RESUMEN
After heart disease, cancer is the second-leading cause of death worldwide. The most effective method of cancer treatment is target therapy. One of the potential goals of therapy could be DT-diaphorase, which reduces quinone moiety to hydroquinone, and reactive oxygen species are create as a byproduct. The obtaining of hybrid compounds containing the quinone moiety and other bioactive compounds leads to new derivatives which can activate DT-diaphorase. The aim of this research was the synthesis and characterization of new hybrids of 5,8-quinolinedione with thymidine derivatives. The analysis of the physicochemical properties shows a strong relationship between the structure and properties of the tested compounds. The enzymatic assay shows that hybrids are good substrates of NQO1 protein. The analysis of the structure-activity relationship shows that the localization of nitrogen atoms influences the enzymatic conversion rate. The analysis was supplemented by a molecular docking study. Comparing the results of the enzymatic assay and the molecular docking presents a strong correlation between the enzymatic conversion rate and the scoring value.
Asunto(s)
Simulación del Acoplamiento Molecular , NAD(P)H Deshidrogenasa (Quinona) , Timidina , NAD(P)H Deshidrogenasa (Quinona)/metabolismo , NAD(P)H Deshidrogenasa (Quinona)/química , Relación Estructura-Actividad , Timidina/química , Timidina/metabolismo , Timidina/farmacología , Humanos , Diseño de Fármacos , Quinolinas/química , Quinolinas/farmacología , Quinolinas/síntesis química , Especificidad por SustratoRESUMEN
Thymidine, as a crucial precursor of anti-AIDS drugs (e.g., zidovudine and stavudine), has wide application potential in the pharmaceutical industry. In this study, we introduced the thymidine biosynthesis pathway into the wild-type Escherichia coli MG1655 by systems metabolic engineering to improve the thymidine production in E. coli. Firstly, deoA, tdk, udp, rihA, rihB, and rihC were successively deleted to block the thymidine degradation pathway and salvage pathway in the wild-type E. coli MG1655. Then, the pyrimidine nucleoside operons from Bacillus subtilis F126 were introduced to enlarge the metabolic flux of the uridylic acid synthesis pathway. Finally, the expression of uridylate kinase, ribonucleoside diphosphate reductase, thymidine synthase, and 5'-nucleotidase in the thymidine biosynthesis pathway was optimized to enhance the metabolic flux from uridylic acid to thymidine. The engineered THY6-2 strain produced 11.10 g/L thymidine in a 5 L bioreactor with a yield of 0.04 g/g glucose and productivity of 0.23 g/(L·h). In this study, we constructed a strain that used glucose as the only carbon source for efficient production of thymidine and did not harbor plasmids, which provided a reference for the research on other pyrimidine nucleosides.
Asunto(s)
Escherichia coli , Ingeniería Metabólica , Timidina , Ingeniería Metabólica/métodos , Timidina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Glucosa/metabolismoRESUMEN
Stem and progenitor cells hold great promise for regenerative medicine and gene therapy approaches. However, transplantation of living cells entails a fundamental risk of unwanted growth, potentially exacerbated by CRISPR-Cas9 or other genetic manipulations. Here, we describe a safety system to control cell proliferation while allowing robust and efficient cell manufacture, without any added genetic elements. Inactivating TYMS, a key nucleotide metabolism enzyme, in several cell lines resulted in cells that proliferate only when supplemented with exogenous thymidine. Under supplementation, TYMS-/--pluripotent stem cells proliferate, produce teratomas, and successfully differentiate into potentially therapeutic cell types such as pancreatic ß cells. Our results suggest that supplementation with exogenous thymidine affects stem cell proliferation, but not the function of stem cell-derived cells. After differentiation, postmitotic cells do not require thymidine in vitro or in vivo, as shown by the production of functional human insulin in mice up to 5 months after implantation of stem cell-derived pancreatic tissue.
Asunto(s)
Diferenciación Celular , Proliferación Celular , Timidina , Timidilato Sintasa , Humanos , Animales , Ratones , Timidina/metabolismo , Timidilato Sintasa/genética , Timidilato Sintasa/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Línea Celular , Células Madre Pluripotentes/metabolismo , Células Madre Pluripotentes/citología , Sistemas CRISPR-CasRESUMEN
BACKGROUND: Regeneration is a highly complex process that requires the coordination of numerous molecular events, and identifying the key ruler that governs is important to investigate. While it has been shown that TCTP is a multi-functional protein that regulates cell proliferation, differentiation, apoptosis, anti-apoptosis, stem cell maintenance, and immune responses, but only a few studies associated to regeneration have been reported. To investigate the multi-functional role of TCTP in regeneration, the earthworm Perionyx excavatus was chosen. METHODS: Through pharmacological suppression of TCTP, amputation, histology, molecular docking, and western blotting, the multi-function role of TCTP involved in regeneration is revealed. RESULTS: Amputational studies show that P. excavatus is a clitellum-independent regenerating earthworm resulting in two functional worms upon amputation. Arresting cell cycle at the G1/S boundary using 2 mM Thymidine confirms that P. excavatus execute both epimorphosis and morphallaxis regeneration mode. The pharmacological suppression of TCTP using buclizine results in regeneration suppression. Following the combinatorial injection of 2 mM Thymidine and buclizine, the earthworm regeneration is completely blocked, which suggests a critical functional role of TCTP in morphallaxis. The pharmacological inhibition of TCTP also suppresses the key proteins involved in regeneration: Wnt3a (stem cell marker), PCNA (cell proliferation) and YAP1 (Hippo signalling) but augments the expression of cellular stress protein p53. CONCLUSION: The collective results indicate that TCTP synchronously is involved in the process of stem cell activation, cell proliferation, morphallaxis, and organ development in the regeneration event.
Asunto(s)
Oligoquetos , Animales , Oligoquetos/metabolismo , Simulación del Acoplamiento Molecular , Proliferación Celular , Regeneración , Timidina/metabolismoRESUMEN
Base-J (ß-D-glucopyranosyloxymethyluracil) is a modified DNA nucleotide that replaces 1% of thymine in kinetoplastid flagellates. The biosynthesis and maintenance of base-J depends on the base-J-binding protein 1 (JBP1) that has a thymidine hydroxylase domain and a J-DNA-binding domain (JDBD). How the thymidine hydroxylase domain synergizes with the JDBD to hydroxylate thymine in specific genomic sites, maintaining base-J during semi-conservative DNA replication, remains unclear. Here, we present a crystal structure of the JDBD including a previously disordered DNA-contacting loop and use it as starting point for molecular dynamics simulations and computational docking studies to propose recognition models for JDBD binding to J-DNA. These models guided mutagenesis experiments, providing additional data for docking, which reveals a binding mode for JDBD onto J-DNA. This model, together with the crystallographic structure of the TET2 JBP1-homologue in complex with DNA and the AlphaFold model of full-length JBP1, allowed us to hypothesize that the flexible JBP1 N-terminus contributes to DNA-binding, which we confirmed experimentally. Α high-resolution JBP1:J-DNA complex, which must involve conformational changes, would however need to be determined experimentally to further understand this unique underlying molecular mechanism that ensures replication of epigenetic information.
Asunto(s)
Proteínas Portadoras , Timina , Uracilo/química , Uracilo/metabolismo , ADN , Timidina/metabolismo , Oxigenasas de Función Mixta/química , Oxigenasas de Función Mixta/genética , Oxigenasas de Función Mixta/metabolismoRESUMEN
Tritium is found in the environment under three forms: free in the water, gaseous, and bound to organic matter. Once internalized in living organisms, it can be found in two forms: tissue free water tritium (TFWT) and organically bound tritium (OBT). This study aims to better understand OBT internalization in living organisms and to show the complementarity between experimental procedures and microdosimetry simulations that have often been used to obtain more information on imparted energy to cell nuclei. To do so, tritiated thymidine, an organic form of tritium, was chosen and zebrafish embryos [3.5 h post fertilization (hpf)] were exposed to a range of activity concentrations (2.21 × 103 to 5.95 × 105 Bq/mL). First, individual zebrafish embryos were sampled after different exposure times (1 to 96 h) to qualify the internalization kinetics. Then, the barrier role of the chorion was assessed after 2 days of exposure. Lastly, individual zebrafish embryos were sampled after 1 and 4 days of exposure to measure the internalization in the whole fish and its DNA, but also to highlight a possible link between the internal dose rate and the external activity concentration. Microdosimetry simulations were also made to quantify the imparted energy that could occur in the zebrafish cells after exposure to tritium. Results showed that when bound to thymidine, tritium rapidly incorporates in zebrafish early life stages, with the internalization being almost complete after 24 h. Results also showed that while the chorion acted as a barrier to prevent thymidine from entering the embryos, significant levels could still be measured in the whole organisms as well as in DNA. This study also highlighted that when the external activity concentration increased, the internal dose rate increased as well, following a sigmoidal trend. Microdosimetry simulations highlighted that the size and shape of the cell matters, and that the smallest cells seem to be at the greater risk, with only low-energy electrons inducing energy depositions. A linear fit was also found between the mean energy deposited and the logarithm of the radius of the cell, thus showing that the quantity of deposited energy is proportional to the radius of the cell. While this study highlighted important internalization pattern, it will also be used as the starting point of a study focusing on the toxic effects of tritiated thymidine on zebrafish in its early life stages.
Asunto(s)
Agua , Pez Cebra , Animales , Tritio , Timidina/metabolismo , Proyectos de InvestigaciónRESUMEN
The ability to monitor lymphocyte responses is critical for developing our understanding of the immune response in humans. In the current clinical setting, relying on the metabolic incorporation of [3H] thymidine into cellular DNA via a lymphocyte proliferation test (LPT) is the only method that is routinely performed to determine cell proliferation. However, techniques that measure DNA synthesis with a radioactive material such as [3H] thymidine are intrinsically more sensitive to the different stages of the cell cycle, which could lead to over-analyses and the subsequent inaccurate interpretation of the information provided. With cell proliferation assays, the output should preferably provide a direct and accurate measurement of the number of actively dividing cells, regardless of the stimuli properties or length of exposure. In fact, an ideal technique should have the capacity to measure lymphocyte responses on both a quantitative level, i.e., cumulative magnitude of lymphoproliferative response, and a qualitative level, i.e., phenotypical and functional characterization of stimulated immune cells. There are many LPT alternatives currently available to measure various aspects of cell proliferation. Of the nine techniques discussed, we noted that the majority of these LPT alternatives measure lymphocyte proliferation using flow cytometry. Across some of these alternatives, the covalent labelling of cells with a high fluorescence intensity and low variance with minimal cell toxicity while maximizing the number of detectable cell divisions or magnitude of proliferation was achieved. Herein, we review the performance of these different LPT alternatives and address their compatibility with the [3H] thymidine LPT so as to identify the "best" alternative to the [3H] thymidine LPT.
Asunto(s)
ADN , Linfocitos , Humanos , Linfocitos/metabolismo , División Celular , Proliferación Celular , Timidina/metabolismoRESUMEN
Toxoplasmosis is a common protozoan infection that can have severe outcomes in the immunocompromised and during pregnancy, but treatment options are limited. Recently, nucleotide metabolism has received much attention as a target for new antiprotozoal agents and here we focus on pyrimidine salvage by Toxoplasma gondii as a drug target. Whereas uptake of [3H]-cytidine and particularly [3H]-thymidine was at most marginal, [3H]-uracil and [3H]-uridine were readily taken up. Kinetic analysis of uridine uptake was consistent with a single transporter with a Km of 3.3 ± 0.8 µM, which was inhibited by uracil with high affinity (Ki = 1.15 ± 0.07 µM) but not by thymidine or 5-methyluridine, showing that the 5-Me group is incompatible with uptake by T. gondii. Conversely, [3H]-uracil transport displayed a Km of 2.05 ± 0.40 µM, not significantly different from the uracil Ki on uridine transport, and was inhibited by uridine with a Ki of 2.44 ± 0.59 µM, also not significantly different from the experimental uridine Km. The reciprocal, complete inhibition, displaying Hill slopes of approximately -1, strongly suggest that uridine and uracil share a single transporter with similarly high affinity for both, and we designate it uridine/uracil transporter 1 (TgUUT1). While TgUUT1 excludes 5-methyl substitutions, the smaller 5F substitution was tolerated, as 5F-uracil inhibited uptake of [3H]-uracil with a Ki of 6.80 ± 2.12 µM (P > 0.05 compared to uracil Km). Indeed, we found that 5F-Uridine, 5F-uracil and 5F,2'-deoxyuridine were all potent antimetabolites against T. gondii with EC50 values well below that of the current first line treatment, sulfadiazine. In vivo evaluation also showed that 5F-uracil and 5F,2'-deoxyuridine were similarly effective as sulfadiazine against acute toxoplasmosis. Our preliminary conclusion is that TgUUT1 mediates potential new anti-toxoplasmosis drugs with activity superior to the current treatment.
Asunto(s)
Toxoplasma , Toxoplasmosis , Humanos , Toxoplasma/metabolismo , Cinética , Uracilo/farmacología , Uracilo/metabolismo , Uridina/farmacología , Uridina/metabolismo , Timidina/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Toxoplasmosis/tratamiento farmacológico , Desoxiuridina/metabolismo , Sulfadiazina/metabolismoRESUMEN
Thymidine phosphorylase (TP) is an important enzyme for the synthesis and decomposition of pyrimidine, which can specifically catalyze the reversible phosphorolysis of thymidine to thymine and 2-deoxy-α-D-ribose-1-phosphate in the body. TP is highly expressed in many solid tumor tissues and can induce angiogenesis and anti-apoptotic effect, as well as tumor growth and metastasis. Therefore, TP inhibitors play a major role in the treatment. In recent years, a large number of synthetic TP inhibitors have been widely reported. In this article, the research progress of synthetic TP inhibitors was reviewed, including inhibitory activity, cytotoxicity, structure-activity relationship (SAR), inhibitory kinetics, mechanism of interaction and molecular docking. In our reviewed inhibitors, pyrimidine derivatives account for about a half, but it is a lack for research on other biological activities of pyrimidine derivatives and further exploration of the inhibitory mechanism of excellent inhibitors. Meanwhile, application of radiolabeled inhibitors to assess TP expression in tumors and prognosis of cancer chemotherapy in vivo is rarely reported. In addition, the study on the synergistic anticancer activity of TP inhibitors in combination with other anticancer drugs is less. Therefore, it is valuable to look forward to developing more and more potent TP inhibitors and applying them in the clinical treatment of cancer in the future.
Asunto(s)
Antineoplásicos , Neoplasias , Humanos , Timidina Fosforilasa/metabolismo , Timidina Fosforilasa/uso terapéutico , Timina , Simulación del Acoplamiento Molecular , Ribosa/uso terapéutico , Neoplasias/patología , Timidina/farmacología , Timidina/uso terapéutico , Timidina/metabolismo , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Pirimidinas/uso terapéutico , Fosfatos , Inhibidores Enzimáticos/farmacología , Inhibidores Enzimáticos/uso terapéuticoRESUMEN
Analysis of T lymphocyte proliferation and activation after antigenic or mitogenic stimulation is a vital parameter used in the diagnosis of various immuno-deficiencies and during the monitoring of treatment responses. Most applied techniques are based on the incorporation of tritiated thymidine (3H-TdR) or ELISPOT analysis, both rely on rather time-consuming/-intensive ex vivo protocols or encompass inherent drawbacks such as the inability to distinguish specific cell populations (3H-TdR, ELISPOT) or focus on a single cytokine (ELISPOT). Here we aimed at characterizing the rapid expression of intracellular CD154 (CD40L) as a marker for rare antigen-specific CD4+ T cells in pemphigus vulgaris (PV). Upon stimulation with human desmoglein (Dsg) 3, the major autoantigen in PV, the expression of CD154 was significantly increased in PV patients compared to healthy controls (HC) and correlated with anti-Dsg3 IgG titers. Patients with active disease showed higher numbers of Dsg3-reactive CD4+ T cells in CXCR5+ T follicular helper cells. In remittent PV and HC, CXCR5+CD4+ T cells remained largely unaffected by Dsg3. IL-17 and IL-21 expression were significantly induced only in CD154+CD4+ T cells from PV patients, lending themselves as potential novel treatment targets. Additionally, stimulation with immunodominant Dsg3-derived epitopes strongly induced a CD4+ T cell response via CD40-CD154 interaction similar to the human Dsg3 protein. We here established a rapid ex vivo assay allowing the detection of Dsg3-reactive CD4+ T cells from activated systemically available PBMCs, which further supports the crucial concept of antigen-specific T cells in the pathogenesis of PV.
Asunto(s)
Pénfigo , Autoantígenos , Ligando de CD40/metabolismo , Citocinas/metabolismo , Epítopos , Humanos , Inmunoglobulina G/metabolismo , Interleucina-17/metabolismo , Subgrupos de Linfocitos T , Timidina/metabolismoRESUMEN
OBJECTIVE: Elevated myeloid-derived suppressor cells (MDSCs) in many malignancies are associated with the increased risk for metastases and poor prognosis. Therefore, a mouse model of intraocular melanoma was established to explore how MDSCs influence liver metastases. METHODS: In this study, murine B16LS melanoma cells were transplanted into the posterior compartment (PC) of the eye of C57BL/6 mice. Leucocytes from the liver of naive mice and mice bearing melanoma liver metastasis were isolated using isotonic Percoll centrifugation, examined by flow cytometry for their expression of Gr1, CD11b, F4/80, RAE-1, and Mult-1, and further isolated for MDSCs and natural killer (NK) cells. The effects of MDSCs on NK cells were tested by coculturing and assessing the ability of NK cells to produce interferon-gamma (IFN-γ) by ELISA and NK cell cytotoxicity by 3H-thymidine incorporation assay. The impact of IFN-γ on liver metastases was examined via selectively depleting IFN-γ in vivo. RESULTS: The results showed that mice with liver metastases had increased levels of CD11b+Gr1+F4/80+ as well as CD11b+Gr1+F4/80- MDSCs. MDSCs significantly enhanced the generation of IFN-γ together with the cytotoxicity of the NK cells. Furthermore, these effects were cell-cell contact-dependent. Although IFN-γ was not of a toxic nature to the melanoma cells, it profoundly inhibited B16LS cell proliferation. Depleting IFN-γ in vivo led to increased liver metastases. CONCLUSION: All these findings first revealed that MDSCs accumulated in liver metastasis of intraocular melanoma could activate the NK cells to produce an effective anti-tumor immune response. Thus, the MDSCs' performance in different tumor models would need more investigation to boost current immunotherapy modalities.
Asunto(s)
Neoplasias Hepáticas , Melanoma , Células Supresoras de Origen Mieloide , Ratones , Animales , Células Supresoras de Origen Mieloide/metabolismo , Células Supresoras de Origen Mieloide/patología , Interferón gamma/genética , Interferón gamma/metabolismo , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Melanoma/metabolismo , Melanoma/patología , Células Asesinas Naturales , Neoplasias Hepáticas/patología , Timidina/metabolismoRESUMEN
Earlier we have shown that exposure to copper-nitrilotriacetate (Cu-NTA) manifests toxicity by generating oxidative stress and potent induction of proliferative reaction in the liver and kidney. In the study, we look at the impact of nitroglycerin (GTN) administration on Cu-NTA-induced oxidative stress and hyperproliferative response in the liver and kidney. GTN administration intraperitoneally to male Wistar rats after Cu-NTA administration intraperitoneally caused substantial protection against Cu-NTA-induced tissue injury, oxidative stress and hyperproliferative response. Cu-NTA administration at a dose of 4.5 mg/kg body weight produces significant (p < .001) elevation in biochemical parameters including aspartate aminotransferase (AST), alanine aminotransferase (ALT), blood urea nitrogen (BUN) and creatinine (CREA) with a concomitant increase in microsomal lipid peroxidation. Along with these alterations, we discovered a substantial increment in [3H]thymidine incorporation into hepatic and renal DNA synthesis (p < .001). Cu-NTA-induced tissue damage and lipid peroxidation in hepatic and renal tissues were inhibited by GTN treatment in a dose-dependent manner (p < .05-0.001). Furthermore, GTN can suppress the hyperproliferative response elicited by Cu-NTA by down-regulating the rate of [3H]thymidine incorporation into hepatic and renal DNA (p < .01-0.001). Protective effect of GTN against Cu-NTA was also confirmed by histopathological changes in liver and kidney. This result suggests that GTN may serve as a scavenger for reactive oxygen species (ROS) and reduces toxic metabolites of Cu-NTA, thereby avoiding tissue injury and oxidative stress. Further, administration of NO inhibitor, NG-Nitroarginine methyl ester (L-NAME), exacerbated Cu-NTA induced oxidative tissue damage and cell proliferation. Overall, GTN reduces Cu-NTA-induced tissue damage, oxidative stress, and proliferative response in the rat liver and kidney, according to these findings. On the basis of the above results, present study suggests that GTN may be a potential therapeutic agent for restoration of oxidative damage and proliferation to liver and kidney.
Asunto(s)
Cobre , Nitroglicerina , Ratas , Animales , Masculino , Nitroglicerina/farmacología , Cobre/toxicidad , Ratas Wistar , Riñón , Peroxidación de Lípido , Ácido Nitrilotriacético/toxicidad , Ácido Nitrilotriacético/metabolismo , Estrés Oxidativo , Hígado/metabolismo , Antioxidantes/farmacología , NG-Nitroarginina Metil Éster/farmacología , Timidina/metabolismo , Timidina/farmacología , ADN/metabolismo , Compuestos Férricos/toxicidadRESUMEN
Renal tissue plays a crucial function in maintaining homeostasis, making it vulnerable to xenobiotic toxicity. Pueraria montana has more beneficial potential against the various diseases and has long history used as a traditional Chinese medicine. But its effect against the renal cancer not scrutinize. The goal of this study is to see if Pueraria montana can protect rats from developing kidney tumors caused by diethylnitrosamine (DEN) and ferric nitrite (Fe-NTA). Wistar rats was selected for the current study and DEN (use as an inducer) and Fe-NTA (promoter) for induction the renal cancer. For 22 weeks, the rats were given orally Pueraria montana (12.5, 25, and 50 mg/kg) treatment. At regular intervals, the body weight and food intake were calculated. The rats were macroscopically evaluated for identification of cancer in the renal tissue. The renal tumor makers, renal parameters, antioxidant enzymes, phase I and II enzymes, inflammatory cytokines and mediators were estimated at end of the experimental study. Pueraria montana treated rats displayed the suppression of renal tumors, incidence of the tumors along with suppression of tumor percentage. Pueraria montana treated rats significantly (p < 0.001) increased body weight and suppressed the renal weight and food intake. It also reduced the level of renal tumor marker ornithine decarboxylase (ODC) and [3H] thymidine incorporation along with suppression of renal parameter such as uric acid, blood urea nitrogen (BUN), urea and creatinine. Pueraria montana treatment significantly (p < 0.001) altered the level of phase enzymes and antioxidant. Pueraria montana treatment significantly (p < 0.001) repressed the level of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and improved the level of interleukin-10 (IL-10). Pueraria montana treatment suppressed the level of prostaglandin (PGE2), cyclooxygenase-2 (COX-2), nuclear kappa B factor (NF-κB) and transforming growth factor beta 1 (TGF-ß1). Pueraria montana suppressed the inflammatory necrosis, size the bowman capsules in the renal histopathology. Pueraria montana exhibited the chemoprotective effect via dual mechanism such as suppression of inflammatory reaction and oxidative stress.
Asunto(s)
Neoplasias Renales , Pueraria , Animales , Antioxidantes/farmacología , Biomarcadores de Tumor/metabolismo , Biomarcadores de Tumor/farmacología , Peso Corporal , Creatinina/farmacología , Ciclooxigenasa 2/metabolismo , Dietilnitrosamina/farmacología , Compuestos Férricos , Inflamación/tratamiento farmacológico , Interleucina-10 , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Neoplasias Renales/inducido químicamente , Neoplasias Renales/tratamiento farmacológico , Neoplasias Renales/metabolismo , FN-kappa B/metabolismo , Ácido Nitrilotriacético/análogos & derivados , Nitritos/farmacología , Ornitina Descarboxilasa/metabolismo , Ornitina Descarboxilasa/farmacología , Estrés Oxidativo , Prostaglandinas , Prostaglandinas E/metabolismo , Prostaglandinas E/farmacología , Pueraria/metabolismo , Ratas , Ratas Wistar , Timidina/metabolismo , Timidina/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta1/farmacología , Factor de Necrosis Tumoral alfa/metabolismo , Urea , Ácido Úrico/farmacología , Xenobióticos/farmacologíaRESUMEN
Coronavirus subverts the host cell cycle to create a favorable cellular environment that enhances viral replication in host cells. Previous studies have revealed that nucleocapsid (N) protein of the coronavirus porcine epidemic diarrhea virus (PEDV) interacts with p53 to induce cell cycle arrest in S-phase and promotes viral replication. However, the mechanism by which viral replication is increased in the PEDV N protein-induced S-phase arrested cells remains unknown. In the current study, the protein expression profiles of PEDV N protein-induced S-phase arrested Vero E6 cells and thymidine-induced S-phase arrested Vero E6 cells were characterized by tandem mass tag-labeled quantitative proteomic technology. The effect of differentially expressed proteins (DEPs) on PEDV replication was investigated. The results indicated that a total of 5709 proteins, including 20,560 peptides, were identified, of which 58 and 26 DEPs were identified in the PEDV N group and thymidine group, respectively (P < 0.05; ratio ≥ 1.2 or ≤ 0.8). The unique DEPs identified in the PEDV N group were mainly involved in DNA replication, transcription, and protein synthesis, of which 60S ribosomal protein L18 (RPL18) exhibited significantly up-regulated expression in the PEDV N protein-induced S-phase arrested Vero E6/IPEC-J2 cells and PEDV-infected IPEC-J2 cells (P < 0.05). Further studies revealed that the RPL18 protein could significantly enhance PEDV replication (P < 0.05). Our findings reveal a mechanism regarding increased viral replication when the PEDV N protein-induced host cells are in S-phase arrest. These data also provide evidence that PEDV maintains its own replication by utilizing protein synthesis-associated ribosomal proteins.
Asunto(s)
Infecciones por Coronavirus , Virus de la Diarrea Epidémica Porcina , Enfermedades de los Porcinos , Animales , Chlorocebus aethiops , Virus de la Diarrea Epidémica Porcina/genética , Proteómica/métodos , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Porcinos , Timidina/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células Vero , Replicación ViralRESUMEN
Alzheimer's disease (AD) is a progressive disease with a long duration and complicated pathogenesis. Thymidine (Thy) and 2'-deoxyuridine (2'-De) are pyrimidines nucleotides that are associated with nervous system diseases. However, it remains unclear whether Thy and 2'-De exert neuroprotective effects in AD. Therefore, this study was conducted to explore the interventional effects and mechanisms of Thy and 2'-De on the Aß25-35-induced brain injury. Donepezil (Do, 10 mg/kg/d), Thy (20 mg/kg/d), and 2'-De (20 mg/kg/d) were administered for 4 weeks after the injection of Aß25-35 peptides (200 µM, i.c.v.) to mice. UPLC-MS/MS method was performed to quantify Thy and 2'-De in the hippocampus of mice brain. The cognition ability, neuronal and mitochondria damage, and levels of Aß1-42/Aß1-40, p-Tau, Na+ K+-ATPase, apoptosis, oxidative stress, immune cells, and Iba 1+ were measured in Aß25-35-induced mice. The oxygen consumption (OCR) and extracellular acidification rate (ECAR) were measured using a seahorse analyzer in Aß25-35-induced N9 cells. Moreover, 2-Deoxy-D-glucose (2-DG), a glycolysis inhibitor, was added to explore the mechanisms underlying the effects of Thy and 2'-De on Aß25-35-induced N9 cells. The expression of Iba 1+ and levels of CD11b+ and reactive oxygen species (ROS) were measured after treatment with Thy (5 µM) and 2'-De (10 µM) against 2-DG (5 mM) in Aß25-35-induced N9 cells. The results suggested that Do, Thy, and 2'-De improved the cognition ability, attenuated the damage to hippocampus and mitochondria, downregulated the levels of Aß1-42/Aß1-40, p-Tau, Na+ K+-ATPase, apoptosis, oxidative stress, and Iba 1+, and regulated the immune response induced by Aß25-35 against the brain injury. Furthermore, Do, Thy, and 2'-De increased ATP production and inhibited glycolysis in Aß25-35-induced N9 cells. Moreover, 2-DG enhanced the effects of drugs, reduced microglial activation, and attenuated oxidative stress to interfere with Aß25-35-induced N9 cells. In conclusion, Thy and 2'-De reduced microglial activation and improved oxidative stress damage by modulating glycolytic metabolism on the Aß25-35-induced brain injury.
Asunto(s)
Enfermedad de Alzheimer , Lesiones Encefálicas , Fármacos Neuroprotectores , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Apoptosis , Cromatografía Liquida , Desoxiglucosa/farmacología , Desoxiuridina/metabolismo , Desoxiuridina/farmacología , Donepezilo/farmacología , Glucólisis , Ratones , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Nucleótidos/metabolismo , Estrés Oxidativo , Fragmentos de Péptidos/metabolismo , Pirimidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Espectrometría de Masas en Tándem , Timidina/metabolismo , Timidina/farmacologíaRESUMEN
The typical cell cycle in eukaryotes is composed of four phases including the G1, S, G2, and M phases. G1, S, and G2 together are called interphase. Cell synchronization is a process that brings cultured cells at different stages of the cell cycle to the same phase. For many experiments, it is desirable to have a population of cells that are traversing the cell cycle synchronously, as it allows population-wide data to be collected rather than relying solely on single-cell experiments. While there are various drugs that can be used to arrest the cell at each specific phase of the cell cycle, they may cause undesired side effects. Here, we describe a protocol to synchronize cells to each cell cycle phase by using only one chemical: thymidine. Non-synchronized cells are synchronized to early S phase by a double thymidine block. The release of the double thymidine block allows the cells to progress through the cell cycle in a synchronized pace. By collecting the cells at various time intervals following the release of double thymidine block, we are able to harvest cells synchronized to the G2, M, and G1 phases. This synchronization can be assessed by various methods, including flow cytometry to examine the DNA content, Western blotting to examine the expression of various cell phase-specific markers, and microscopy to examine the morphology of the chromosome.
Asunto(s)
División Celular , Ciclo Celular/genética , Línea Celular , Fase G1 , Timidina/metabolismoRESUMEN
The typical cell cycle in eukaryotes is composed of four phases including the G1, S, G2, and M phases. G1, S, and G2 together are called interphase. Cell synchronization is a process that brings cultured cells at different stages of the cell cycle to the same phase, which allows the study of phase-specific cellular events. While interphase cells can be easily distinguished from mitotic cells by examining their chromosome morphology, it is much more difficult to separate and distinguish the interphases from each other. Here, we describe drug-derived protocols for synchronizing HeLa cells to various interphases of the cell cycle: G1 phase, S phase, and G2 phase. G1 phase synchronization is achieved through serum starvation, S phase synchronization is achieved through a double thymidine block, and G2 phase synchronization is achieved through the release of the double thymidine block followed by roscovitine treatment. Successful synchronization can be assessed using flow cytometry to examine the DNA content and Western blot to examine the expression of various cyclins.
Asunto(s)
Fase G2 , Mitosis , Ciclo Celular/genética , Citometría de Flujo/métodos , Células HeLa , Humanos , Interfase , Timidina/metabolismoRESUMEN
Cell cycle synchronization allows cells in a culture, originally at different stages of the cell cycle, to be brought to the same phase. It is normally performed by applying cell cycle arresting chemical agents to cells cultured in monolayer. While effective, isolated chondrocytes tend to dedifferentiate when cultured in monolayer and typically require 3D culturing methods to ensure phenotypic stability. Here, we describe both the conventional cell cycle synchronization method for cells in monolayer culture and an adapted method of synchronizing primary chondrocytes directly during the cell isolation process to limit potential dedifferentiation. Different methods including serum-starvation and treatment with thymidine, nocodazole, aphidicolin, and RO-3306 can synchronize the chondrocytes at different discrete phases. A cell purity of more than 90% in the S phase can be achieved with simultaneous cell isolation and synchronization using double thymidine treatment, generating a population of synchronized chondrocytes that show increased matrix synthesis when subsequently cultured in 3D.
Asunto(s)
Cartílago Articular , Condrocitos , Ciclo Celular , División Celular , Células Cultivadas , Condrocitos/metabolismo , Timidina/metabolismo , Timidina/farmacologíaRESUMEN
As the native regenerative potential of adult cardiac tissue is limited post-injury, stimulating endogenous repair mechanisms in the mammalian myocardium is a potential goal of regenerative medicine therapeutics. Injection of myocardial matrix hydrogels into the heart post-myocardial infarction (MI) has demonstrated increased cardiac muscle and promotion of pathways associated with cardiac development, suggesting potential promotion of cardiomyocyte turnover. In this study, the myocardial matrix hydrogel was shown to have native capability as an effective reactive oxygen species scavenger and protect against oxidative stress induced cell cycle inhibition in vitro. Encapsulation of cardiomyocytes demonstrated an enhanced turnover in in vitro studies, and in vivo assessments of myocardial matrix hydrogel treatment post-MI showed increased thymidine analog uptake in cardiomyocyte nuclei compared to saline controls. Overall, this study provides evidence that properties of the myocardial matrix material provide a microenvironment mitigating oxidative damage and supportive of cardiomyocytes undergoing DNA synthesis, toward possible DNA repair or cell cycle activation. STATEMENT OF SIGNIFICANCE: Loss of adult mammalian cardiomyocyte turnover is influenced by shifts in oxidative damage, which represents a potential mechanism for improving restoration of cardiac muscle after myocardial infarction (MI). Injection of a myocardial matrix hydrogel into the heart post-MI previously demonstrated increased cardiac muscle and promotion of pathways associated with cardiac development, suggesting potential in promoting proliferation of cardiomyocytes. In this study, the myocardial matrix hydrogel was shown to protect cells from oxidative stress and increase proliferation in vitro. In a rat MI model, greater presence of tissue free thiol content spared from oxidative damage, lesser mitochondrial superoxide content, and increased thymidine analog uptake in cardiomyocytes was found in matrix injected animals compared to saline controls. Overall, this study provides evidence that properties of the myocardial matrix material provide a microenvironment supportive of cardiomyocytes undergoing DNA synthesis, toward possible DNA repair or cell cycle activation.
Asunto(s)
Infarto del Miocardio , Miocitos Cardíacos , Animales , ADN/metabolismo , Hidrogeles/metabolismo , Hidrogeles/farmacología , Mamíferos , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Compuestos de Sulfhidrilo/farmacología , Superóxidos , Timidina/metabolismo , Timidina/farmacologíaRESUMEN
Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE; OMIM 603041) is a rare inherited metabolic disorder mostly caused by mutations in TYMP gene encoding thymidine phosphorylase (TP) protein that affects the mitochondrial nucleotide metabolism. TP, functionally active as a homodimer, is involved in the salvage pathway of pyrimidine nucleosides. MNGIE-like syndrome having an overlapping phenotype of MNGIE was also described and has been associated with mutations in POLG and RRM2B genes. In the present study, we report the molecular investigation of a consanguineous family including two patients with clinical features suggestive of MNGIE syndrome. Bioinformatics analyses were carried out in addition to mtDNA deletion screening and copy number quantification in the blood of the two patients. Whole exome sequencing and Sanger sequencing analyses revealed the segregation in the affected family a novel mutation c.1205T>A (p.L402Q) within the exon 9 of the TYMP gene. In addition, mtDNA analysis revealed the absence of mtDNA deletions and a decrease of the copy number in the blood of the two patients of the studied family. The p.Leu402Gln mutation was located in a conserved amino acid within the α/ß domain of the TP protein and several software supported its pathogenicity. In addition, and based on docking and molecular dynamic simulation analyses, results revealed that L402Q caused a conformational change in TP mutated structure and could therefore alter its flexibility and stability. These changes prevent also the formation of stable homodimer leading to non-functional protein with partial or complete loss of its catalytic activity.