Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 380
Filtrar
Más filtros

Intervalo de año de publicación
1.
Mikrochim Acta ; 191(10): 603, 2024 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-39284926

RESUMEN

A simple method has been developed for semi-quantitative analysis of the colorimetric output of loop-mediated isothermal amplification (LAMP) using a 3D-printed tube holder with a smartphone and notebook for the detection of Raillietina, which is the cause of Raillietiniasis affecting free-range chicken farming. In this method, a light is directed from a notebook screen to the LAMP products in the tube holder and the color absorption of the LAMP products is measured by using the appropriate smartphone application. It was found that the malachite green dye-coupled LAMP (MaG-LAMP) assay showed the highest sensitivity and specificity for detecting Raillietina without any cross-reaction with other related parasites and hosts. The limit of detection was 10 fg/µL of DNA. A total of 60 fecal samples were infectively confirmed by microscopic examination and the results of microscopy compared with those of MaG-LAMP and triplex PCR assays. Microscopy and MaG-LAMP based on the color absorption demonstrated high agreement in Raillietina detection with kappa = 1. Rapid, simple, cost-effective, and easy interpretation of colorimetric LAMP assays and their high sensitivity make them superior to PCR and morphological investigation, demonstrating the feasibility of this assay in point-of-care screening to support farm management and solve chicken health problems. Our study presents is an alternative diagnostic method using semi-quantitative analysis of colorimetric LAMP based on the differing solution color absorptions between positive and negative reactions for infectious disease diagnosis.


Asunto(s)
Pollos , Colorimetría , Técnicas de Amplificación de Ácido Nucleico , Impresión Tridimensional , Teléfono Inteligente , Colorimetría/métodos , Colorimetría/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , Animales , Límite de Detección , Colorantes de Rosanilina/química , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Diagnóstico Molecular/métodos , Heces/química , Heces/microbiología
2.
Viruses ; 16(8)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39205164

RESUMEN

The novel coronavirus SARS-CoV-2 was first isolated in late 2019; it has spread to all continents, infected over 700 million people, and caused over 7 million deaths worldwide to date. The high transmissibility of the virus and the emergence of novel strains with altered pathogenicity and potential resistance to therapeutics and vaccines are major challenges in the study and treatment of the virus. Ongoing screening efforts aim to identify new cases to monitor the spread of the virus and help determine the danger connected to the emergence of new variants. Given its sensitivity and specificity, nucleic acid amplification tests (NAATs) such as RT-qPCR are the gold standard for SARS-CoV-2 detection. However, due to high costs, complexity, and unavailability in low-resource and point-of-care (POC) settings, the available RT-qPCR assays cannot match global testing demands. An alternative NAAT, RT-LAMP-based SARS-CoV-2 detection offers scalable, low-cost, and rapid testing capabilities. We have developed an automated RT-LAMP-based microfluidic chip that combines the RNA isolation, purification, and amplification steps on the same device and enables the visual detection of SARS-CoV-2 within 40 min from saliva and nasopharyngeal samples. The entire assay is executed inside a uniquely designed, inexpensive disposable microfluidic chip, where assay components and reagents have been optimized to provide precise and qualitative results and can be effectively deployed in POC settings. Furthermore, this technology could be easily adapted for other novel emerging viruses.


Asunto(s)
COVID-19 , Técnicas de Diagnóstico Molecular , Nasofaringe , Técnicas de Amplificación de Ácido Nucleico , ARN Viral , SARS-CoV-2 , Saliva , Sensibilidad y Especificidad , Humanos , Saliva/virología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Nasofaringe/virología , COVID-19/diagnóstico , COVID-19/virología , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , ARN Viral/genética , ARN Viral/análisis , ARN Viral/aislamiento & purificación , Dispositivos Laboratorio en un Chip , Prueba de Ácido Nucleico para COVID-19/métodos , Prueba de Ácido Nucleico para COVID-19/instrumentación , Prueba de COVID-19/métodos , Microfluídica/métodos , Microfluídica/instrumentación
3.
Biosens Bioelectron ; 264: 116677, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39159587

RESUMEN

Rapid and accurate diagnostic methods are crucial for managing viral gastroenteritis in children, a leading cause of global childhood morbidity and mortality. This study introduces a novel microfluidic-Flap endonuclease 1 (FEN1)-assisted isothermal amplification (MFIA) method for simultaneously detecting major viral pathogens associated with childhood diarrhea-rotavirus, norovirus, and adenovirus. Leveraging the specificity-enhancing properties of FEN1 with a universal dspacer-modified flap probe and the adaptability of microfluidic technology, MFIA demonstrated an exceptional detection limit (5 copies/µL) and specificity in the simultaneous detection of common diarrhea pathogens in clinical samples. Our approach addresses the limitations of current diagnostic techniques by offering a rapid (turn around time <1 h), cost-effective, easy design steps (universal flap design), and excellent detection performance method suitable for multiple applications. The validation of MFIA against the gold-standard PCR method using 150 actual clinical samples showed no statistical difference in the detection performance of the two methods, positioning it as a potential detection tool in pediatric diagnostic virology and public health surveillance. In conclusion, the MFIA method promises to transform pediatric infectious disease diagnostics and contribute significantly to global health efforts combating viral gastroenteritis.


Asunto(s)
Técnicas Biosensibles , Diarrea , Endonucleasas de ADN Solapado , Norovirus , Técnicas de Amplificación de Ácido Nucleico , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Norovirus/aislamiento & purificación , Norovirus/genética , Técnicas Biosensibles/métodos , Técnicas Biosensibles/instrumentación , Niño , Diarrea/virología , Diarrea/diagnóstico , Límite de Detección , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Rotavirus/aislamiento & purificación , Rotavirus/genética , Sensibilidad y Especificidad , Gastroenteritis/virología , Gastroenteritis/diagnóstico
4.
Microbiology (Reading) ; 170(8)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39109421

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) is an important waterborne pathogen capable of causing serious gastrointestinal infections with potentially fatal complications, including haemolytic-uremic syndrome. All STEC serogroups harbour genes that encode at least one Shiga toxin (stx1 and/or stx2), which constitute the primary virulence factors of STEC. Loop-mediated isothermal amplification (LAMP) enables rapid real-time pathogen detection with a high degree of specificity and sensitivity. The aim of this study was to develop and validate an on-site portable diagnostics workstation employing LAMP technology to permit rapid real-time STEC detection in environmental water samples. Water samples (n=28) were collected from groundwater wells (n=13), rivers (n=12), a turlough (n=2) and an agricultural drain (n=1) from the Corrib catchment in Galway. Water samples (100 ml) were passed through a 0.22 µm filter, and buffer was added to elute captured cells. Following filtration, eluates were tested directly using LAMP assays targeting stx1, stx2 and E. coli phoA genes. The portable diagnostics workstation was used in field studies to demonstrate the on-site testing capabilities of the instrument. Real-time PCR assays targeting stx1 and stx2 genes were used to confirm the results. The limit of detection for stx1, stx2 and phoA LAMP assays were 2, 2 and 6 copies, respectively. Overall, stx1, stx2 and phoA genes were detected by LAMP in 15/28 (53.6 %), 9/28 (32.2 %) and 24/28 (85.7 %) samples, respectively. For confirmation, the LAMP results for stx1 and stx2 correlated perfectly (100 %) with those obtained using PCR. The portable diagnostics workstation exhibited high sensitivity throughout the on-site operation, and the average time from sample collection to final result was 40 min. We describe a simple, transferable and efficient diagnostic technology for on-site molecular analysis of various water sources. This method allows on-site testing of drinking water, enabling evidence-based decision-making by public health and water management authorities.


Asunto(s)
Técnicas de Amplificación de Ácido Nucleico , Escherichia coli Shiga-Toxigénica , Microbiología del Agua , Técnicas de Amplificación de Ácido Nucleico/métodos , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Sensibilidad y Especificidad , Ríos/microbiología , Toxina Shiga I/genética , Agua Subterránea/microbiología
5.
Sensors (Basel) ; 24(15)2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39123959

RESUMEN

Timely and accurate detection of viruses is crucial for infection diagnosis and treatment. However, it remains a challenge to develop a portable device that meets the requirement of being portable, powerless, user-friendly, reusable, and low-cost. This work reports a compact ∅30 × 48 mm portable powerless isothermal amplification detection device (material cost ∼$1 USD) relying on LAMP (Loop-Mediated Isothermal Amplification). We have proposed chromatographic-strip-based microporous permeation technology which can precisely control the water flow rate to regulate the exothermic reaction. This powerless heating combined with phase-change materials can maintain a constant temperature between 50 and 70 °C for a duration of up to 49.8 min. Compared with the conventional methods, it avoids the use of an additional insulation layer for heat preservation, greatly reducing the size and cost. We have also deployed a color card and a corresponding algorithm to facilitate color recognition, data analysis, and storage using a mobile phone. The experimental results demonstrate that our device exhibits the same limit of detection (LOD) as the ProFlex PCR for SARS-CoV-2 pseudovirus samples, with that for both being 103 copies/µL, verifying its effectiveness and reliability. This work offers a timely, low-cost, and easy way for respiratory infectious disease detection, which could provide support in curbing virus transmission and protecting the health of humans and animals, especially in remote mountainous areas without access to electricity or trained professionals.


Asunto(s)
COVID-19 , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Humanos , COVID-19/diagnóstico , COVID-19/virología , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/economía , Límite de Detección
6.
Anal Chem ; 96(33): 13494-13503, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082644

RESUMEN

Effective detection of infectious pathogens is crucial for disease prevention and control. We present an innovative Internet of Things (IoT) molecular diagnostic device featuring a WeChat mini-program for simultaneous detection and spatiotemporal mapping of respiratory pathogens. Leveraging social software's widespread usage, our device integrates seamlessly with WeChat, eliminating the need for app downloads and installations. Through a comprehensive detection system, including a user-friendly mini-program, a portable Point-of-Care fluorescence detector, and a diagnostic information management platform (EzDx Cloud), we demonstrate high sensitivity and specificity in detecting common respiratory viruses. Our SARS-CoV-2/H1N1 combo test kit, developed using a novel one-tube/one-step loop-mediated isothermal amplification-CRISPR method, shows remarkable performance. We address challenges in at-home nucleic acid testing by providing a cost-effective solution capable of detecting multiple pathogens simultaneously. Our system's versatility accommodates various assays operating at different temperatures and fluorescence intensities, offering significant advantages over traditional methods. Moreover, integration with EzDx Cloud facilitates disease monitoring and early warning systems, enhancing public health management. This study highlights the potential of our IoT molecular diagnostic device in revolutionizing infectious disease detection and control, with wide-ranging applications in both human and animal population.


Asunto(s)
COVID-19 , Subtipo H1N1 del Virus de la Influenza A , Internet de las Cosas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , Humanos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/virología , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Diagnóstico Molecular/métodos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N1 del Virus de la Influenza A/genética
7.
Lab Chip ; 24(17): 4085-4095, 2024 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-39082091

RESUMEN

Loop-mediated isothermal amplification (LAMP) of genetic materials has emerged as a powerful molecular biology technique with great potential to be a standard point-of-care (POC) technique. This method has found several applications, but it still presents challenges for its direct on-site application, particularly in terms of integrated reaction and detection systems and the risk of carryover contamination. In this work, we propose an innovative solution - an electrochemical microcentrifuge tube cap (ElectrochemCap) based on a screen-printed electrode, a 3D printed adapter and an adhesive layer - which integrates the amplification reaction and its subsequent electrochemical detection in a single device. The design, fabrication, and electrochemical characterization of the ElectrochemCap are reported here, demonstrating its suitability for LAMP detection. Rapidly emerging technologies, such as 3D printing or xurography, are the basis of a prototype that has been validated for the detection of SARS-CoV-2 using reverse transcription LAMP (RT-LAMP), achieving results comparable to those obtained by gold-standard RT-qPCR. Moreover, we have explored the versatility of the ElectrochemCap presenting several additional designs (for containers with different volumes, shapes and materials, as well as multiplexed approaches), expanding its potential applications. Overall, the ElectrochemCap represents an affordable, versatile, and marketable innovation for integrated quantitative electrochemical detection, with enormous possibilities in bioelectroanalytical procedures and portable laboratory setups.


Asunto(s)
Técnicas Electroquímicas , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Técnicas Electroquímicas/instrumentación , Técnicas Electroquímicas/métodos , COVID-19/diagnóstico , COVID-19/virología , Humanos , Diseño de Equipo , Técnicas de Diagnóstico Molecular/instrumentación , Sistemas de Atención de Punto , Electrodos
8.
Lab Chip ; 24(13): 3265-3275, 2024 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-38847067

RESUMEN

Throughout the COVID-19 pandemic, individuals potentially infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) were forcibly recalled to local or central hospitals, where the diagnostic results were obtained a couple of days after the liquid biopsies were subjected to conventional polymerase chain reaction (PCR). This slow output of such a complex and time-consuming laboratory procedure hindered its widespread application. To overcome the limitations associated with such a centralized diagnostic system, we developed a hand-held and all-in-one type test kit in which the analytical results can be obtained in only 30 min. The test kit consists of three major steps for on-site SARS-CoV-2 RNA detection: 1) virus lysis by heat, 2) RNA enrichment by membrane, and 3) real-time detection by colorimetric loop-mediated isothermal amplification (c-LAMP). The proposed device operates in a sample-to-answer format, is fully automated, and reduces dependence on traditional laboratory settings, facilitating large-scale population screening.


Asunto(s)
COVID-19 , Colorimetría , Técnicas de Amplificación de Ácido Nucleico , ARN Viral , SARS-CoV-2 , Humanos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Colorimetría/instrumentación , Técnicas de Amplificación de Ácido Nucleico/instrumentación , COVID-19/diagnóstico , COVID-19/virología , ARN Viral/análisis , ARN Viral/genética , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Diagnóstico Molecular/métodos , Prueba de Ácido Nucleico para COVID-19/instrumentación , Prueba de Ácido Nucleico para COVID-19/métodos , Juego de Reactivos para Diagnóstico
9.
Lab Chip ; 24(14): 3490-3497, 2024 07 10.
Artículo en Inglés | MEDLINE | ID: mdl-38920004

RESUMEN

Point-of-care (POC) diagnostics have emerged as a crucial technology for emerging pathogen detections to enable rapid and on-site detection of infectious diseases. However, current POC devices often suffer from limited sensitivity with poor reliability to provide quantitative readouts. In this paper, we present a self-powered digital loop-mediated isothermal amplification (dLAMP) microfluidic chip (SP-dChip) for the rapid and quantitative detection of nucleic acids. The SP-dChip utilizes a vacuum lung design to passively digitize samples into individual nanoliter wells for high-throughput analysis. The superior digitization scheme is further combined with reverse transcription loop-mediated isothermal amplification (RT-LAMP) to demonstrate dLAMP detection of Zika virus (ZIKV). Firstly, the LAMP assay is loaded into the chip and passively digitized into individual wells. Mineral oil is then pipetted through the chip to differentiate each well as an individual reactor. The chip did not require any external pumping or power input for rapid and reliable results to detect ZIKA RNA as low as 100 copies per µL within one hour. As such, this SP-dChip offers a new class of solutions for truly affordable, portable, and quantitative POC detections for emerging viruses.


Asunto(s)
Dispositivos Laboratorio en un Chip , Técnicas Analíticas Microfluídicas , Técnicas de Amplificación de Ácido Nucleico , Virus Zika , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , Virus Zika/aislamiento & purificación , Virus Zika/genética , Técnicas Analíticas Microfluídicas/instrumentación , Diseño de Equipo , Humanos , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Diagnóstico Molecular/métodos , Infección por el Virus Zika/diagnóstico , Infección por el Virus Zika/virología , Sistemas de Atención de Punto , ARN Viral/análisis , ARN Viral/genética
10.
Sci Total Environ ; 944: 173744, 2024 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-38844223

RESUMEN

Quantification of SARS-CoV-2 RNA copies in wastewater can be used to estimate COVID-19 prevalence in communities. While such results are important for mitigating disease spread, SARS-CoV-2 measurements require sophisticated equipment and trained personnel, for which a centralized laboratory is necessary. This significantly impacts the time to result, defeating its purpose as an early warning detection tool. The objective of this study was to evaluate a field portable device (called MINI) for detecting SARS-CoV-2 viral loads in wastewater using real-time reverse transcriptase loop-mediated isothermal amplification (real-time RT-LAMP). The device was tested using wastewater samples collected from buildings (with 430 to 1430 inhabitants) that had known COVID-19-positive cases. Results show comparable performance of RT-LAMP against reverse transcriptase polymerase chain reaction (RT-qPCR) when detecting SARS-CoV-2 copies in wastewater. Both RT-LAMP and RT-qPCR detected SARS-CoV-2 in wastewater from buildings with at least three positive individuals within a 6-day time frame prior to diagnosis. The large 96-well throughput provided by MINI provided scalability to multi-building detection. The portability of the MINI device enabled decentralized on-site detection, significantly reducing the time to result. The overall findings support the use of RT-LAMP within the MINI configuration as an early detection system for COVID-19 infection using wastewater collected at the building scale.


Asunto(s)
COVID-19 , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , Aguas Residuales , Aguas Residuales/virología , COVID-19/diagnóstico , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Humanos , ARN Viral/análisis , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Carga Viral
11.
J Med Virol ; 96(6): e29721, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899377

RESUMEN

Globally, hepatitis B virus (HBV) affects over 250 million people, whereas hepatitis C virus (HCV) affects approximately 70 million people, posing major public health challenges. Despite the availability of vaccines and treatments, a lack of comprehensive diagnostic coverage has left many cases undiagnosed and untreated. To address the need for sensitive, specific, and accessible diagnostics, this study introduced a multiplex loop-mediated isothermal amplification assay with lateral flow detection for simultaneous HBV and HCV testing. This assay achieved exceptional sensitivity and was capable of detecting HBV and HCV concurrently in a single tube and on a single strip within 25 min, achieving the required clinical sensitivity (10 and 103 genomic copies/reaction for HBV and HCV, respectively). The method was validated in clinical samples of various viral genotypes, achieving an equivalent limit of detection. Additionally, a custom portable heating device was developed for field use. The assay developed here, capable of direct viral detection on the strip, shows promise in supplanting current methods that solely identify antibodies and necessitate additional qPCR for viral activity assessment. This economical and rapid assay aligns with point-of-care testing needs, offering significant advancements in enhancing viral hepatitis diagnostics in settings with limited resources.


Asunto(s)
Hepacivirus , Virus de la Hepatitis B , Hepatitis B , Hepatitis C , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Sensibilidad y Especificidad , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Hepatitis B/diagnóstico , Hepatitis B/virología , Virus de la Hepatitis B/genética , Virus de la Hepatitis B/aislamiento & purificación , Hepacivirus/genética , Hepacivirus/aislamiento & purificación , Hepatitis C/diagnóstico , Hepatitis C/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Genotipo
12.
Anal Methods ; 16(19): 3020-3029, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38690766

RESUMEN

A concise and rapid detection method for Mycoplasma pneumoniae is urgently required due to its severe impact on human health. To meet such a need, this study proposed and constructed an innovative point-of-care testing (POCT) platform that consists of a hydrogen ion-selective loop-mediated isothermal amplification (H+-LAMP) sensor and an electrochemical detection device. The H+-LAMP sensor successfully integrated the working and reference electrodes and converted the H+ generated during the LAMP process into an electrochemical signal. High sensitivity and stability for pathogen detection were also achieved by treating the working electrode with an electrodeposited polyaniline solid contact layer and by using an ion-selective membrane. As a result, the sensor shows a sensitivity of 68.26 mV per pH, a response time of less than 2 s, and a potential drift of less than 5 mV within one hour, which well meets the urgent need. The results also demonstrated that the detection limit for Mycoplasma pneumoniae was lowered to 1 copy per µL, the nucleic acid extraction and detection process could be completed in 30 minutes, and the impact of interfering ions on the sensor was negligible. Validation with 20 clinical samples yielded satisfactory results. More importantly, the storage lifespan of such an electrochemical sensor is over seven days, which is a great advantage for on-site pathogen detection. Therefore, the hydrogen ion-selective sensor constructed in this investigation is particularly suitable as a core component for instant pathogen detection platforms.


Asunto(s)
Técnicas Electroquímicas , Límite de Detección , Mycoplasma pneumoniae , Técnicas de Amplificación de Ácido Nucleico , Mycoplasma pneumoniae/aislamiento & purificación , Mycoplasma pneumoniae/genética , Técnicas Electroquímicas/métodos , Técnicas Electroquímicas/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , Hidrógeno/química , Neumonía por Mycoplasma/diagnóstico , Neumonía por Mycoplasma/microbiología , Técnicas Biosensibles/métodos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Electrodos
13.
Biosens Bioelectron ; 259: 116374, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-38754195

RESUMEN

Laboratory-based nucleic acid amplification tests (NAATs) are highly sensitive and specific, but they require the transportation of samples to centralized testing facilities and have long turnaround times. During the Coronavirus Disease 2019 (COVID-19) pandemic, substantial advancement has been achieved with the development of paper-based point-of-care (POC) NAATs, offering features such as low cost, being easy to use, and providing rapid sample-to-answer times. Although most of the POC NAATs innovations are towards clinical settings, we have developed a portable, paper-based loop-mediated isothermal amplification (LAMP) testing platform for on-farm applications, capable of detecting Bacteroidales as a fecal contamination biomarker. Our integrated platform includes a drop generator, a heating and imaging unit, and paper-based biosensors, providing sensitive results (limit of detection 3 copies of Bacteroidales per cm2) within an hour of sample collection. We evaluated this integrated platform on a commercial lettuce farm with a concordance of 100% when compared to lab-based tests. Our integrated paper-based LAMP testing platform holds great promise as a reliable and convenient tool for on-site NAATs. We expect that this innovation will encourage the fresh produce industry to adopt NAATs as a complementary tool for decision-making in growing and harvesting. We also hope that our work can stimulate further research in the development of on-farm diagnostic tools for other agricultural applications, leading to improved food safety and technology innovation.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Heces , Técnicas de Amplificación de Ácido Nucleico , Papel , SARS-CoV-2 , Técnicas Biosensibles/instrumentación , Técnicas Biosensibles/métodos , Heces/microbiología , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Humanos , Lactuca/microbiología , Granjas , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas de Diagnóstico Molecular/métodos , Diseño de Equipo
14.
Analyst ; 149(12): 3335-3345, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38695841

RESUMEN

In this study, a microfluidic-based system utilizing colorimetric loop-mediated isothermal amplification (LAMP) is introduced for the quantitative analysis of nucleic acid targets. This system offers a user-friendly and cost-effective platform for the multiplexed genetic diagnosis of various infectious diseases across multiple samples. It includes time-lapse imaging equipment for capturing images of the microfluidic device during the LAMP assay and a hue-based quantitative analysis software to analyze the LAMP reaction, streamlining diagnostic procedures. An electric pipette was used to simplify the loading of samples and LAMP reagents into the device, allowing easy operation even by untrained individuals. The hue-based analysis software employs efficient image processing and post-processing techniques to calculate DNA amplification curves based on color changes in multiple reaction chambers. This software automates several tasks, such as identifying reaction chamber areas from time-lapse images, quantifying color information within each chamber, correcting baselines of DNA amplification curves, fitting experimental data to theoretical curves, and determining the threshold time for each curve. To validate the developed system, conventional off-chip LAMP assays were conducted with a 25 µL reaction mixture in 0.2 mL polymerase chain reaction (PCR) tubes using a real-time turbidimeter. The results indicated that the threshold time obtained using the colorimetric LAMP assay in the developed system is comparable to that obtained with real-time turbidity measurements in PCR tubes, demonstrating the system's capability for quantitative analysis of target nucleic acids, including those from human herpesviruses.


Asunto(s)
Colorimetría , Dispositivos Laboratorio en un Chip , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Humanos , Colorimetría/métodos , Colorimetría/instrumentación , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Técnicas Analíticas Microfluídicas/instrumentación , Técnicas Analíticas Microfluídicas/métodos , ADN Viral/análisis , ADN Viral/genética , Virosis/diagnóstico , Límite de Detección
15.
Anal Chim Acta ; 1311: 342720, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38816155

RESUMEN

BACKGROUND: The monkeypox virus (MPXV) is a linear double-stranded DNA virus with a large genome that causes tens of thousands of infections and hundreds of deaths in at least 40 countries and regions worldwide. Therefore, timely and accurate diagnostic testing could be an important measure to prevent the ongoing spread of MPXV and widespread epidemics. RESULTS: Here, we designed multiple sets of primers for the target region of MPXV for loop-mediated isothermal amplification (LAMP) detection and identified the optimal primer set. Then, the specificity in fluorescent LAMP detection was verified using the plasmids containing the target gene, pseudovirus and other DNA/RNA viruses. We also evaluated the sensitivity of the colorimetric LAMP detection system using the plasmid and pseudovirus samples, respectively. Besides, we used monkeypox pseudovirus to simulate real samples for detection. Subsequent to the establishment and introduction of a magnetic beads (MBs)-based nucleic acid extraction technique, an integrated device was developed, characterized by rapidity, high sensitivity, and remarkable specificity. This portable system demonstrated a visual detection limit of 137 copies/mL, achieving sample-to-answer detection within 1 h. SIGNIFICANCE: The device has the advantages of integration, simplicity, miniaturization, and visualization, which help promote the realization of accurate, rapid, portable, and low-cost testing. Meanwhile, this platform could facilitate efficient, cost-effective and easy-operable point-of-care testing (POCT) in diverse resource-limited settings in addition to the laboratory.


Asunto(s)
Colorimetría , Monkeypox virus , Técnicas de Amplificación de Ácido Nucleico , Colorimetría/métodos , Colorimetría/instrumentación , Técnicas de Amplificación de Ácido Nucleico/métodos , Monkeypox virus/genética , Monkeypox virus/aislamiento & purificación , Límite de Detección , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación
16.
Biosens Bioelectron ; 257: 116292, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38653014

RESUMEN

We report the development and initial validation of a paper-based nucleic acid testing platform that integrates Loop-mediated isothermal amplification (LAMP) with clustered regularly interspaced short palindromic repeats (CRISPR) technology, referred to as PLACID (Paper-based LAMP-CRISPR Integrated Diagnostics). LAMP eliminates the need for thermal cycling, resulting in simplified instrumentation, and the CRISPR-associated protein (Cas 12a) system eliminates false positive signals from LAMP products, resulting in highly selective and sensitive assays. We optimized the assay to perform both amplification and detection entirely on paper, eliminating the need for complex fluid handling steps and lateral flow assay transfers. Additionally, we engineered a smartphone-operated system that includes a low-powered, non-contact IR heating chamber to actuate paper-based LAMP and CRISPR reactions and enable the detection of fluorescent signals from the paper. The platform demonstrates high specificity and sensitivity in detecting nucleic acid targets with a limit of detection of 50 copies/µL. We integrate an equipment-free sample preparation separation technology designed to streamline the preparation of crude samples prior to nucleic acid testing. The practical utility of our platform is demonstrated by the successful detection of spiked SARS-CoV-2 RNA fragments in saliva, E. Coli in soil, and pathogenic E. Coli in clinically fecal samples of infected patients. Furthermore, we demonstrate that the paper-based LAMP CRISPR chips employed in our assays possess a shelf life of several weeks, establishing them as viable candidates for on-site diagnostics.


Asunto(s)
Técnicas Biosensibles , COVID-19 , Sistemas CRISPR-Cas , Técnicas de Diagnóstico Molecular , Técnicas de Amplificación de Ácido Nucleico , Papel , SARS-CoV-2 , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Humanos , Técnicas Biosensibles/métodos , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , COVID-19/diagnóstico , COVID-19/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Sistemas CRISPR-Cas/genética , Límite de Detección , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Diseño de Equipo , Prueba de Ácido Nucleico para COVID-19/métodos , Prueba de Ácido Nucleico para COVID-19/instrumentación , Escherichia coli/genética , Escherichia coli/aislamiento & purificación , Proteínas Asociadas a CRISPR/genética , Teléfono Inteligente
17.
Adv Sci (Weinh) ; 11(23): e2310066, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38634211

RESUMEN

Simple, sensitive, and accurate molecular diagnostics are critical for preventing rapid spread of infection and initiating early treatment of diseases. However, current molecular detection methods typically rely on extensive nucleic acid sample preparation and expensive instrumentation. Here, a simple, fully integrated, lab-in-a-magnetofluidic tube (LIAMT) platform is presented for "sample-to-result" molecular detection of virus. By leveraging magnetofluidic transport of micro/nano magnetic beads, the LIAMT device integrates viral lysis, nucleic acid extraction, isothermal amplification, and CRISPR detection within a single engineered microcentrifuge tube. To enable point-of-care molecular diagnostics, a palm-sized processor is developed for magnetofluidic separation, nucleic acid amplification, and visual fluorescence detection. The LIAMT platform is applied to detect SARS-CoV-2 and HIV viruses, achieving a detection sensitivity of 73.4 and 63.9 copies µL-1, respectively. Its clinical utility is further demonstrated by detecting SARS-CoV-2 and HIV in clinical samples. This simple, affordable, and portable LIAMT platform holds promise for rapid and sensitive molecular diagnostics of infectious diseases at the point-of-care.


Asunto(s)
COVID-19 , Dispositivos Laboratorio en un Chip , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , SARS-CoV-2/genética , SARS-CoV-2/aislamiento & purificación , Humanos , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/instrumentación , COVID-19/diagnóstico , COVID-19/virología , Sistemas de Atención de Punto , Sensibilidad y Especificidad , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Diseño de Equipo , Infecciones por VIH/diagnóstico , Infecciones por VIH/virología , VIH/genética , VIH/aislamiento & purificación
18.
Lab Chip ; 24(9): 2485-2496, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38587207

RESUMEN

The COVID-19 pandemic greatly impacted the in vitro diagnostic market, leading to the development of new technologies such as point-of-care testing (POCT), multiplex testing, and digital health platforms. In this study, we present a self-contained microfluidic chip integrated with an internet-of-things (IoT)-based point-of-care (POC) device for rapid and sensitive diagnosis of respiratory viruses. Our platform enables sample-to-answer diagnostics within 70 min by automating RNA extraction, reverse transcription-loop-mediated isothermal amplification (RT-LAMP), and fluorescence detection. The microfluidic chip is designed to store all the necessary reagents for the entire diagnostic assay, including a lysis buffer, a washing buffer, an elution buffer, and a lyophilized RT-LAMP cocktail. It can perform nucleic acid extraction, aliquoting, and gene amplification in multiple reaction chambers without cross-contamination. The IoT-based POC device consists of a Raspberry Pi 4 for device control and data processing, a CMOS sensor for measuring fluorescence signals, a resistive heater panel for temperature control, and solenoid valves for controlling the movement of on-chip reagent solutions. The proposed device is portable and features a touchscreen for user control and result display. We evaluated the performance of the platform using 11 clinical respiratory virus samples, including 5 SARS-CoV-2 samples, 2 influenza A samples, and 4 influenza B samples. All tested clinical samples were accurately identified with high specificity and fidelity, demonstrating the ability to simultaneously detect multiple respiratory viruses. The combination of the integrated microfluidic chip with the POC device offers a simple, cost-effective, and scalable solution for rapid molecular diagnosis of respiratory viruses in resource-limited settings.


Asunto(s)
COVID-19 , Internet de las Cosas , Dispositivos Laboratorio en un Chip , Técnicas de Amplificación de Ácido Nucleico , SARS-CoV-2 , Humanos , COVID-19/diagnóstico , COVID-19/virología , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Sistemas de Atención de Punto , Técnicas de Diagnóstico Molecular/instrumentación , Diseño de Equipo , Pruebas en el Punto de Atención , ARN Viral/análisis , ARN Viral/aislamiento & purificación , ARN Viral/genética , Infecciones del Sistema Respiratorio/diagnóstico , Infecciones del Sistema Respiratorio/virología
19.
Angew Chem Int Ed Engl ; 63(19): e202400340, 2024 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-38497899

RESUMEN

In order to realize portable pathogen diagnostics with easier quantitation, digitization and integration, we develop a ready-to-use electrochemical sensing strategy (Iso-E-Codelock) for real-time detection of isothermal nucleic acid amplification. Bridged by a branched DNA as codelock, the isothermal amplicon is transduced into increased current of an electrochemical probe, holding multiple advantages of high sensitivity, high selectivity, signal-on response, "zero" background and one-pot operation. Through a self-designed portable instrument (BioAlex PHE-T), the detection can be implemented on a multichannel microchip and output real-time amplification curves just like an expensive commercial PCR machine. The microchip is a rebuilding-free and disposable component. The branch codelock probe can be customized for different targets and designs. Such high performance and flexibility have been demonstrated utilizing four virus (SARS-CoV-2, African swine fever, FluA and FluB) genes as targets, and two branch (3-way and 4-way) DNAs as codelock probes.


Asunto(s)
Técnicas Electroquímicas , Técnicas de Amplificación de Ácido Nucleico , Técnicas Electroquímicas/métodos , Técnicas de Amplificación de Ácido Nucleico/métodos , Humanos , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/genética , COVID-19/diagnóstico , COVID-19/virología , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Animales , Dispositivos Laboratorio en un Chip
20.
Infection ; 52(4): 1315-1324, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38353873

RESUMEN

PURPOSE: Leishmaniasis, caused by the parasite of the genus Leishmania, is a neglected tropical disease which is endemic in more than 60 countries. In South-East Asia, Brazil, and East Africa, it mainly occurs as kala-azar (visceral leishmaniasis, VL), and subsequently as post kala-azar dermal leishmaniasis (PKDL) in a smaller portion of cases. As stated per WHO roadmap, accessibility to accurate diagnostic methods is an essential step to achieve elimination. This study aimed to test the accuracy of a portable minoo device, a small battery-driven, multi-use fluorimeter operating with isothermal technology for molecular diagnosis of VL and PKDL. METHODS: Fluorescence data measured by the device within 20 min are reported back to the mobile application (or app) via Bluetooth and onward via the internet to a backend. This allows anonymous analysis and storage of the test data. The test result is immediately returned to the app displaying it to the user. RESULTS: The limit of detection was 11.2 genome copies (95% CI) as determined by screening a tenfold dilution range of whole Leishmania donovani genomes using isothermal recombinase polymerase amplification (RPA). Pathogens considered for differential diagnosis were tested and no cross-reactivity was observed. For its diagnostic performance, DNA extracted from 170 VL and PKDL cases, comprising peripheral blood samples (VL, n = 96) and skin biopsies (PKDL, n = 74) from India (n = 108) and Bangladesh (n = 62), was screened. Clinical sensitivity and specificity were 88% and 91%, respectively. CONCLUSION: Minoo devices can offer a convenient, cheaper alternative to other molecular diagnostics. Its easy handling makes it ideal for use in low-resource settings to identify parasite burden.


Asunto(s)
Técnicas de Diagnóstico Molecular , Teléfono Inteligente , Humanos , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/instrumentación , Sensibilidad y Especificidad , Leishmaniasis Visceral/diagnóstico , Leishmaniasis Visceral/parasitología , Leishmania/aislamiento & purificación , Leishmania/genética , Técnicas de Amplificación de Ácido Nucleico/métodos , Técnicas de Amplificación de Ácido Nucleico/instrumentación , Leishmaniasis Cutánea/diagnóstico , Leishmaniasis Cutánea/parasitología , Leishmania donovani/genética , Leishmania donovani/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA