Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.981
Filtrar
Más filtros

Intervalo de año de publicación
1.
Oncol Rep ; 52(2)2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38940330

RESUMEN

Ferroptosis, a regulated form of cell death, is intricately linked to iron­dependent lipid peroxidation. Recent evidence strongly supports the induction of ferroptosis as a promising strategy for treating cancers resistant to conventional therapies. A key player in ferroptosis regulation is ferroptosis suppressor protein 1 (FSP1), which promotes cancer cell resistance by promoting the production of the antioxidant form of coenzyme Q10. Of note, FSP1 confers resistance to ferroptosis independently of the glutathione (GSH) and glutathione peroxidase­4 pathway. Therefore, targeting FSP1 to weaken its inhibition of ferroptosis may be a viable strategy for treating refractory cancer. This review aims to clarify the molecular mechanisms underlying ferroptosis, the specific pathway by which FSP1 suppresses ferroptosis and the effect of FSP1 inhibitors on cancer cells.


Asunto(s)
Ferroptosis , Neoplasias , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Ferroptosis/efectos de los fármacos , Proteína de Unión al Calcio S100A4/metabolismo , Proteína de Unión al Calcio S100A4/antagonistas & inhibidores , Ubiquinona/análogos & derivados , Ubiquinona/uso terapéutico , Ubiquinona/farmacología , Peroxidación de Lípido/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Animales , Glutatión/metabolismo , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Terapia Molecular Dirigida/métodos
2.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38860702

RESUMEN

Study objectives were to determine the effects of mitoquinol (MitoQ, a mitochondrial-targeted antioxidant) on biomarkers of metabolism and inflammation during acute heat stress (HS). Crossbred barrows [n = 32; 59.0 ±â€…5.6 kg body weight (BW)] were blocked by BW and randomly assigned to 1 of 4 environmental-therapeutic treatments: 1) thermoneutral (TN) control (n = 8; TNCon), 2) TN and MitoQ (n = 8; TNMitoQ), 3) HS control (n = 8; HSCon), or 4) HS and MitoQ (n = 8; HSMitoQ). Pigs were acclimated for 6 d to individual pens before study initiation. The trial consisted of two experimental periods (P). During P1 (2 d), pigs were fed ad libitum and housed in TN conditions (20.6 ±â€…0.8 °C). During P2 (24 h), HSCon and HSMitoQ pigs were exposed to continuous HS (35.2 ±â€…0.2 °C), while TNCon and TNMitoQ remained in TN conditions. MitoQ (40 mg/d) was orally administered twice daily (0700 and 1800 hours) during P1 and P2. Pigs exposed to HS had increased rectal temperature, skin temperature, and respiration rate (+1.5 °C, +6.8 °C, and +101 breaths per minute, respectively; P < 0.01) compared to their TN counterparts. Acute HS markedly decreased feed intake (FI; 67%; P < 0.01); however, FI tended to be increased in HSMitoQ relative to HSCon pigs (1.5 kg vs. 0.9 kg, respectively; P = 0.08). Heat-stressed pigs lost BW compared to their TN counterparts (-4.7 kg vs. +1.6 kg, respectively; P < 0.01); however, the reduction in BW was attenuated in HSMitoQ compared to HSCon pigs (-3.9 kg vs. -5.5 kg, respectively; P < 0.01). Total gastrointestinal tract weight (empty tissue and luminal contents) was decreased in HS pigs relative to their TN counterparts (6.2 kg vs. 8.6 kg, respectively; P < 0.01). Blood glucose increased in HSMitoQ relative to HSCon pigs (15%; P = 0.04). Circulating non-esterified fatty acids (NEFA) increased in HS compared to TN pigs (P < 0.01), although this difference was disproportionately influenced by elevated NEFA in HSCon relative to HSMitoQ pigs (251 µEq/L vs. 142 µEq/L; P < 0.01). Heat-stressed pigs had decreased circulating insulin relative to their TN counterparts (47%; P = 0.04); however, the insulin:FI ratio tended to increase in HS relative to TN pigs (P = 0.09). Overall, circulating leukocytes were similar across treatments (P > 0.10). Plasma C-reactive protein remained similar among treatments; however, haptoglobin increased in HS relative to TN pigs (48%; P = 0.03). In conclusion, acute HS exposure negatively altered animal performance, inflammation, and metabolism, which were partially ameliorated by MitoQ.


Heat stress (HS) compromises animal health and productivity, and this causes major economic losses in almost every livestock sector. The negative consequences of HS are thought to originate from intestinal barrier dysfunction and subsequent immune activation. The underlying causes of lost intestinal integrity during HS are likely multifactorial; however, intestinal ischemia, increased accumulation of reactive oxygen species, and the ensuing epithelial oxidative damage might be potential causes. Mitochondria-targeted antioxidants, such as mitoquinol (MitoQ), are probably more effective than traditional dietary antioxidants (i.e., selenium, vitamin E) at alleviating oxidative stress, as they localize and accumulate within the mitochondria, potentiating their antioxidant activity. Thus, the present study aimed to investigate MitoQ's role during a thermal event in growing pigs. Herein, HS increased all body temperature indices, decreased feed intake (FI), and induced substantial body weight (BW) loss. Interestingly, the reduction in FI and BW was less dramatic in pigs receiving MitoQ. Changes in circulating metabolism and the acute phase response were observed due to the HS challenge; however, contrary to our expectations, these changes were not offset by MitoQ administration. Although our results suggest a positive MitoQ effect on growth performance, future studies are needed to corroborate the replicability of this response during HS.


Asunto(s)
Ubiquinona , Animales , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/administración & dosificación , Masculino , Porcinos , Compuestos Organofosforados/farmacología , Compuestos Organofosforados/administración & dosificación , Antioxidantes/farmacología , Calor/efectos adversos , Respuesta al Choque Térmico/efectos de los fármacos , Enfermedades de los Porcinos/tratamiento farmacológico , Trastornos de Estrés por Calor/veterinaria , Trastornos de Estrés por Calor/tratamiento farmacológico , Distribución Aleatoria , Temperatura Corporal/efectos de los fármacos
3.
Int J Mol Sci ; 25(12)2024 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-38928331

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disorder currently affecting the ageing population. Although the aetiology of PD has yet to be fully elucidated, environmental factors such as exposure to the naturally occurring neurotoxin rotenone has been associated with an increased risk of developing PD. Rotenone inhibits mitochondrial respiratory chain (MRC) complex I activity as well as induces dopaminergic neuronal death. The aim of the present study was to investigate the underlying mechanisms of rotenone-induced mitochondrial dysfunction and oxidative stress in an in vitro SH-SY5Y neuronal cell model of PD and to assess the ability of pre-treatment with Coenzyme Q10 (CoQ10) to ameliorate oxidative stress in this model. Spectrophotometric determination of the mitochondrial enzyme activities and fluorescence probe studies of reactive oxygen species (ROS) production was assessed. Significant inhibition of MRC complex I and II-III activities was observed, together with a significant loss of neuronal viability, CoQ10 status, and ATP synthesis. Additionally, significant increases were observed in intracellular and mitochondrial ROS production. Remarkably, CoQ10 supplementation was found to reduce ROS formation. These results have indicated mitochondrial dysfunction and increased oxidative stress in a rotenone-induced neuronal cell model of PD that was ameliorated by CoQ10 supplementation.


Asunto(s)
Mitocondrias , Neuronas , Estrés Oxidativo , Especies Reactivas de Oxígeno , Rotenona , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/deficiencia , Rotenona/toxicidad , Rotenona/efectos adversos , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Humanos , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Neuronas/patología , Enfermedad de Parkinson/metabolismo , Enfermedad de Parkinson/patología , Enfermedad de Parkinson/etiología , Línea Celular Tumoral , Debilidad Muscular/metabolismo , Debilidad Muscular/inducido químicamente , Debilidad Muscular/patología , Supervivencia Celular/efectos de los fármacos , Complejo I de Transporte de Electrón/metabolismo , Ataxia , Enfermedades Mitocondriales
4.
Int J Mol Sci ; 25(12)2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38928470

RESUMEN

Coenzyme Q10 (CoQ10) plays a key role in many aspects of cellular metabolism. For CoQ10 to function normally, continual interconversion between its oxidised (ubiquinone) and reduced (ubiquinol) forms is required. Given the central importance of this ubiquinone-ubiquinol redox cycle, this article reviews what is currently known about this process and the implications for clinical practice. In mitochondria, ubiquinone is reduced to ubiquinol by Complex I or II, Complex III (the Q cycle) re-oxidises ubiquinol to ubiquinone, and extra-mitochondrial oxidoreductase enzymes participate in the ubiquinone-ubiquinol redox cycle. In clinical terms, the outcome of deficiencies in various components associated with the ubiquinone-ubiquinol redox cycle is reviewed, with a particular focus on the potential clinical benefits of CoQ10 and selenium co-supplementation.


Asunto(s)
Oxidación-Reducción , Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Ubiquinona/deficiencia , Humanos , Mitocondrias/metabolismo , Animales , Selenio/metabolismo , Ataxia , Debilidad Muscular , Enfermedades Mitocondriales
5.
Proc Natl Acad Sci U S A ; 121(25): e2402384121, 2024 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-38865272

RESUMEN

Loss of mitochondrial electron transport complex (ETC) function in the retinal pigment epithelium (RPE) in vivo results in RPE dedifferentiation and progressive photoreceptor degeneration, and has been implicated in the pathogenesis of age-related macular degeneration. Xenogenic expression of alternative oxidases in mammalian cells and tissues mitigates phenotypes arising from some mitochondrial electron transport defects, but can exacerbate others. We expressed an alternative oxidase from Ciona intestinalis (AOX) in ETC-deficient murine RPE in vivo to assess the retinal consequences of stimulating coenzyme Q oxidation and respiration without ATP generation. RPE-restricted expression of AOX in this context is surprisingly beneficial. This focused intervention mitigates RPE mTORC1 activation, dedifferentiation, hypertrophy, stress marker expression, pseudohypoxia, and aerobic glycolysis. These RPE cell autonomous changes are accompanied by increased glucose delivery to photoreceptors with attendant improvements in photoreceptor structure and function. RPE-restricted AOX expression normalizes accumulated levels of succinate and 2-hydroxyglutarate in ETC-deficient RPE, and counteracts deficiencies in numerous neural retinal metabolites. These features can be attributed to the activation of mitochondrial inner membrane flavoproteins such as succinate dehydrogenase and proline dehydrogenase, and alleviation of inhibition of 2-oxyglutarate-dependent dioxygenases such as prolyl hydroxylases and epigenetic modifiers. Our work underscores the importance to outer retinal health of coenzyme Q oxidation in the RPE and identifies a metabolic network critical for photoreceptor survival in the context of RPE mitochondrial dysfunction.


Asunto(s)
Mitocondrias , Oxidorreductasas , Proteínas de Plantas , Epitelio Pigmentado de la Retina , Animales , Mitocondrias/metabolismo , Ratones , Oxidorreductasas/metabolismo , Oxidorreductasas/genética , Epitelio Pigmentado de la Retina/metabolismo , Epitelio Pigmentado de la Retina/patología , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Ciona intestinalis/metabolismo , Ubiquinona/metabolismo , Ubiquinona/análogos & derivados , Degeneración Retiniana/metabolismo , Degeneración Retiniana/patología , Degeneración Retiniana/genética , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patología
6.
J Coll Physicians Surg Pak ; 34(6): 641-645, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38840343

RESUMEN

OBJECTIVE: To determine the preventive effect of coenzyme Q10 (CoQ10) on the testicular histology of rats exposed chronically to mosquito coil smoke. STUDY DESIGN: Experimental study. Place and Duration of the Study: Department of Anatomy, Army Medical College/National University of Medical Sciences, Rawalpindi, Pakistan, from January to December 2020. METHODOLOGY: Thirty male Sprague Dawley rats were divided into three groups of 10 rats each. Group A was the healthy control. Group B rats were exposed to allethrin-based mosquito coil smoke for 12 weeks (4 hours/day). Group C rats received coenzyme Q10 (CoQ10, 10mg/kg/day) through oral gavage, in addition to 12 weeks of mosquito coil smoke exposure (4 hours/day). At the end of the study, testicular histology was compared among three groups including the germinal epithelium height, seminiferous tubule diameter, and testicular capsule thickness, while adjusting for the body weight variations among rats. RESULTS: The rats in Group B, exposed only to mosquito coil smoke showed testicular disruption, characterised by dilated seminiferous tubules (p <0.001), reduced germinal epithelial height (p <0.001), and thickened testicular capsule (p <0.007), as compared to the control group rats. However, the germinal epithelium height (p = 0.73) and testicular capsule thickness (p = 0.31) of rats receiving CoQ10 in addition to mosquito coil smoke inhalation were not significantly different from the control group. CONCLUSION: Prolonged inhalation of allethrin-based mosquito coil smoke can cause testicular disruption among rats. The oral CoQ10 administration can effectively prevent the histomorphological adverse effects on the testis among rats exposed to mosquito coil smoke. KEY WORDS: Allethrin, Coenzyme Q10, Germinal epithelium, Mosquito coil, Seminiferous tubules, Testicular capsule.


Asunto(s)
Ratas Sprague-Dawley , Testículo , Ubiquinona , Animales , Masculino , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/administración & dosificación , Ratas , Testículo/efectos de los fármacos , Testículo/patología , Humo/efectos adversos , Aletrinas/farmacología , Lesión por Inhalación de Humo/prevención & control , Lesión por Inhalación de Humo/patología
7.
J Infect Dev Ctries ; 18(5): 658-665, 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38865387

RESUMEN

INTRODUCTION: Coenzyme Q10 (CoQ10) is considered to be beneficial for patients with acute viral myocarditis (AVM). In addition, trimetazidine may be also beneficial to patients with AVM by promoting cardiac energy metabolism. This systematic review and meta-analysis examined the efficacy and safety of combining trimetazidine and CoQ10 with respect to CoQ10 alone in patients suffering from AVM. METHODOLOGY: PubMed, Embase, the Cochrane Library, Wanfang, and China National Knowledge Infrastructure (CNKI) databases were searched for relevant randomized controlled trials (RCTs). An analysis of random effects was employed to combine the results. RESULTS: Sixteen RCTs that included 1,364 patients with AVM contributed to the meta-analysis. Overall, 687 patients received the combined treatment, while 677 received the CoQ10 alone for a duration of 2-12 weeks (mean: 5.2 weeks). In contrast to monotherapy with CoQ10, combined treatment with trimetazidine and CoQ10 significantly improved overall therapy effectiveness (risk ratio [RR]: 1.19, 95% confidence interval [CI]: 1.13 to 1.24, p < 0.001; I2 = 0%). Differences in study parameters such as the incidence of heart failure upon admission, dosage of CoQ10, or length of treatment did not significantly alter the outcomes (p for all subgroup analyses > 0.05). The combined treatment was associated with improved myocardial enzyme levels and recovery of cardiac systolic function as compared to CoQ10 alone (p all < 0.05). In addition, trimetazidine combined with CoQ10 caused no greater increase in adverse events than CoQ10 alone. CONCLUSIONS: Trimetazidine combined with CoQ10 is an effective and safe treatment for AVM.


Asunto(s)
Quimioterapia Combinada , Miocarditis , Trimetazidina , Ubiquinona , Trimetazidina/uso terapéutico , Trimetazidina/administración & dosificación , Humanos , Miocarditis/tratamiento farmacológico , Ubiquinona/análogos & derivados , Ubiquinona/uso terapéutico , Ubiquinona/administración & dosificación , Ensayos Clínicos Controlados Aleatorios como Asunto , Resultado del Tratamiento , Enfermedad Aguda
8.
Anim Reprod Sci ; 266: 107517, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38823234

RESUMEN

Sperm cryopreservation plays an important role in the artificial insemination (AI) industry of small ruminants. It, however the use of frozen-thawed goat semen is limited due to the insufficient number of sperm with good biological functions. Mitochondria are the most sensitive organelles to cryopreservation damage in sperm. This study was conducted to determine the effects of MitoQ, the mitochondrial-targeted antioxidant, in a plant-based extender on the quality parameters of Markhoz goat sperm after the freezing and thawing process. Semen samples were collected and diluted in the extender, divided into five equal aliquots and supplemented with 0, 1, 10, 100 and 1000 nM MitoQ and cryopreserved in liquid nitrogen. After thawing, sperm motility, membrane functionality, abnormal morphology, mitochondrial activity, acrosome integrity, lipid peroxidation (LPO), DNA fragmentation, reactive oxygen species (ROS) concentration, viability and apoptotic-like changes were measured. The use of 10 and 100 nM MitoQ resulted in higher (P≤0.05) total motility (TM), progressive motility (PM), viability, membrane functionality, mitochondrial activity, and acrosome integrity compared to the other groups. On the other hand, LPO, apoptotic-like changes, DNA fragmentation and ROS concentration were lower (P≤0.05) in MQ10 and MQ100 groups compared to the other groups. MitoQ has no effect (P>0.05) on sperm abnormal morphology and velocity parameters. In conclusion, MitoQ can reduce oxidative stress by regulating mitochondrial function during the cryopreservation process of buck sperm and could be an effective additive in the cryopreservation media to protect sperm quality.


Asunto(s)
Antioxidantes , Criopreservación , Cabras , Mitocondrias , Compuestos Organofosforados , Análisis de Semen , Preservación de Semen , Espermatozoides , Ubiquinona , Animales , Masculino , Criopreservación/veterinaria , Criopreservación/métodos , Ubiquinona/farmacología , Ubiquinona/análogos & derivados , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Antioxidantes/farmacología , Compuestos Organofosforados/farmacología , Mitocondrias/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Análisis de Semen/veterinaria , Crioprotectores/farmacología , Motilidad Espermática/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo
9.
Int J Biol Sci ; 20(8): 2790-2813, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38904007

RESUMEN

Coenzyme Q0 (CoQ0), a quinone derivative from Antrodia camphorata, has antitumor capabilities. This study investigated the antitumor effect of noncytotoxic CoQ0, which included NLRP3 inflammasome inhibition, anti-EMT/metastasis, and metabolic reprogramming via HIF-1α inhibition, in HNSCC cells under normoxia and hypoxia. CoQ0 suppressed hypoxia-induced ROS-mediated HIF-1α expression in OECM-1 and SAS cells. Under normoxia and hypoxia, the inflammatory NLRP3, ASC/caspase-1, NFκB, and IL-1ß expression was reduced by CoQ0. CoQ0 reduced migration/invasion by enhancing epithelial marker E-cadherin and suppressing mesenchymal markers Twist, N-cadherin, Snail, and MMP-9, and MMP-2 expression. CoQ0 inhibited glucose uptake, lactate accumulation, GLUT1 levels, and HIF-1α-target gene (HK-2, PFK-1, and LDH-A) expressions that are involved in aerobic glycolysis. Notably, CoQ0 reduced ECAR as well as glycolysis, glycolytic capability, and glycolytic reserve and enhanced OCR, basal respiration, ATP generation, maximal respiration, and spare capacity in OECM-1 cells. Metabolomic analysis using LC-ESI-MS showed that CoQ0 treatment decreased the levels of glycolytic intermediates, including lactate, 2/3-phosphoglycerate, fructose 1,6-bisphosphate, and phosphoenolpyruvate, and increased the levels of TCA cycle metabolites, including citrate, isocitrate, and succinate. HIF-1α silencing reversed CoQ0-mediated anti-metastasis (N-Cadherin, Snail, and MMP-9) and metabolic reprogramming (GLUT1, HK-2, and PKM-2) under hypoxia. CoQ0 prevents cancer stem-like characteristics (upregulated CD24 expression and downregulated CD44, ALDH1, and OCT4) under normoxia and/or hypoxia. Further, in IL-6-treated SG cells, CoQ0 attenuated fibrosis by inhibiting TGF-ß and Collagen I expression and suppressed EMT by downregulating Slug and upregulating E-cadherin expression. Interesting, CoQ0 inhibited the growth of OECM-1 tumors in xenografted mice. Our results advocate CoQ0 for the therapeutic application against HNSCC.


Asunto(s)
Transición Epitelial-Mesenquimal , Subunidad alfa del Factor 1 Inducible por Hipoxia , Inflamasomas , Proteína con Dominio Pirina 3 de la Familia NLR , Carcinoma de Células Escamosas de Cabeza y Cuello , Ubiquinona , Humanos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/efectos de los fármacos , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Animales , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/tratamiento farmacológico , Ratones , Inflamasomas/metabolismo , Efecto Warburg en Oncología/efectos de los fármacos , Ratones Desnudos , Neoplasias de Cabeza y Cuello/metabolismo , Neoplasias de Cabeza y Cuello/tratamiento farmacológico
10.
Nan Fang Yi Ke Da Xue Xue Bao ; 44(5): 810-817, 2024 May 20.
Artículo en Chino | MEDLINE | ID: mdl-38862438

RESUMEN

OBJECTIVE: To explore the neuroprotective effect of coenzyme Q10 and its possible mechanism in mice with chronic restraint stress (CRS). METHODS: Mouse models of CRS were treated with intraperitoneal injections of coenzyme Q10 at low, moderate and high doses (50, 100 and 200 mg/kg, respectively, n=8), VX765 (a caspase-1 specific inhibitor, 50 mg/kg, n=8), or fluoxetine (10 mg/kg, n=8) on a daily basis for 4 weeks, and the changes in depression-like behaviors of the mice were assessed by sugar water preference test, forced swimming test and tail suspension test. The expression of glial fibrillary acidic protein (GFAP) in the hippocampus of the mice was detected using immunohistochemistry, and the number of synaptic spines was determined with Golgi staining. Western blotting was performed to detect the changes in the expressions of GFAP and pyroptosis-related proteins in the hippocampus, and the colocalization of neurons and caspase-1 p10 was examined with immunofluorescence assay. RESULTS: Compared with the normal control mice, the mouse models of CRS showed significantly reduced sugar water preference and increased immobility time in forced swimming and tail suspension tests (P < 0.05), and these depression-like behaviors were obviously improved by treatment with coenzyme Q10, VX765 or FLX. The mouse models showed a significantly decreased positive rate of GFAP and lowered GFAP protein expression in the hippocampus with obviously decreased synaptic spines, enhanced expressions of GSDMD-N, caspase-1 and IL-1ß, and increased colocalization of neurons and caspase-1 p10 (all P < 0.05). All these changes were significantly ameliorated in the mouse models after treatment with Q10. CONCLUSION: Coenzyme Q10 can alleviate depression-like behaviors in mice with CRS by down-regulating the pyroptosis signaling pathway.


Asunto(s)
Depresión , Modelos Animales de Enfermedad , Hipocampo , Piroptosis , Restricción Física , Transducción de Señal , Estrés Psicológico , Ubiquinona , Animales , Ratones , Piroptosis/efectos de los fármacos , Depresión/tratamiento farmacológico , Depresión/etiología , Depresión/metabolismo , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/uso terapéutico , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Estrés Psicológico/tratamiento farmacológico , Regulación hacia Abajo/efectos de los fármacos , Caspasa 1/metabolismo , Proteína Ácida Fibrilar de la Glía/metabolismo , Conducta Animal/efectos de los fármacos , Masculino , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico
11.
Arthritis Res Ther ; 26(1): 118, 2024 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-38851726

RESUMEN

BACKGROUND: Primary osteoarthritis (OA) occurs without identifiable underlying causes such as previous injuries or specific medical conditions. Age is a major contributing factor to OA, and as one ages, various joint tissues undergo gradual change, including degeneration of the articular cartilage, alterations in subchondral bone (SCB) morphology, and inflammation of the synovium. METHODS: We investigated the prevalence of primary OA in aged, genetically diverse UM-HET3 mice. Articular cartilage (AC) integrity and SCB morphology were assessed in 182 knee joints of 22-25 months old mice using the Osteoarthritis Research Society International (OARSI) scoring system and micro-CT, respectively. Additionally, we explored the effects of methylene blue (MB) and mitoquinone (MitoQ), two agents that affect mitochondrial function, on the prevalence and progression of OA during aging. RESULTS: Aged UM-HET3 mice showed a high prevalence of primary OA in both sexes. Significant positive correlations were found between cumulative AC (cAC) scores and synovitis in both sexes, and osteophyte formation in female mice. Ectopic chondrogenesis did not show significant correlations with cAC scores. Significant direct correlations were found between AC scores and inflammatory markers in chondrocytes, including matrix metalloproteinase-13, inducible nitric oxide synthase, and the NLR family pyrin domain containing-3 inflammasome in both sexes, indicating a link between OA severity and inflammation. Additionally, markers of cell cycle arrest, such as p16 and ß-galactosidase, also correlated with AC scores. In male mice, no significant correlations were found between SCB morphology traits and cAC scores, while in female mice, significant correlations were found between cAC scores and tibial SCB plate bone mineral density. Notably, MB and MitoQ treatments influenced the disease's progression in a sex-specific manner. MB treatment significantly reduced cAC scores at the medial knee joint, while MitoQ treatment reduced cAC scores, but these did not reach significance. CONCLUSIONS: Our study provides comprehensive insights into the prevalence and progression of primary OA in aged UM-HET3 mice, highlighting the sex-specific effects of MB and MitoQ treatments. The correlations between AC scores and various pathological factors underscore the multifaceted nature of OA and its association with inflammation and subchondral bone changes.


Asunto(s)
Envejecimiento , Osteoartritis , Animales , Masculino , Femenino , Ratones , Envejecimiento/patología , Envejecimiento/genética , Osteoartritis/genética , Osteoartritis/patología , Osteoartritis/metabolismo , Cartílago Articular/patología , Cartílago Articular/metabolismo , Azul de Metileno/farmacología , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad
12.
BMC Med ; 22(1): 191, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38714999

RESUMEN

BACKGROUND: Selenium-dependent deiodinases play a central role in thyroid hormone regulation and metabolism. In many European countries, insufficient selenium intake may consequently lead to adverse effects on thyroid function. In this randomised placebo-controlled double-blind study, we examined the effect of supplementation with selenium and coenzyme Q10 on thyroid hormonal status, cardiovascular (CV) mortality and health-related quality of life (Hr-QoL). METHODS: Free T3, free T4, reverse T3, and TSH were determined in 414 individuals at baseline, and the effect of selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/day) supplementation on hormone concentrations, CV mortality and Hr-QoL was evaluated after 48 months using Short Form 36 (SF-36). Pre-intervention plasma selenium was low, mean 67 µg/L, corresponding to an estimated intake of 35 µg/day. Changes in concentrations of thyroid hormones following the intervention were assessed using T-tests, repeated measures of variance, and ANCOVA analyses. RESULTS: In the total population, the group with the lowest selenium concentration at baseline presented with significantly higher levels of TSH and lower levels of fT3 as compared to subjects with the highest selenium concentration. Supplementation with selenium and coenzyme Q10 for 4 years significantly increased fT3 and rT3, decreased fT4, and diminished the increase in TSH levels compared with placebo treatment (p = 0.03, all). In the placebo group, TSH and fT4 values above the median were associated with an increase in 10-year CV mortality, as compared with the mortality rate among those with TSH and fT4 below the median (p < 0.04, both), with no difference in mortality rate according to TSH and fT4 levels in the active intervention group. Similarly, TSH > median and fT3 < median were associated with a decline in mental Hr-QoL measures vs. TSH < and fT3 > median in the placebo group during 4 years of follow-up, but this was wiped out in the active group. CONCLUSIONS: Supplementation with selenium and coenzyme Q10 had a beneficial effect on thyroid hormones with respect to CV mortality and Hr-QoL outcomes. The initial deficient selenium status was associated with an impaired thyroid function and the changes in thyroid hormone levels can be explained by increased activity of deiodinases. We conclude that a substantial part of the elderly study population might suffer from suboptimal thyroidal function with adverse clinical implications due to selenium deficiency. TRIAL REGISTRATION: This study was registered at ClinicalTrials.gov and has the identifier NCT01443780. Since it was not mandatory to register at the time the study began, the study has been registered retrospectively.


Asunto(s)
Enfermedades Cardiovasculares , Suplementos Dietéticos , Calidad de Vida , Selenio , Hormonas Tiroideas , Ubiquinona , Humanos , Ubiquinona/análogos & derivados , Ubiquinona/administración & dosificación , Ubiquinona/sangre , Selenio/administración & dosificación , Selenio/sangre , Masculino , Anciano , Femenino , Hormonas Tiroideas/sangre , Método Doble Ciego , Enfermedades Cardiovasculares/mortalidad , Enfermedades Cardiovasculares/sangre , Suecia/epidemiología , Anciano de 80 o más Años , Persona de Mediana Edad , Placebos/administración & dosificación
13.
JBRA Assist Reprod ; 28(2): 276-283, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38775323

RESUMEN

OBJECTIVE: Cryopreservation has some adverse effects on embryos including cell metabolism reduction, mitochondria and plasma membrane damage, excess production of 'Reactive Oxygen Species' and damage to DNA. In the present study. In this study we assessed the effect of coenzyme Q10 as an exogenous antioxidant on mouse embryos following cryopreservation. METHODS: We collected mice embryos at the morula stage from uterine horns on the third day of gestation. The morulae were divided into 9 groups (1 control, 2 vehicles and 6 experimental), then vitrified. The culture and/or vitrification media of the experimental groups were supplemented by 10 or 30 µM of CoQ10. After one week, the embryos were warmed and then cultured. After 48 hours of embryo culture, the blastocyst rate, total cell number, viability; and after 72 hours of embryo culture, we assessed the hatching rate. RESULTS: Blastocyst rate and hatching rate were significantly reduced in the groups containing 30 µM CoQ10 supplemented culture media compared to other groups (p<0.05). The hatching rate in the groups containing 10 µM CoQ10 supplemented in both culture and vitrification media was significantly higher than in the other groups (p<0.05). In groups containing 10 µM CoQ10 supplemented culture media, the viability was higher than that in the other groups (p<0.05). CONCLUSIONS: It seems that CoQ10 in a dose-dependent manner is able to improve hatching rate and viability following cryopreservation through its antioxidant and anti-apoptotic properties, and through the production of ATP.


Asunto(s)
Criopreservación , Ubiquinona , Animales , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ratones , Femenino , Técnicas de Cultivo de Embriones , Desarrollo Embrionario/efectos de los fármacos , Blastocisto/efectos de los fármacos , Vitrificación/efectos de los fármacos , Embrión de Mamíferos/efectos de los fármacos , Antioxidantes/farmacología , Embarazo
14.
Anim Reprod Sci ; 266: 107498, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38788536

RESUMEN

One of the factors responsible for less pregnancy rates is the use of frozen semen in sheep due to the oxidative stress created by the process. The aim of this experiment was to test the effects of adding coenzyme Q-10 (CoQ10) to the seminal extender on sperm quality and the pregnancy rate of sheep. In this study, ejaculates from eight Dorper rams of reproductive age were used and tested in four treatments: Control (pure BotuBov®), C1 (175 µM of CoQ10), C3 (350 µM of CoQ10), and C7 (700 µM of CoQ10). Samples were collected in triplicate from each animal, and sperm analysis was performed by CASA after thawing at 0 h and 2 h. The samples were also analyzed by flow cytometry for plasma and acrosomal membrane integrity, stability, lipid peroxidation, mitochondrial potential, and superoxide anion production. In total, 198 ewes were inseminated by laparoscopy and divided into two groups: control (n=98) and C7 (n=100). Pregnancy diagnosis was performed at 30 days. Coenzyme Q10 proved to be safe for semen cryopreservation, not altering sperm kinetic values between the groups post-thawing. In flow cytometry, the C1 and C7 groups achieved a better index of plasma membrane integrity and membrane stability (P<0.05). A increased pregnancy rate was observed in C7 (52 %) compared to the control (38 %). In conclusion, coenzyme Q10 assists in the cryopreservation process, protecting the sperm cell and improving pregnancy rates in ewes.


Asunto(s)
Índice de Embarazo , Preservación de Semen , Ubiquinona , Animales , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Femenino , Embarazo , Ovinos/fisiología , Masculino , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Análisis de Semen/veterinaria , Criopreservación/veterinaria , Espermatozoides/efectos de los fármacos , Espermatozoides/fisiología , Inseminación Artificial/veterinaria , Crioprotectores/farmacología
15.
J Mater Chem B ; 12(24): 5838-5847, 2024 Jun 19.
Artículo en Inglés | MEDLINE | ID: mdl-38771306

RESUMEN

In cardiac tissue engineering, myocardial surface patches and hydrogel intramyocardial injections represent the two primary hydrogel-based strategies for myocardial infarction (MI) treatment. However, the comparative effectiveness of these two treatments remains uncertain. Therefore, this study aimed to compare the effects of the two treatment modalities by designing a simple and reproducible hydrogel cross-linked with γ-PGA and 4-arm-PEG-SG. To improve mitochondrial damage in cardiomyocytes (CMs) during early MI, we incorporated the mitochondria-targeting antioxidant MitoQ into the hydrogel network. The hydrogel exhibited excellent biodegradability, biocompatibility, adhesion, and injectability in vitro. The hydrogel was utilized for rat MI treatment through both patch adhesion and intramyocardial injections. In vivo results demonstrated that the slow release of MitoQ peptide from the hydrogel hindered ROS production in CM, alleviated mitochondrial damage, and enhanced CM activity within 7 days, effectively inhibiting MI progression. Both hydrogel intramyocardial injections and patches exhibited positive therapeutic effects, with intramyocardial injections demonstrating superior efficacy in terms of cardiac function and structure in equivalent treatment cycles. In conclusion, we developed a MitoQ/hydrogel system that is easily prepared and can serve as both a myocardial patch and an intramyocardial injection for MI treatment, showing significant potential for clinical applications.


Asunto(s)
Hidrogeles , Infarto del Miocardio , Compuestos Organofosforados , Ratas Sprague-Dawley , Ubiquinona , Animales , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/patología , Ratas , Compuestos Organofosforados/química , Compuestos Organofosforados/farmacología , Hidrogeles/química , Hidrogeles/farmacología , Ubiquinona/análogos & derivados , Ubiquinona/química , Ubiquinona/farmacología , Ubiquinona/administración & dosificación , Masculino , Antioxidantes/farmacología , Antioxidantes/química , Miocitos Cardíacos/efectos de los fármacos , Inyecciones
16.
Nutrients ; 16(10)2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38794708

RESUMEN

As women age, oocytes are susceptible to a myriad of dysfunctions, including mitochondrial dysfunction, impaired DNA repair mechanisms, epigenetic alterations, and metabolic disturbances, culminating in reduced fertility rates among older individuals. Ferredoxin (FDX) represents a highly conserved iron-sulfur (Fe-S) protein essential for electron transport across multiple metabolic pathways. Mammalian mitochondria house two distinct ferredoxins, FDX1 and FDX2, which share structural similarities and yet perform unique functions. In our investigation into the regulatory mechanisms governing ovarian aging, we employed a comprehensive multi-omics analysis approach, integrating spatial transcriptomics, single-cell RNA sequencing, human ovarian pathology, and clinical biopsy data. Previous studies have highlighted intricate interactions involving excessive lipid peroxide accumulation, redox-induced metal ion buildup, and alterations in cellular energy metabolism observed in aging cells. Through a multi-omics analysis, we observed a notable decline in the expression of the critical gene FDX1 as ovarian age progressed. This observation prompted speculation regarding FDX1's potential as a promising biomarker for ovarian aging. Following this, we initiated a clinical trial involving 70 patients with aging ovaries. These patients were administered oral nutritional supplements consisting of DHEA, ubiquinol CoQ10, and Cleo-20 T3 for a period of two months to evaluate alterations in energy metabolism regulated by FDX1. Our results demonstrated a significant elevation in FDX1 levels among participants receiving nutritional supplementation. We hypothesize that these nutrients potentiate mitochondrial tricarboxylic acid cycle (TCA) activity or electron transport chain (ETC) efficiency, thereby augmenting FDX1 expression, an essential electron carrier in metabolic pathways, while concurrently mitigating lipid peroxide accumulation and cellular apoptosis. In summary, our findings underscore the potential of nutritional intervention to enhance in vitro fertilization outcomes in senescent cells by bolstering electron transport proteins, thus optimizing energy metabolism and improving oocyte quality in aging women.


Asunto(s)
Envejecimiento , Suplementos Dietéticos , Ferredoxinas , Mitocondrias , Ovario , Ubiquinona , Femenino , Humanos , Ovario/metabolismo , Ferredoxinas/metabolismo , Mitocondrias/metabolismo , Adulto , Ubiquinona/análogos & derivados , Ubiquinona/administración & dosificación , Ubiquinona/farmacología , Redes y Vías Metabólicas , Metabolismo Energético , Persona de Mediana Edad
17.
mBio ; 15(6): e0034224, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38747615

RESUMEN

Amoebae are environmental predators feeding on bacteria, fungi, and other eukaryotic microbes. Predatory interactions alter microbial communities and impose selective pressure toward phagocytic resistance or escape which may, in turn, foster virulence attributes. The ubiquitous fungivorous amoeba Protostelium aurantium has a wide prey spectrum in the fungal kingdom but discriminates against members of the Saccharomyces clade, such as Saccharomyces cerevisiae and Candida glabrata. Here, we show that this prey discrimination among fungi is solely based on the presence of ubiquinone as an essential cofactor for the predator. While the amoeba readily fed on fungi with CoQ presenting longer isoprenyl side chain variants CoQ8-10, such as those from the Candida clade, it failed to proliferate on those with shorter CoQ variants, specifically from the Saccharomyces clade (CoQ6). Supplementing non-edible yeast with CoQ9 or CoQ10 rescued the growth of P. aurantium, highlighting the importance of a long isoprenyl side chain. Heterologous biosynthesis of CoQ9 in S. cerevisiae by introducing genes responsible for CoQ9 production from the evolutionary more basic Yarrowia lipolytica complemented the function of the native CoQ6. The results suggest that the use of CoQ6 among members of the Saccharomyces clade might have originated as a predatory escape strategy in fungal lineages and could be retained in organisms that were able to thrive by fermentation. IMPORTANCE: Ubiquinones (CoQ) are universal electron carriers in the respiratory chain of all aerobic bacteria and eukaryotes. Usually 8-10 isoprenyl units ensure their localization within the lipid bilayer. Members of the Saccharomyces clade among fungi are unique in using only 6. The reason for this is unclear. Here we provide evidence that the use of CoQ6 efficiently protects these fungi from predation by the ubiquitous fungivorous amoeba Protostelium aurantium which lacks its own biosynthetic pathway for this vitamin. The amoebae were starving on a diet of CoQ6 yeasts which could be complemented by either the addition of longer CoQs or the genetic engineering of a CoQ9 biosynthetic pathway.


Asunto(s)
Ubiquinona , Ubiquinona/análogos & derivados , Ubiquinona/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Amoeba/microbiología , Amoeba/genética , Yarrowia/genética , Yarrowia/metabolismo , Hongos/genética , Hongos/metabolismo , Hongos/fisiología
18.
Artículo en Inglés | MEDLINE | ID: mdl-38728177

RESUMEN

Two Gram-stain-negative, rod-shaped bacteria, designated as strains KJ10-1T and KJ40-1T, were isolated from marine brown algae. Both strains were catalase-positive, oxidase-positive, and facultative aerobic. Strain KJ10-1T exhibited optimal growth at 25 °C, pH 7.0, and 3 % NaCl, whereas strain KJ40-1T showed optimal growth at 25 °C, pH 7.0, and 2 % NaCl. The respiratory quinones of strain KJ10-1T were ubiquinone-8, ubiquinone-7, menaquinone-7, and methylated menaquinone-7, while the respiratory quinone of strain KJ40-1T was only ubiquinone-8. As major fatty acids, strain KJ10-1T contained C16 : 0, C17 : 1 ω8c, iso-C15 : 0, and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and strain KJ40-1T contained C16 : 0 and summed features 3 and 8 (C18 : 1 ω7c and/or C18 : 1 ω6c). The major polar lipids in strain KJ10-1T were phosphatidylethanolamine, phosphatidylglycerol, and an unidentified aminolipid, whereas those in strain KJ40-1T were phosphatidylethanolamine, phosphatidylglycerol, and diphosphatidylglycerol. The DNA G+C contents of strains KJ10-1T and KJ40-1T were 42.1 and 40.8 mol%, respectively. Based on 16S rRNA gene sequences, strains KJ10-1T and KJ40-1T exhibited the closest relatedness to Shewanella saliphila MMS16-UL250T (98.6 %) and Vibrio rumoiensis S-1T (95.4 %), respectively. Phylogenetic analyses, based on both 16S rRNA and 92 housekeeping genes, showed that the strains formed distinct phylogenic lineages within the genera Shewanella and Vibrio. Digital DNA-DNA hybridization and orthologous average nucleotide identity values between strain KJ10-1T and other Shewanella species, as well as between strain KJ40-1T and other Vibrio species, were below the thresholds commonly accepted for prokaryotic species delineation. Based on the phenotypic, chemotaxonomic, and phylogenetic data, strains KJ10-1T and KJ40-1T represent novel species of the genera Shewanella and Vibrio, respectively, for which the names Shewanella phaeophyticola sp. nov. and Vibrio algarum sp. nov. are proposed, respectively. The type strains of S. phaeophyticola and V. algarum are KJ10-1T (=KACC 22589T=JCM 35409T) and KJ40-1T (=KACC 22588T=JCM 35410T), respectively.


Asunto(s)
Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano , Ácidos Grasos , Phaeophyceae , Filogenia , ARN Ribosómico 16S , Análisis de Secuencia de ADN , Shewanella , Ubiquinona , Vibrio , Vitamina K 2 , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Vibrio/genética , Vibrio/clasificación , Vibrio/aislamiento & purificación , Ubiquinona/análogos & derivados , Shewanella/genética , Shewanella/aislamiento & purificación , Shewanella/clasificación , Phaeophyceae/microbiología , Vitamina K 2/análogos & derivados , Fosfolípidos , Hibridación de Ácido Nucleico , Agua de Mar/microbiología
19.
Cell Rep ; 43(5): 114148, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38697100

RESUMEN

Coenzyme Q (CoQ) deficiency syndrome is conventionally treated with limited efficacy using exogenous CoQ10. Poor outcomes result from low absorption and bioavailability of CoQ10 and the clinical heterogenicity of the disease. Here, we demonstrate that supplementation with 4-hydroxybenzoic acid (4HB), the precursor of the benzoquinone ring in the CoQ biosynthetic pathway, completely rescues multisystemic disease and perinatal lethality in a mouse model of CoQ deficiency. 4HB stimulates endogenous CoQ biosynthesis in tissues of Coq2 mutant mice, normalizing mitochondrial function and rescuing cardiac insufficiency, edema, and neurodevelopmental delay. In contrast, exogenous CoQ10 supplementation falls short in fully restoring the phenotype. The treatment is translatable to human use, as proven by in vitro studies in skin fibroblasts from patients with pathogenic variants in COQ2. The therapeutic approach extends to other disorders characterized by deficiencies in the production of 4HB and early steps of CoQ biosynthesis and instances of secondary CoQ deficiency.


Asunto(s)
Modelos Animales de Enfermedad , Enfermedades Mitocondriales , Parabenos , Ubiquinona , Animales , Enfermedades Mitocondriales/tratamiento farmacológico , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/metabolismo , Parabenos/farmacología , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Ubiquinona/metabolismo , Ubiquinona/deficiencia , Ratones , Mitocondrias/metabolismo , Mitocondrias/efectos de los fármacos , Humanos , Fibroblastos/metabolismo , Fibroblastos/efectos de los fármacos , Ratones Endogámicos C57BL , Debilidad Muscular/tratamiento farmacológico , Debilidad Muscular/metabolismo , Debilidad Muscular/patología , Ataxia/tratamiento farmacológico , Ataxia/patología , Ataxia/metabolismo
20.
Int J Mol Sci ; 25(9)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38732133

RESUMEN

Treating female canine mammary gland tumors is crucial owing to their propensity for rapid progression and metastasis, significantly impacting the overall health and well-being of dogs. Mitoquinone (MitoQ), an antioxidant, has shown promise in inhibiting the migration, invasion, and clonogenicity of human breast cancer cells. Thus, we investigated MitoQ's potential anticancer properties against canine mammary gland tumor cells, CMT-U27 and CF41.Mg. MitoQ markedly suppressed the proliferation and migration of both CMT-U27 and CF41.Mg cells and induced apoptotic cell death in a dose-dependent manner. Furthermore, treatment with MitoQ led to increased levels of pro-apoptotic proteins, including cleaved-caspase3, BAX, and phospho-p53. Cell cycle analysis revealed that MitoQ hindered cell progression in the G1 and S phases in CMT-U27 and CF41.Mg cells. These findings were supported using western blot analysis, demonstrating elevated levels of cleaved caspase-3, a hallmark of apoptosis, and decreased expression of cyclin-dependent kinase (CDK) 2 and cyclin D4, pivotal regulators of the cell cycle. In conclusion, MitoQ exhibits in vitro antitumor effects by inducing apoptosis and arresting the cell cycle in canine mammary gland tumors, suggesting its potential as a preventive or therapeutic agent against canine mammary cancer.


Asunto(s)
Antineoplásicos , Apoptosis , Puntos de Control del Ciclo Celular , Proliferación Celular , Neoplasias Mamarias Animales , Compuestos Organofosforados , Ubiquinona , Animales , Perros , Apoptosis/efectos de los fármacos , Neoplasias Mamarias Animales/tratamiento farmacológico , Neoplasias Mamarias Animales/patología , Neoplasias Mamarias Animales/metabolismo , Femenino , Línea Celular Tumoral , Puntos de Control del Ciclo Celular/efectos de los fármacos , Antineoplásicos/farmacología , Ubiquinona/análogos & derivados , Ubiquinona/farmacología , Compuestos Organofosforados/farmacología , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA