RESUMEN
BACKGROUND: Spinach downy mildew, caused by the obligate oomycete pathogen, Peronospora effusa remains a major concern for spinach production. Disease control is predominantly based on development of resistant spinach cultivars. However, new races and novel isolates of the pathogen continue to emerge and overcome cultivar resistance. Currently there are 20 known races of P. effusa. Here we characterized the transcriptomes of spinach, Spinacia oleracea, and P. effusa during disease progression using the spinach cultivar Viroflay, the near isogenic lines NIL1 and NIL3, and P. effusa races, R13 and R19, at 24 h post inoculation and 6 days post inoculation. A total of 54 samples were collected and subjected to sequencing and transcriptomic analysis. RESULTS: Differentially expressed gene (DEG) analysis in resistant spinach interactions of R13-NIL1 and R19-NIL3 revealed spinach DEGs from protein kinase-like and P-loop containing families, which have roles in plant defense. The homologous plant defense genes included but were not limited to, receptor-like protein kinases (Spiol0281C06495, Spiol06Chr21559 and Spiol06Chr24027), a BAK1 homolog (Spiol0223C05961), genes with leucine rich repeat motifs (Spiol04Chr08771, Spiol04Chr01972, Spiol05Chr26812, Spiol04Chr11049, Spiol0084S08137, Spiol03Chr20299) and ABC-transporters (Spiol02Chr28975, Spiol06Chr22112, Spiol06Chr03998 and Spiol04Chr09723). Additionally, analysis of the expression of eight homologous to previously reported downy mildew resistance genes revealed that some are differentially expressed during resistant reactions but not during susceptible reactions. Examination of P. effusa gene expression during infection of susceptible cultivars identified expressed genes present in R19 or R13 including predicted RxLR and Crinkler effector genes that may be responsible for race-specific virulence on NIL1 or NIL3 spinach hosts, respectively. CONCLUSIONS: These findings deliver foundational insight to gene expression in both spinach and P. effusa during susceptible and resistant interactions and provide a library of candidate genes for further exploration and functional analysis. Such resources will be beneficial to spinach breeding efforts for disease resistance in addition to better understanding the virulence mechanisms of this obligate pathogen.
Asunto(s)
Resistencia a la Enfermedad , Peronospora , Enfermedades de las Plantas , Spinacia oleracea , Spinacia oleracea/genética , Spinacia oleracea/microbiología , Spinacia oleracea/parasitología , Peronospora/fisiología , Peronospora/patogenicidad , Resistencia a la Enfermedad/genética , Enfermedades de las Plantas/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/parasitología , Transcriptoma , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Interacciones Huésped-Patógeno/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Accurate measurement of gene expression levels is vital for advancing plant biology research. This study explores the identification and validation of stable reference genes (RGs) for gene expression analysis in Spinacia oleracea. Leveraging transcriptome data from various developmental stages, we employed rigorous statistical analyses to identify potential RGs. A total of 1196 candidate genes were initially screened based on expression variability, with subsequent refinement using criteria such as low variance and stability. Among 12 commonly used candidate RGs, EF1α and H3 emerged as the most stable across diverse experimental conditions, while GRP and PPR exhibited lower stability. These findings were further validated through qRT-PCR assays and comprehensive statistical analyses, including geNorm, NormFinder, BestKeeper, and RefFinder. Our study underscores the importance of systematic RG selection to ensure accurate normalization in gene expression studies, particularly in the context of S. oleracea developmental stages and physiological processes like flowering. These validated RGs provide a robust foundation for future gene expression analysis in S. oleracea and contribute to the advancement of molecular research in plant biology.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Spinacia oleracea , Transcriptoma , Spinacia oleracea/genética , Perfilación de la Expresión Génica/métodos , Perfilación de la Expresión Génica/normas , Estándares de Referencia , Genes de Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismoRESUMEN
Structural variations (SVs) are major genetic variants that can be involved in the origin, adaptation and domestication of species. However, the identification and characterization of SVs in Spinacia species are rare due to the lack of a pan-genome. Here, we report eight chromosome-scale assemblies of cultivated spinach and its two wild species. After integration with five existing assemblies, we constructed a comprehensive Spinacia pan-genome and identified 193 661 pan-SVs, which were genotyped in 452 Spinacia accessions. Our pan-SVs enabled genome-wide association study identified signals associated with sex and clarified the evolutionary direction of spinach. Most sex-linked SVs (86%) were biased to occur on the Y chromosome during the evolution of the sex-linked region, resulting in reduced Y-linked gene expression. The frequency of pan-SVs among Spinacia accessions further illustrated the contribution of these SVs to domestication, such as bolting time and seed dormancy. Furthermore, compared with SNPs, pan-SVs act as efficient variants in genomic selection (GS) because of their ability to capture missing heritability information and higher prediction accuracy. Overall, this study provides a valuable resource for spinach genomics and highlights the potential utility of pan-SV in crop improvement and breeding programmes.
Asunto(s)
Domesticación , Genoma de Planta , Spinacia oleracea , Spinacia oleracea/genética , Genoma de Planta/genética , Estudio de Asociación del Genoma Completo , Cromosomas de las Plantas/genética , Evolución Molecular , Variación Estructural del Genoma , Cromosomas Sexuales/genética , Polimorfismo de Nucleótido Simple/genéticaRESUMEN
Evolution of unisexual flowers involves extreme changes in floral development. Spinach is one of the species to discern the formation and evolution of dioecy. MADS-box gene family is involved in regulation of floral organ identity and development and in many other plant developmental processes. However, there is no systematic analysis of MADS-box family genes in spinach. A comprehensive genome-wide analysis and transcriptome profiling of MADS-box genes were undertaken to understand their involvement in unisexual flower development at different stages in spinach. In total, 54 MADS-box genes found to be unevenly located across 6 chromosomes and can be divided into type I and type II genes. Twenty type I MADS-box genes are subdivided into Mα, Mß and Mγ subgroups. While thirty-four type II SoMADSs consist of 3 MIKC*, and 31 MIKCC -type genes including sixteen floral homeotic MADS-box genes that are orthologous to the proposed Arabidopsis ABCDE model of floral organ identity determination, were identified in spinach. Gene structure, motif distribution, physiochemical properties, gene duplication and collinearity analyses for these genes are performed in detail. Promoters of both types of SoMADS genes contain mainly MeJA and ABA response elements. Expression profiling indicated that MIKCc genes exhibited more dynamic and intricate expression patterns compared to M-type genes and the majority of type-II genes AP1, SVP, and SOC1 sub-groups showed female flower-biased expression profiles, suggesting their role in carpel development, while PI showed male-biased expression throughout flower developmental stages, suggesting their role in stamen development. These results provide genomic resources and insights into spinach dioecious flower development and expedite spinach improvement.
Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Proteínas de Dominio MADS , Spinacia oleracea , Flores/genética , Flores/crecimiento & desarrollo , Flores/metabolismo , Proteínas de Dominio MADS/genética , Proteínas de Dominio MADS/metabolismo , Spinacia oleracea/genética , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo , Perfilación de la Expresión Génica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Filogenia , Genoma de Planta , Estudio de Asociación del Genoma Completo , Duplicación de GenRESUMEN
Climate change poses a significant threat to global agriculture, necessitating innovative solutions. Plant synthetic biology, particularly chloroplast engineering, holds promise as a viable approach to this challenge. Chloroplasts present a variety of advantageous traits for genetic engineering, but the development of genetic tools and genetic part characterization in these organelles is hindered by the lengthy time scales required to generate transplastomic organisms. To address these challenges, we have established a versatile protocol for generating highly active chloroplast-based cell-free gene expression (CFE) systems derived from a diverse range of plant species, including wheat (monocot), spinach, and poplar trees (dicots). We show that these systems work with conventionally used T7 RNA polymerase as well as the endogenous chloroplast polymerases, allowing for detailed characterization and prototyping of regulatory sequences at both transcription and translation levels. To demonstrate the platform for characterization of promoters and 5' and 3' untranslated regions (UTRs) in higher plant chloroplast gene expression, we analyze a collection of 23 5'UTRs, 10 3'UTRs, and 6 chloroplast promoters, assessed their expression in spinach and wheat extracts, and found consistency in expression patterns, suggesting cross-species compatibility. Looking forward, our chloroplast CFE systems open new avenues for plant synthetic biology, offering prototyping tools for both understanding gene expression and developing engineered plants, which could help meet the demands of a changing global climate.
Asunto(s)
Cloroplastos , Populus , Regiones Promotoras Genéticas , Spinacia oleracea , Triticum , Cloroplastos/genética , Cloroplastos/metabolismo , Triticum/genética , Triticum/metabolismo , Spinacia oleracea/genética , Populus/genética , Populus/metabolismo , Regiones Promotoras Genéticas/genética , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Biología Sintética/métodos , Sistema Libre de Células , Proteínas Virales/genética , Proteínas Virales/metabolismo , Ingeniería Genética/métodos , Regiones no Traducidas 5'/genéticaRESUMEN
Spinach (Spinacia oleracea L.) is a dioecious, diploid, wind-pollinated crop cultivated worldwide. Sex determination plays an important role in spinach breeding. Hence, this study aimed to understand the differences in sexual differentiation and floral organ development of dioecious flowers, as well as the differences in the regulatory mechanisms of floral organ development of dioecious and monoecious flowers. We compared transcriptional-level differences between different genders and identified differentially expressed genes (DEGs) related to spinach floral development, as well as sex-biased genes to investigate the flower development mechanisms in spinach. In this study, 9189 DEGs were identified among the different genders. DEG analysis showed the participation of four main transcription factor families, MIKC_MADS, MYB, NAC, and bHLH, in spinach flower development. In our key findings, abscisic acid (ABA) and gibberellic acid (GA) signal transduction pathways play major roles in male flower development, while auxin regulates both male and female flower development. By constructing a gene regulatory network (GRN) for floral organ development, core transcription factors (TFs) controlling organ initiation and growth were discovered. This analysis of the development of female, male, and monoecious flowers in spinach provides new insights into the molecular mechanisms of floral organ development and sexual differentiation in dioecious and monoecious plants in spinach.
Asunto(s)
Flores , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Spinacia oleracea , Factores de Transcripción , Spinacia oleracea/genética , Spinacia oleracea/crecimiento & desarrollo , Flores/genética , Flores/crecimiento & desarrollo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Perfilación de la Expresión Génica , Ácido Abscísico/metabolismo , Giberelinas/metabolismoRESUMEN
BACKGROUND: The auxin/indole-3-acetic acid (Aux/IAA) gene family is a crucial element of the auxin signaling pathway, significantly influencing plant growth and development. Hence, we conducted a comprehensive investigation of Aux/IAAs gene family using the Sp75 and Monoe-Viroflay genomes in spinach. RESULTS: A total of 24 definitive Aux/IAA genes were identified, exhibiting diverse attributes in terms of amino acid length, molecular weight, and isoelectric points. This diversity underscores potential specific roles within the family, such as growth regulation and stress response. Structural analysis revealed significant variations in gene length and molecular weight. These variations indicate distinct roles within the Aux/IAA gene family. Chromosomal distribution analysis exhibited a dispersed pattern, with chromosomes 4 and 1 hosting the highest and lowest numbers of Aux/IAA genes, respectively. Phylogenetic analysis grouped the identified genes into distinct clades, revealing potential evolutionary relationships. Notably, the phylogenetic tree highlighted specific gene clusters suggesting shared genetic ancestry and potential functional synergies within spinach. Expression analysis under NAA treatment unveiled gene-specific and time-dependent responses, with certain genes exhibiting distinct temporal expression patterns. Specifically, SpoIAA5 displayed a substantial increase at 2 h post-NAA treatment, while SpoIAA7 and SpoIAA9 demonstrated continuous rises, peaking at the 4-hour time point. CONCLUSIONS: These observations indicate a complex interplay of gene-specific and temporal regulation in response to auxin. Moreover, the comparison with other plant species emphasized both shared characteristics and unique features in Aux/IAA gene numbers, providing insights into the evolutionary dynamics of this gene family. This comprehensive characterization of Aux/IAA genes in spinach not only establishes the foundation for understanding their specific functions in spinach development but also provides a valuable resource for experimental validation and further exploration of their roles in the intricate network of auxin signaling pathways.
Asunto(s)
Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos , Familia de Multigenes , Filogenia , Spinacia oleracea , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Genoma de Planta , Cromosomas de las Plantas/genética , Evolución MolecularRESUMEN
Cultivated spinach (Spinacia oleracea) is a dioecious species. We report high-quality genome sequences for its two closest wild relatives, Spinacia turkestanica and Spinacia tetrandra, which are also dioecious, and are used to study the genetics of spinach domestication. Using a combination of genomic approaches, we assembled genomes of both these species and analyzed them in comparison with the previously assembled S. oleracea genome. These species diverged c. 6.3 million years ago (Ma), while cultivated spinach split from S. turkestanica 0.8 Ma. In all three species, all six chromosomes include very large gene-poor, repeat-rich regions, which, in S. oleracea, are pericentromeric regions with very low recombination rates in both male and female genetic maps. We describe population genomic evidence that the similar regions in the wild species also recombine rarely. We characterized 282 structural variants (SVs) that have been selected during domestication. These regions include genes associated with leaf margin type and flowering time. We also describe evidence that the downy mildew resistance loci of cultivated spinach are derived from introgression from both wild spinach species. Collectively, this study reveals the genome architecture of spinach assemblies and highlights the importance of SVs during the domestication of cultivated spinach.
Asunto(s)
Domesticación , Genoma de Planta , Spinacia oleracea , Spinacia oleracea/genética , Cromosomas de las Plantas/genética , Filogenia , Recombinación Genética/genéticaRESUMEN
The scarcity of soil nutrient availability under cold conditions of Himalayan regions needs a sustainable approach for better crop yields. The cold-adapted bacteria, Exiguobacterium sibiricum K1, with the potential to produce several plant growth-promoting (PGP) attributes, nitrogen fixation, indole acetic acid production, phosphate and potassium solubilization at 10 °C can provide an opportunity to promote crop yield improvement in an eco-friendly way under cold conditions. The bacterium also exhibited biocontrol activity against two phytopathogens and produced siderophore (53.0 ± 0.5 % psu). The strain's PGP properties were investigated using a spinach-based bioassay under controlled conditions. The bacterized seeds showed a notable increase in germination rate (23.2 %), shoot length (65.3 %), root length (56.6 %), leaf area (73.7 %), number of leaflets (65.2 %), and dry matter (65.2 %). Additionally, the leaf analysis indicated elevated chlorophyll pigments, i.e., chlorophyll a (55.5 %), chlorophyll b (42.8 %), carotenoids (35.2 %), percentage radical scavenging activity (47.4 %), and leaf nutrient uptake such as nitrogen (23.4 %), calcium (60.8 %), potassium (62.3 %), and magnesium (28.9 %). Moreover, the whole-genome sequencing and genome mining endorsed various biofertilisation-related genes, including genes for potassium and phosphate solubilization, iron and nitrogen acquisition, carbon dioxide fixation, and biocontrol ability of Exiguobacterium sibiricum K1. Overall, this study highlights the role of Exiguobacterium sibiricum K1 as a potential bioinoculant for improving crop yield under cold environments.
Asunto(s)
Frío , Fijación del Nitrógeno , Spinacia oleracea/microbiología , Spinacia oleracea/genética , Germinación , Clorofila/metabolismo , Sideróforos/metabolismo , Hojas de la Planta/genética , Ácidos Indolacéticos/metabolismo , Genoma Bacteriano , Fosfatos/metabolismo , Desarrollo de la Planta/genética , Bacillales/genética , Bacillales/metabolismo , Agentes de Control BiológicoRESUMEN
The sex of dioecious plants is mainly determined by genetic factors, but it can also be converted by environmental cues such as exogenous phytohormones. Gibberellic acids (GAs) are well-known inducers of flowering and sexual development, yet the pathway of gibberellin-induced sex conversion in dioecious spinach (Spinacia oleracea L.) remains elusive. Based on sex detection before and after GA3 application using T11A and SSR19 molecular markers, we confirmed and elevated the masculinization effect of GA on a single female plant through exogenous applications of GA3, showing complete conversion and functional stamens. Silencing of GIBBERELLIC ACID INSENSITIVE (SpGAI), a single DELLA family protein that is a central GA signaling repressor, results in similar masculinization. We also show that SpGAI can physically interact with the spinach KNOX transcription factor SHOOT MERISTEMLESS (SpSTM), which is a homolog of the flower meristem identity regulator STM in Arabidopsis. The silencing of SpSTM also masculinized female flowers in spinach. Furthermore, SpSTM could directly bind the intron of SpPI to repress SpPI expression in developing female flowers. Overall, our results suggest that GA induces a female masculinization process through the SpGAI-SpSTM-SpPI regulatory module in spinach. These insights may help to clarify the molecular mechanism underlying the sex conversion system in dioecious plants while also elucidating the physiological basis for the generation of unisexual flowers so as to establish dioecy in plants.
Asunto(s)
Regulación de la Expresión Génica de las Plantas , Giberelinas , Proteínas de Plantas , Spinacia oleracea , Flores/genética , Flores/fisiología , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Spinacia oleracea/genética , Spinacia oleracea/fisiología , Spinacia oleracea/metabolismo , Factores de Transcripción/metabolismo , Factores de Transcripción/genéticaRESUMEN
Spinach is a significant source of vitamins, minerals, and antioxidants. These nutrients make it delicious and beneficial for human health. However, the genetic mechanism underlying the accumulation of nutrients in spinach remains unclear. In this study, we analyzed the content of chlorophyll a, chlorophyll b, oxalate, nitrate, crude fiber, soluble sugars, manganese, copper, and iron in 62 different spinach accessions. Additionally, 3,356,182 high-quality, single-nucleotide polymorphisms were found using resequencing and used in a genome-wide association study. A total of 2077 loci were discovered that significantly correlated with the concentrations of the nutritional elements. Data mining identified key genes in these intervals for four traits: chlorophyll, oxalate, soluble sugar, and Fe. Our study provides insights into the genetic architecture of nutrient variation and facilitates spinach breeding for good nutrition.
Asunto(s)
Estudio de Asociación del Genoma Completo , Spinacia oleracea , Humanos , Spinacia oleracea/genética , Clorofila A , Fitomejoramiento , Nutrientes , OxalatosRESUMEN
Although spinach is predominantly dioecious, monoecious plants with varying proportions of female and male flowers are also present. Recently, monoecious inbred lines with highly female and male conditions have been preferentially used as parents for F1-hybrids, rather than dioecious lines. Accordingly, identifying the loci for monoecism is an important issue for spinach breeding. We here used long-read sequencing and Hi-C technology to construct SOL_r2.0_pseudomolecule, a set of six pseudomolecules of spinach chromosomes (total length: 879.2 Mb; BUSCO complete 97.0%) that are longer and more genetically complete than our previous version of pseudomolecules (688.0 Mb; 81.5%). Three QTLs, qFem2.1, qFem3.1, and qFem6.1, responsible for monoecism were mapped to SOL_r2.0_pseudomolecule. qFem3.1 had the highest LOD score and corresponded to the M locus, which was previously identified as a determinant of monoecious expression, by genetic analysis of progeny from female and monoecious plants. The other QTLs were shown to modulate the ratio of female to male flowers in monoecious plants harboring a dominant allele of the M gene. Our findings will enable breeders to efficiently produce highly female- and male-monoecious parental lines for F1-hybrids by pyramiding the three QTLs. Through fine-mapping, we narrowed the candidate region for the M locus to a 19.5 kb interval containing three protein-coding genes and one long non-coding RNA gene. Among them, only RADIALIS-like-2a showed a higher expression in the reproductive organs, suggesting that it might play a role in reproductive organogenesis. However, there is no evidence that it is involved in the regulation of stamen and pistil initiation, which are directly related to the floral sex differentiation system in spinach. Given that auxin is involved in reproductive organ formation in many plant species, genes related to auxin transport/response, in addition to floral organ formation, were identified as candidates for regulators of floral sex-differentiation from qFem2.1 and qFem6.1.
Asunto(s)
Fitomejoramiento , Spinacia oleracea , Spinacia oleracea/genética , Sitios de Carácter Cuantitativo/genética , Cromosomas de las Plantas/genética , Ácidos IndolacéticosRESUMEN
The root system is important for the growth and development of spinach. To reveal the temporal variability of the spinach root system, root traits of 40 spinach accessions were measured at three imaging times (20, 30, and 43 days after transplanting) in this study using a non-destructive and non-invasive root analysis system. Results showed that five root traits were reliably measured by this system (RootViz FS), and two of which were highly correlated with manually measured traits. Root traits had higher variations than shoot traits among spinach accessions, and the trait of mean growth rate of total root length had the largest coefficients of variation across the three imaging times. During the early stage, only tap root length was weakly correlated with shoot traits (plant height, leaf width, and object area (equivalent to plant surface area)), whereas in the third imaging, root fresh weight, total root length, and root area were strongly correlated with shoot biomass-related traits. Five root traits (total root length, tap root length, total root area, root tissue density, and maximal root width) showed high variations with coefficients of variation values (CV ≥ 0.3, except maximal root width) and high heritability (H2 > 0.6) among the three stages. The 40 spinach accessions were classified into five subgroups with different growth dynamics of the primary and lateral roots by cluster analysis. Our results demonstrated the potential of in-situ phenotyping to assess dynamic root growth in spinach and provide new perspectives for biomass breeding based on root system ideotypes.
Asunto(s)
Raíces de Plantas , Spinacia oleracea , Spinacia oleracea/genética , Raíces de Plantas/genética , Fitomejoramiento , Fenotipo , Variación Biológica PoblacionalRESUMEN
The members of the myeloblastosis (MYB) family of transcription factors (TFs) participate in a variety of biological regulatory processes in plants, such as circadian rhythm, metabolism, and flower development. However, the characterization of MYB genes across the genomes of spinach Spinacia oleracea L. has not been reported. Here, we identified 140 MYB genes in spinach and described their characteristics using bioinformatics approaches. Among the MYB genes, 54 were 1R-MYB, 80 were 2R-MYB, 5 were 3R-MYB, and 1 was 4R-MYB. Almost all MYB genes were located in the 0-30 Mb region of autosomes; however, the 20 MYB genes were enriched at both ends of the sex chromosome (chromosome 4). Based on phylogeny, conserved motifs, and the structure of genes, 2R-MYB exhibited higher conservation relative to 1R-MYB genes. Tandem duplication and collinearity of spinach MYB genes drive their evolution, enabling the functional diversification of spinach genes. Subcellular localization prediction indicated that spinach MYB genes were mainly located in the nucleus. Cis-acting element analysis confirmed that MYB genes were involved in various processes of spinach growth and development, such as circadian rhythm, cell differentiation, and reproduction through hormone synthesis. Furthermore, through the transcriptome data analysis of male and female flower organs at five different periods, ten candidate genes showed biased expression in spinach males, suggesting that these genes might be related to the development of spinach anthers. Collectively, this study provides useful information for further investigating the function of MYB TFs and novel insights into the regulation of sex determination in spinach.
Asunto(s)
Genes myb , Spinacia oleracea , Masculino , Humanos , Spinacia oleracea/genética , Diferenciación Celular , Cromosomas Humanos Par 4 , Ritmo CircadianoRESUMEN
Salt stress is a recognized annihilating abiotic stress that has a significant impact on agricultural and horticulture crop productivity. Plant development faces three distinct dangers as a result of salt stress: oxidative stress, osmotic stress, and ionic toxicity. It has been shown that plants can forecast diurnal patterns using the circadian clock; moreover, they can manage their defensive mechanism for the detoxification of reactive oxygen species (ROS). Circadian rhythmicity in gene expression assembles transcription and translation feedback networks to govern plant shape, physiology, cellular and molecular activities. Both external and internal variables influence the systemic rhythm via input routes. The Malav Jyoti (MJ) and Delhi Green (DG) genotypes of spinach (Spinacia oleracea) were grown in the plant growth chamber. The chamber had an optimized temperature of 25 °C and humidity of 65% containing light emitting diode (LED) having Red: Blue: white (one side) and White fluorescent (other side) under salinity stress. The samples were collected on the basis of 4 h intervals of circadian hours (0 h, 4 h, 8 h and 12 h) during Day-10 and Day-20 of salt treatments. Under salt stress, the circadian and light-emitting diode-based strategy had a substantial influence on spinach's anti-oxidative responses, stomatal movement, CO2 assimilation, PS-I and II efficiency, phytochrome pigment efficiency, and photosynthesis. Based on the findings of the free radical scavenging enzyme tests, the photoperiodic hours for the proteome analysis were set to 11 am and 3 pm on Day-20. When compared to white fluorescent, this study found that LED has the capacity to influence the entrainment cues of the circadian clock in the cultivation of salt-sensitive spinach genotypes. According to our findings, changing the cellular scavenging mechanism and chloroplast proteome has increased the survival rate of spinach genotypes under LED when compared to white fluorescent.
Asunto(s)
Proteoma , Spinacia oleracea , Spinacia oleracea/genética , Spinacia oleracea/metabolismo , Proteoma/metabolismo , Cloroplastos/metabolismo , Estrés Fisiológico , Estrés Salino , Plantas/metabolismo , Fitoquímicos/metabolismo , SalinidadRESUMEN
Food contamination with pathogenic Escherichia coli can cause severe disease. Here, we report the isolation of a multidrug resistant strain (A23EC) from fresh spinach. A23EC belongs to subclade C2 of ST131, a virulent clone of Extraintestinal Pathogenic E. coli (ExPEC). Most A23EC virulence factors are concentrated in three pathogenicity islands. These include PapGII, a fimbrial tip adhesin linked to increased virulence, and CsgA and CsgB, two adhesins known to facilitate spinach leaf colonization. A23EC also bears TnMB1860, a chromosomally-integrated transposon with the demonstrated potential to facilitate the evolution of carbapenem resistance among non-carbapenemase-producing enterobacterales. This transposon consists of two IS26-bound modular translocatable units (TUs). The first TU carries aac(6')-lb-cr, bla OXA-1, ΔcatB3, aac(3)-lle, and tmrB, and the second one harbors bla CXT-M-15. A23EC also bears a self-transmissible plasmid that can mediate conjugation at 20°C and that has a mosaic IncF [F(31,36):A(4,20):B1] and Col156 origin of replication. Comparing A23EC to 86 additional complete ST131 sequences, A23EC forms a monophyletic cluster with 17 other strains that share the following four genomic traits: (1) virotype E (papGII+); (2) presence of a PAI II536-like pathogenicity island with an additional cnf1 gene; (3) presence of chromosomal TnMB1860; and (4) frequent presence of an F(31,36):A(4,20):B1 plasmid. Sequences belonging to this cluster (which we named "C2b sublineage") are highly enriched in septicemia samples and their associated genetic markers align with recent reports of an emerging, virulent sublineage of the C2 subclade, suggesting significant pathogenic potential. This is the first report of a ST131 strain belonging to subclade C2 contaminating green leafy vegetables. The detection of this uropathogenic clone in fresh food is alarming. This work suggests that ST131 continues to evolve, gaining selective advantages and new routes of transmission. This highlights the pressing need for rigorous epidemiological surveillance of ExPEC in vegetables with One Health perspective.
Asunto(s)
Infecciones por Escherichia coli , Escherichia coli Patógena Extraintestinal , Humanos , Escherichia coli , Spinacia oleracea/genética , Infecciones por Escherichia coli/epidemiología , Escherichia coli Patógena Extraintestinal/genética , Plásmidos/genética , beta-Lactamasas/genética , AntibacterianosRESUMEN
Sex chromosomes have evolved independently in many different plant lineages. Here, we describe reference genomes for spinach (Spinacia oleracea) X and Y haplotypes by sequencing homozygous XX females and YY males. The long arm of 185-Mb chromosome 4 carries a 13-Mb X-linked region (XLR) and 24.1-Mb Y-linked region (YLR), of which 10 Mb is Y specific. We describe evidence that this reflects insertions of autosomal sequences creating a "Y duplication region" or "YDR" whose presence probably directly reduces genetic recombination in the immediately flanking regions, although both the X and Y sex-linked regions are within a large pericentromeric region of chromosome 4 that recombines rarely in meiosis of both sexes. Sequence divergence estimates using synonymous sites indicate that YDR genes started diverging from their likely autosomal progenitors about 3 MYA, around the time when the flanking YLR stopped recombining with the XLR. These flanking regions have a higher density of repetitive sequences in the YY than the XX assembly and include slightly more pseudogenes compared with the XLR, and the YLR has lost about 11% of the ancestral genes, suggesting some degeneration. Insertion of a male-determining factor would have caused Y linkage across the entire pericentromeric region, creating physically small, highly recombining, terminal pseudoautosomal regions. These findings provide a broader understanding of the origin of sex chromosomes in spinach.
Asunto(s)
Secuencias Repetitivas de Ácidos Nucleicos , Spinacia oleracea , Spinacia oleracea/genética , Secuencias Repetitivas de Ácidos Nucleicos/genética , Cromosomas Sexuales/genética , Evolución MolecularRESUMEN
Fusarium wilt of spinach, caused by Fusarium oxysporum f. sp. spinaciae, is a significant limitation for producers of vegetative spinach and spinach seed crops during warm temperatures and/or on acid soils. Identification of isolates of F. oxysporum f. sp. spinaciae, and distinction of isolates of the two known races, entails time-intensive pathogenicity tests. In this study, two real-time PCR assays were developed: one for a candidate effector gene common to both races of F. oxysporum f. sp. spinaciae, and another for a candidate effector gene unique to isolates of race 2. The assays were specific to isolates of F. oxysporum f. sp. spinaciae (n = 44) and isolates of race 2 (n = 23), respectively. Neither assay amplified DNA from 10 avirulent isolates of F. oxysporum associated with spinach, 57 isolates of other formae speciales and Fusarium spp., or 7 isolates of other spinach pathogens. When the assays were used to detect DNA extracted from spinach plants infected with an isolate of race 1, race 2, or a 1:1 mixture of both races, the amount of target DNA detected increased with increasing severity of wilt. Plants infected with one or both isolates could be distinguished based on the ratio in copy number for each target locus. The real-time PCR assays enable rapid diagnosis of Fusarium wilt of spinach and will facilitate research on the epidemiology and management of this disease, as well as surveys on the prevalence of this understudied pathogen in regions of spinach and/or spinach seed production.
Asunto(s)
Fusarium , Fusarium/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Spinacia oleracea/genética , Enfermedades de las Plantas , PlantasRESUMEN
Bolting is a symbol of the transition from vegetative to reproductive growth in plants. Late bolting can effectively prolong the commercial value of spinach and is of great importance for spinach breeding. Bolting has complex regulatory networks, and current research on spinach bolting is relatively weak, with specific regulatory pathways and genes unclear. To clarify the regulatory characteristics and key genes related to bolting in spinach, we conducted a comparative transcriptome analysis. In this study, 18 samples from three periods of bolting-tolerant spinach material 12S3 and bolting-susceptible material 12S4 were analyzed using RNA-seq on, resulting in 10,693 differentially expressed genes (DEGs). Functional enrichment and co-expression trend analysis indicated that most DEGs were enriched in the photoperiod pathway, the hormone signaling pathway, and the cutin, suberin, and wax biosynthetic pathways. According to the weighted gene co-expression network analysis (WGCNA), SpFT (SOV4g003400), SOV4g040250, and SpGASA1 (SOV6g017600) were likely to regulate bolting through the gibberellin and photoperiod pathways, and SpELF4 (SOV1g028600) and SpPAT1 (SOV4g058860) caused differences in early and late bolting among different cultivars. These results provide important insights into the genetic control of bolting in spinach and will help elucidate the molecular mechanisms of bolting in leafy vegetables.
Asunto(s)
Fitomejoramiento , Spinacia oleracea , Spinacia oleracea/genética , Perfilación de la Expresión Génica , Transcriptoma/genética , RNA-SeqRESUMEN
Downy mildew is a major threat to the economic value of spinach. The most effective approach to managing spinach downy mildew is breeding cultivars with resistance genes. The resistance allele RPF2 is effective against races 1-10 and 15 of Peronospora farinosa f. sp. Spinaciae (P. effusa) and is widely used as a resistance gene. However, the gene and the linked marker of RPF2 remain unclear, which limit its utilization. Herein, we located the RPF2 gene in a 0.61 Mb region using a BC1 population derived from Sp39 (rr) and Sp62 (RR) cultivars via kompetitive allele specific PCR (KASP) markers. Within this region, only one R gene, Spo12821, was identified based on annotation information. The amino acid sequence analysis showed that there were large differences in the length of the LRR domain between the parents. Additionally, a molecular marker, RPF2-IN12821, was developed based on the sequence variation in the Spo12821, and the evaluation in the BC1 population produced a 100% match with resistance/susceptibility. The finding of the study could be valuable for improving our understanding of the genetic basis of resistance against the downy mildew pathogen and breeding resistance lines in the future.