty acid esters, including hexadecanoate and octadecenoate ethyls in the F2 and methyl ketones, with tridecan-2-one as the major component in the F5, while no identifiable compounds were disclosed in the F3 and F4 fractions. The column chromatography provided valuable insights into compounds in the F1, F2, and F5 fractions of S. habrochaites extracts, highlighting fatty acid esters, long-chain hydrocarbons, and methyl ketones. The bioactive compounds, from extracts of this plant, including the first record of the docosanoate, hexadecanoate and octadecanoate ethyls in S. habrochaites and Solanaceae, reinforces their promising biological application in different areas of science.


Asunto(s)
Extractos Vegetales , Solanum , Extractos Vegetales/química , Solanum/química , Cromatografía de Gases , Ácidos Grasos/análisis
10.
Sci Rep ; 14(1): 18747, 2024 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-39138246

RESUMEN

Natural products received much attention as an environmentally beneficial solution for pest management. Therefore, the extracts of invasive silverleaf nightshade (Solanum elaeagnifolium Cav.) weeds using their berries parts (seeds, peels and mucilage) supported by bioassay-guided fractionation were tested against both the greater wax moth (Galleria mellonella) and Erwinia carotovora pv. carotovora causes of the blackleg of potatoes. The seeds and peels of S. elaeagnifolium were successively extracted by maceration using dichloromethane (DCM), ethyl acetate (EtOAc), and ethanol (EtOH), respectively. While, its mucilage was extracted using EtOAc. The successive EtOH extract of the plant seeds had promising inhibition efficacy and the best minimal inhibition concentration (MIC) of 50 µg/ml against E. Carotovora amongst other extracts (DCM and EtOAc of the plant berries parts). Depending on dose response activity, EtOH extract had G. mellonella larval mortality and pupal duration rates (LC50; 198.30 and LC95; 1294.73 µg/ml), respectively. Additionally, this EtOH extract of seeds was fractionated using preparative TLC to three characteristic bands. The insecticidal and bacterial activities of these isolated bands (SEA, SEB, and SEC) were evaluated at a dose of 100 µg/ml, causing mortality by 48.48, 62.63 and 92.93% (G. mellonella larvae) and inhibition by 15.22, 0.00 and 31.66 mm (E. carotovora), respectively. Moreover, the separated major three bands were tentatively identified using LC-ESI-MS analysis revealing the presence of two phenolic acids; chlorogenic acid (SEA) and dicaffeoyl quinic acid (SEB) in addition to one steroidal saponin (SEC) annotated as borassoside E or yamoscin. Finally, the plant seeds' successive EtOH extract as well as its active constituents, exhibited potential broad-spectrum activity and the ability to participate in future pest management initiatives. A field study is also recommended to validate its bio-efficacy against selected pests and to develop its formulations.


Asunto(s)
Mariposas Nocturnas , Pectobacterium carotovorum , Extractos Vegetales , Animales , Pectobacterium carotovorum/efectos de los fármacos , Extractos Vegetales/farmacología , Extractos Vegetales/química , Mariposas Nocturnas/efectos de los fármacos , Solanum/química , Frutas/química , Cromatografía Liquida/métodos , Larva/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Espectrometría de Masas/métodos , Pruebas de Sensibilidad Microbiana , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/prevención & control , Cromatografía Líquida con Espectrometría de Masas
12.
Science ; 385(6708): eado1663, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39088611

RESUMEN

An enduring question in evolutionary biology concerns the degree to which episodes of convergent trait evolution depend on the same genetic programs, particularly over long timescales. In this work, we genetically dissected repeated origins and losses of prickles-sharp epidermal projections-that convergently evolved in numerous plant lineages. Mutations in a cytokinin hormone biosynthetic gene caused at least 16 independent losses of prickles in eggplants and wild relatives in the genus Solanum. Homologs underlie prickle formation across angiosperms that collectively diverged more than 150 million years ago, including rice and roses. By developing new Solanum genetic systems, we leveraged this discovery to eliminate prickles in a wild species and an indigenously foraged berry. Our findings implicate a shared hormone activation genetic program underlying evolutionarily widespread and recurrent instances of plant morphological innovation.


Asunto(s)
Evolución Biológica , Citocininas , Genes de Plantas , Epidermis de la Planta , Solanum , Citocininas/biosíntesis , Citocininas/genética , Evolución Molecular , Mutación , Oryza/genética , Filogenia , Epidermis de la Planta/anatomía & histología , Epidermis de la Planta/genética , Solanum/anatomía & histología , Solanum/genética
13.
J Ethnopharmacol ; 335: 118670, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39117020

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Solanum torvum Sw. (ST) is used to clear heat toxins, promote blood circulation, and alleviate blood stasis. Therefore, this plant has traditionally been used as an ethnomedicine for common cold, chronic gastritis, and tumors. AIM OF THE STUDY: This study aimed to elucidate the mechanism by which ST induces ferroptosis in hepatocellular carcinoma (HCC), the combination effect with lenvatinib, and the impact on lenvatinib-resistant cells. MATERIALS AND METHODS: Cell viability assays were performed using different hepatoma cell lines treated with ST. Lipid peroxidation and iron assays were performed using flow cytometry. Molecules involved in the ferroptosis pathway were detected by Western blotting. Finally, a lenvatinib-resistant cell line was established to evaluate the antiproliferative effects of ST. RESULTS: ST ethanol extract inhibited the growth of various hepatoma cell lines. A significant reduction in glutathione peroxidase 4 (GPX4) expression was observed following ST treatment, which was accompanied by increased lipid peroxidation and Fe2+ accumulation. ST induced ferroptosis mainly through heme oxygenase-1 (HO-1) expression. HO-1 knockdown reduced ST-induced lipid peroxidation and reversed GPX4 suppression. Acyl-CoA synthetase long-chain family member 4 (ACSL4) also participated in ST-induced ferroptosis. ST and lenvatinib combination showed an additive effect, and ST retained its potential anti-HCC efficacy in a lenvatinib-resistant cell line. CONCLUSION: This study demonstrated that the ethanol extract of ST inhibits hepatoma cell growth by inducing ferroptosis. ST displayed an additive effect with lenvatinib in Hep 3B cells and showed remarkable anti-HCC activity in lenvatinib-resistant Hep 3B cells. Collectively, the study shows that ST might have the potential to reduce lenvatinib use in clinical practice and salvage cases of lenvatinib resistance.


Asunto(s)
Carcinoma Hepatocelular , Ferroptosis , Neoplasias Hepáticas , Extractos Vegetales , Quinolinas , Solanum , Ferroptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Solanum/química , Extractos Vegetales/farmacología , Línea Celular Tumoral , Quinolinas/farmacología , Compuestos de Fenilurea/farmacología , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Antineoplásicos Fitogénicos/farmacología , Peroxidación de Lípido/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Hemo-Oxigenasa 1/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo
14.
J Ethnopharmacol ; 335: 118686, 2024 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-39127114

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Every year, cardiovascular diseases (CVDs) account for about 17.9 million deaths, making them the primary cause of both morbidity and mortality. Conventional drugs, which are often prescribed to treat cardiovascular diseases, are costly and have adverse effects. Consequently, dietary modifications and other medications are needed. Traditional use of Solanum indicum as cardiotonic to treat hypertension and anticoagulant potency has been reported but poorly evaluated scientifically. AIM OF THE STUDY: This study investigated the in vivo anticoagulant activity and mechanism of anticoagulation of quercetin (QC), a bioactive compound isolated from S. indicum (SI) hydroethanolic fruit extract. MATERIALS AND METHODS: Bioassay-guided fractionation (anticoagulant activity) extracted QC from hydroethanolic SI extract. QC was extensively characterized biochemically and pharmacologically. The interaction between QC and thrombin was investigated using spectrofluorometric and isothermal calorimetric methods. Cytotoxicity, antiplatelet, and thrombolytic studies were carried out in vitro. The Swiss albino mice were used to assess the in vivo, anticoagulant, and antithrombotic activities of QC. RESULTS: QC exhibits anticoagulant activity via (i) uncompetitive inhibition of thrombin but not FXa with a Ki value of 33.11 ± 4.2 µM and (ii) a partial inhibition of thrombin-catalyzed platelet aggregation with an IC50 value of 13.2 ± 1.2 µM. The experimental validation of the in silico study's prediction of QC's binding to thrombin was confirmed by spectrofluorometric and isothermal calorimetric analyses. QC was nontoxic to mammalian, non-hemolytic cells and demonstrated thrombolytic activity by activating plasminogen. QC demonstrated in vivo anticoagulant efficacy, preventing k-carrageen-induced thrombus formation in mice's tails. In the acute circulatory stasis paradigm in mice, QC reduces thromboxane B2 (TXB2) and endothelin-1 (ET-1) while increasing nitric oxide synthase (eNOS) and 6-keto prostaglandin F1α (6-keto-PGF1 α). CONCLUSION: Effective in vivo anticoagulant and antithrombotic properties of S. indicum's bioactive component QC point to the plant's potential use as a herbal anticoagulant medication for preventing and treating cardiovascular diseases linked to thrombosis.


Asunto(s)
Anticoagulantes , Fibrinolíticos , Extractos Vegetales , Agregación Plaquetaria , Quercetina , Solanum , Animales , Quercetina/farmacología , Quercetina/aislamiento & purificación , Ratones , Fibrinolíticos/farmacología , Fibrinolíticos/aislamiento & purificación , Solanum/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Anticoagulantes/farmacología , Anticoagulantes/aislamiento & purificación , Humanos , Agregación Plaquetaria/efectos de los fármacos , Masculino , Plantas Medicinales/química , Trombosis/tratamiento farmacológico , Trombosis/prevención & control , Frutas/química , Trombina , Simulación del Acoplamiento Molecular , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/aislamiento & purificación , Coagulación Sanguínea/efectos de los fármacos
15.
Ecology ; 105(9): e4392, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39113178

RESUMEN

Associational effects, whereby plants influence the biotic interactions of their neighbors, are an important component of plant-insect interactions. Plant chemistry has been hypothesized to mediate these interactions. The role of chemistry in associational effects, however, has been unclear in part because the diversity of plant chemistry makes it difficult to tease apart the importance and roles of particular classes of compounds. We examined the chemical ecology of associational effects using backcross-bred plants of the Solanum pennellii introgression lines. We used eight genotypes from the introgression line system to establish 14 unique neighborhood treatments that maximized differences in acyl sugars, proteinase inhibitor, and terpene chemical diversity. We found that the chemical traits of the neighboring plant, rather than simply the number of introgression lines within a neighborhood, influenced insect abundance on focal plants. Furthermore, within-chemical class diversity had contrasting effects on herbivore and predator abundances, and depended on the frequency of neighboring plant chemotypes. Notably, we found insect mobility-flying versus crawling-played a key role in insect response to phytochemistry. We highlight that the frequency and chemical phenotype of plant neighbors underlie associational effects and suggest this may be an important mechanism in maintaining intraspecific phytochemical variation within plant populations.


Asunto(s)
Insectos , Solanum , Animales , Insectos/fisiología , Solanum/genética , Solanum/fisiología , Solanum/clasificación , Herbivoria , Fenotipo , Biodiversidad
16.
Nat Commun ; 15(1): 6019, 2024 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-39019861

RESUMEN

Commensal relationships between wild plants and their dispersers play a key ecological and evolutionary role in community structure and function. While non-human dispersers are often considered critical to plant recruitment, human dispersers have received much less attention, especially when it comes to non-domesticated plants. Australia, as a continent historically characterized by economies reliant on non-domesticated plants, is thus a key system for exploring the ecological role of people as seed dispersers in the absence of agriculture. Here, we utilize a controlled observation research design, employing ecological surveys and ethnographic observations to examine how seed dispersal and landscape burning by Martu Aboriginal people affects the distribution of three preferred plants and one (edible, but non-preferred) control species. Using an information theoretic approach, we find that the three preferred plants show evidence of human dispersal, with the strongest evidence supporting anthropogenic dispersal for the wild bush tomato, Solanum diversiflorum.


Asunto(s)
Dispersión de Semillas , Humanos , Australia , Ecosistema , Dispersión de Semillas/fisiología , Semillas , Solanum
17.
Drug Des Devel Ther ; 18: 3063-3074, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39050799

RESUMEN

Cancer has emerged as a formidable global health challenge, with treatment methods like chemotherapy and radiation often exacerbating the situation due to their associated side effects. Opting for natural sources like plants as a safer and environmentally friendly alternative seems promising. Historically, plants have served as valuable sources for treating diverse health conditions, attributable to their rich composition of therapeutic phytochemicals. Within this array of phytochemicals, alkaloids, especially those found in the Solanaceae plant family, are notably prominent. Alkaloids from Solanaceae plant family called Solanum alkaloids demonstrate noteworthy anti-tumour characteristics and exert a potent inhibitory influence on cancer cell proliferation. They trigger programmed cell death in cancerous cells through various molecular pathways, whether administered alone or combined with other medications. Solanum alkaloids act upon cancer cells via multiple mechanisms, including apoptosis induction, suppression of cell growth and migration, as well as inhibition of angiogenesis. This review provides insights into the anti-cancer attributes of Solanum alkaloids found in various Solanum plant species, along with a brief overview of their other medicinal properties.


Asunto(s)
Alcaloides , Antineoplásicos Fitogénicos , Neoplasias , Solanum , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Solanum/química , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Alcaloides/farmacología , Alcaloides/química , Alcaloides/uso terapéutico , Proliferación Celular/efectos de los fármacos , Apoptosis/efectos de los fármacos , Animales
18.
BMC Complement Med Ther ; 24(1): 270, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39010043

RESUMEN

BACKGROUND: Medicinal plant-mediated combinational therapies have gained importance globally due to minimal side effects and enhanced treatment outcomes compared to single-drug modalities. We aimed to analyze the cytotoxic potential of each conventional treatment i.e., photodynamic therapy (PDT), chemotherapy (doxorubicin hydrochloride; Dox-HCl) with or without various concentrations of medicinal plant extracts (PE) on soft tissue cancer Rhabdomyosarcoma (RD) cell line. METHODS: The Rhabdomyosarcoma (RD) cell line was cultured and treated with Photosensitizer (Photosense (AlPc4)), Chemo (Dox-HCl), and their combinations with different concentrations of each plant extract i.e., Thuja occidentalis, Moringa oleifera, Solanum surattense. For the source of illumination, a Diode laser (λ = 630 nm ± 1 nm, Pmax = 1.5 mW) was used. Photosensitizer uptake time (∼ 45 min) was optimized through spectrophotometric measurements (absorption spectroscopy). Drug response of each treatment arm was assessed post 24 h of administration using 3-(4, 5-dimethyl-2-thiazolyl)-2, 5- 5-diphenyl-2 H- tetrazolium bromide (MTT) assay. RESULTS: PE-mediated Chemo-Photodynamic therapy (PDT) exhibited synergistic effects (CI < 1). Moreover, Rhabdomyosarcoma culture pretreated with various plant extracts for 24 h exhibited significant inhibition of cell viability however most effective outcomes were shown by low and high doses of Moringa oleifera compared to other plant extracts. Post low doses treated culture with all plant extracts followed by PDT came up with more effectiveness when compared to all di-therapy treatments. CONCLUSION: The general outcome of this work shows that the ethanolic plant extracts (higher doses) promote the death of cancerous cells in a dose-dependent way and combining Dox-HCl and photo-mediated photodynamic therapy can yield better therapeutic outcomes.


Asunto(s)
Doxorrubicina , Fotoquimioterapia , Fármacos Fotosensibilizantes , Extractos Vegetales , Plantas Medicinales , Rabdomiosarcoma , Fotoquimioterapia/métodos , Humanos , Doxorrubicina/farmacología , Rabdomiosarcoma/tratamiento farmacológico , Extractos Vegetales/farmacología , Línea Celular Tumoral , Fármacos Fotosensibilizantes/farmacología , Plantas Medicinales/química , Solanum/química , Supervivencia Celular/efectos de los fármacos , Moringa oleifera/química
19.
Am J Bot ; 111(7): e16365, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38992900

RESUMEN

PREMISE: The domestication of wild plant species can begin with gathering and transport of propagules by Indigenous peoples. The effect on genomic composition, especially in clonal, self-incompatible perennials would be instantaneous and drastic with respect to new, anthropogenic populations subsequently established. Reductions in genetic diversity and mating capability would be symptomatic and the presence of unique alleles and genetic sequences would reveal the origins and ancestry of populations associated with archaeological sites. The current distribution of the Four Corners potato, Solanum jamesii Torr. in the Southwestern USA, may thus reflect the early stages of a domestication process that began with tuber transport. METHODS: Herein genetic sequencing (GBS) data are used to further examine the hypothesis of domestication in this culturally significant species by sampling 25 archaeological and non-archaeological populations. RESULTS: Archaeological populations from Utah, Colorado and northern Arizona have lower levels of polymorphic loci, unique alleles, and heterozygosity than non-archaeological populations from the Mogollon region of central Arizona and New Mexico. Principle components analysis, Fst values, and structure analysis revealed that genetic relationships among archaeological populations did not correspond to geographic proximity. Populations in Escalante, Utah were related to those on the Mogollon Rim (400 km south) and had multiple origins and significant disjunctions with those populations in Bears Ears, Chaco Canyon, and Mesa Verde sites. CONCLUSIONS: Movement of tubers from the Mogollon region may have occurred many times and in multiple directions during the past, resulting in the complex genetic patterns seen in populations from across the Four Corners region.


Asunto(s)
Arqueología , Efecto Fundador , Solanum , Solanum/genética , Humanos , Domesticación , Sudoeste de Estados Unidos , Variación Genética , Análisis de Secuencia de ADN , Arizona , New Mexico
20.
Plant J ; 119(5): 2514-2537, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38970620

RESUMEN

Soil salinity is a major environmental stressor affecting agricultural productivity worldwide. Understanding plant responses to salt stress is crucial for developing resilient crop varieties. Wild relatives of cultivated crops, such as wild tomato, Solanum pimpinellifolium, can serve as a useful resource to further expand the resilience potential of the cultivated germplasm, S. lycopersicum. In this study, we employed high-throughput phenotyping in the greenhouse and field conditions to explore salt stress responses of a S. pimpinellifolium diversity panel. Our study revealed extensive phenotypic variations in response to salt stress, with traits such as transpiration rate, shoot mass, and ion accumulation showing significant correlations with plant performance. We found that while transpiration was a key determinant of plant performance in the greenhouse, shoot mass strongly correlated with yield under field conditions. Conversely, ion accumulation was the least influential factor under greenhouse conditions. Through a Genome Wide Association Study, we identified candidate genes not previously associated with salt stress, highlighting the power of high-throughput phenotyping in uncovering novel aspects of plant stress responses. This study contributes to our understanding of salt stress tolerance in S. pimpinellifolium and lays the groundwork for further investigations into the genetic basis of these traits, ultimately informing breeding efforts for salinity tolerance in tomato and other crops.


Asunto(s)
Estudio de Asociación del Genoma Completo , Fenotipo , Estrés Salino , Solanum , Solanum/genética , Solanum/fisiología , Tolerancia a la Sal/genética , Tolerancia a la Sal/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA