Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.484
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
J Neurosci ; 44(43)2024 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-39251354

RESUMEN

We used virus-mediated anterograde and retrograde tracing, optogenetic modulation, immunostaining, in situ hybridization, and patch-clamp recordings in acute brain slices to study the release mechanism and µ-opioid modulation of the dual glutamatergic/GABAergic inputs from the ventral tegmental area and supramammillary nucleus to the granule cells of the dorsal hippocampus of male and female mice. In keeping with previous reports showing that the two transmitters are released by separate active zones within the same terminals, we found that the short-term plasticity and pharmacological modulation of the glutamatergic and GABAergic currents are indistinguishable. We further found that glutamate and GABA release at these synapses are both virtually completely mediated by N- and P/Q-type calcium channels. We then investigated µ-opioid modulation of these synapses and found that activation of µ-opioid receptors (MORs) strongly inhibits the glutamate and GABA release, mostly through inhibition of presynaptic N-type channels. However, the modulation by MORs of these dual synapses is complex, as it likely includes also a disinhibition due to downmodulation of local GABAergic interneurons which make direct axo-axonic contacts with the dual glutamatergic/GABAergic terminals. We discuss how this opioid modulation may enhance LTP at the perforant path inputs, potentially contributing to reinforce memories of drug-associated contexts.


Asunto(s)
Ácido Glutámico , Hipocampo , Receptores Opioides mu , Animales , Receptores Opioides mu/metabolismo , Ratones , Masculino , Ácido Glutámico/metabolismo , Femenino , Hipocampo/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Ácido gamma-Aminobutírico/metabolismo , Ratones Endogámicos C57BL , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Neuronas GABAérgicas/efectos de los fármacos , Vías Nerviosas/fisiología , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Sinapsis/metabolismo , Sinapsis/efectos de los fármacos , Sinapsis/fisiología
2.
Neurogastroenterol Motil ; 36(11): e14900, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39164871

RESUMEN

BACKGROUND: Rikkunshito (RKT), a traditional Japanese medicine, can relieve epigastric discomfort and anorexia in patients with functional dyspepsia. RKT enhances the orexigenic hormone, ghrelin. Ghrelin regulates food motivation by stimulating the appetite control center in the hypothalamus and the brain mesolimbic dopaminergic pathway (MDPW). However, the effect of RKT on MDPW remains unclear. Here, we aimed to investigate the central neural mechanisms underlying the orexigenic effects of RKT, focusing on the MDPW. METHODS: We examined the effects of RKT on food intake and neuronal c-Fos expression in restraint stress- and cholecystokinin octapeptide-induced anorexia in male rats. KEY RESULTS: RKT treatment significantly restored stress- and cholecystokinin octapeptide-induced decreased food intake. RKT increased c-Fos expression in the ventral tegmental area (VTA), especially in tyrosine hydroxylase-immunoreactive neurons, and nucleus accumbens (NAc). The effects of RKT were suppressed by the ghrelin receptor antagonist [D-Lys3]-GHRP-6. RKT increased the number of c-Fos/orexin-double-positive neurons in the lateral hypothalamus (LH), which project to the VTA. The orexin receptor antagonist, SB334867, suppressed RKT-induced increase in food intake and c-Fos expression in the LH, VTA, and NAc. RKT increased c-Fos expression in the arcuate nucleus and nucleus of the solitary tract of the medulla, which was inhibited by [D-Lys3]-GHRP-6. CONCLUSIONS & INFERENCES: RKT may restore appetite in subjects with anorexia through ghrelin- and orexin-dependent activation of neurons regulating the brain appetite control network, including the hypothalamus and MDPW.


Asunto(s)
Anorexia , Medicamentos Herbarios Chinos , Ghrelina , Hipotálamo , Orexinas , Animales , Masculino , Ghrelina/farmacología , Orexinas/metabolismo , Medicamentos Herbarios Chinos/farmacología , Anorexia/metabolismo , Anorexia/tratamiento farmacológico , Ratas , Hipotálamo/metabolismo , Hipotálamo/efectos de los fármacos , Ratas Sprague-Dawley , Ingestión de Alimentos/efectos de los fármacos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Dopamina/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo , Sistema Límbico/efectos de los fármacos , Sistema Límbico/metabolismo
3.
J Neurophysiol ; 132(3): 943-952, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39108212

RESUMEN

Cotransmission, meaning the release of multiple neurotransmitters from one synapse, allows for increased diversity of signaling in the brain. Dopamine (DA) and γ-aminobutyric acid (GABA) are known to coexpress in many regions such as the olfactory bulb and the ventral tegmental area. Tuberoinfundibular dopaminergic neurons (TIDA) in the arcuate nucleus of the hypothalamus (Arc) project to the median eminence (ME) and regulate prolactin release from the pituitary, and prior work suggests dopaminergic Arc neurons also cotransmit GABA. However, the extent of cotransmission, and the projection patterns of these neurons have not been fully revealed. Here, we used a genetic intersectional reporter expression approach to selectively label cells that express both tyrosine hydroxylase (TH) and vesicular GABA transporter (VGAT). Through this approach, we identified cells capable of both DA and GABA cotransmission in the Arc, periventricular (Pe), paraventricular (Pa), ventromedial, and the dorsolateral hypothalamic nuclei, in addition to a novel population in the caudate putamen. The highest density of labeled cells was in the Arc, 6.68% of DAPI-labeled cells at Bregma -2.06 mm, and in the Pe, 2.83% of DAPI-labeled cells at Bregma -1.94 mm. Next, we evaluated the projections of these DA/GABA cells by injecting an mCherry virus that fluoresces in DA/GABA cells. We observed a cotransmitting DA/GABA population, with projections within the Arc, and to the Pa and ME. These data suggest DA/GABA Arc neurons are involved in prolactin release as a subset of TIDA neurons. Further investigation will elucidate the interactions of dopamine and GABA in the hypothalamus.NEW & NOTEWORTHY Cotransmitting dopaminergic (DA) and γ-aminobutyric acid (GABA)ergic (DA/GABA) neurons contribute to the complexity of neural circuits. Using a new genetic technique, we characterized the locations, density, and projections of hypothalamic DA/GABA neurons. DA/GABA cells are mostly in the arcuate nucleus (Arc), from which they project locally within the arcuate, to the median eminence (ME), and to the paraventricular (Pa) nucleus. There is also a small and previously unreported group of DA/GABA cells in the caudate putamen.


Asunto(s)
Núcleo Arqueado del Hipotálamo , Neuronas Dopaminérgicas , Neuronas GABAérgicas , Eminencia Media , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Núcleo Arqueado del Hipotálamo/citología , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/fisiología , Eminencia Media/metabolismo , Eminencia Media/citología , Neuronas Dopaminérgicas/metabolismo , Neuronas Dopaminérgicas/fisiología , Masculino , Ratones , Tirosina 3-Monooxigenasa/metabolismo , Proteínas del Transporte Vesicular de Aminoácidos Inhibidores/metabolismo , Femenino , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología
4.
CNS Neurosci Ther ; 30(8): e70001, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39154359

RESUMEN

AIMS: The parabrachial nucleus (PBN) promotes wakefulness states under general anesthesia. Recent studies have shown that glutamatergic neurons within the PBN play a crucial role in facilitating emergence from anesthesia. Our previous study indicates that vesicular glutamate transporter 2 (vglut2) expression neurons of the PBN extend into the extended amygdala (EA). However, the modulation of PBNvglut2-EA in general anesthesia remains poorly understood. This study aims to investigate the role of PBNvglut2-EA in alterations of consciousness during sevoflurane anesthesia. METHODS: We first validated vglut2-expressing neuron projections from the PBN to the EA using anterograde tracing. Then, we conducted immunofluorescence staining of c-Fos to investigate the role of the EA involved in the regulation of consciousness during sevoflurane anesthesia. After, we performed calcium fiber photometry recordings to determine the changes in PBNvglut2-EA activity. Lastly, we modulated PBNvglut2-EA activity under sevoflurane anesthesia using optogenetics, and electroencephalogram (EEG) was recorded during specific optogenetic modulation. RESULTS: The expression of vglut2 in PBN neurons projected to the EA, and c-Fos expression in the EA was significantly reduced during sevoflurane anesthesia. Fiber photometry revealed that activity in the PBNvglut2-EA pathway was suppressed during anesthesia induction but restored upon awakening. Optogenetic activation of the PBNvglut2-EA delayed the induction of anesthesia. Meanwhile, EEG recordings showed significantly decreased δ oscillations and increased ß and γ oscillations compared to the EYFP group. Furthermore, optogenetic activation of the PBNvglut2-EA resulted in an acceleration of awakening from anesthesia, accompanied by decreased δ oscillations on EEG recordings. Optogenetic inhibition of PBNvglut2-EA accelerated anesthesia induction. Surprisingly, we found a sex-specific regulation of PBNvglut2-EA in this study. The activity of PBNvglut2-EA was lower in males during the induction of anesthesia and decreased more rapidly during sevoflurane anesthesia compared to females. Photoactivation of the PBNvglut2-EA reduced the sensitivity of males to sevoflurane, showing more pronounced wakefulness behavior and EEG changes than females. CONCLUSIONS: PBNvglut2-EA is involved in the promotion of wakefulness under sevoflurane anesthesia. Furthermore, PBNvglut2-EA shows sex differences in the changes of consciousness induced by sevoflurane anesthesia.


Asunto(s)
Amígdala del Cerebelo , Anestésicos por Inhalación , Ratones Endogámicos C57BL , Neuronas , Núcleos Parabraquiales , Sevoflurano , Proteína 2 de Transporte Vesicular de Glutamato , Vigilia , Sevoflurano/farmacología , Animales , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/biosíntesis , Vigilia/efectos de los fármacos , Vigilia/fisiología , Ratones , Anestésicos por Inhalación/farmacología , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/metabolismo , Núcleos Parabraquiales/fisiología , Masculino , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Amígdala del Cerebelo/efectos de los fármacos , Amígdala del Cerebelo/metabolismo , Ratones Transgénicos , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Optogenética/métodos , Electroencefalografía
5.
Transl Neurodegener ; 13(1): 34, 2024 Jul 24.
Artículo en Inglés | MEDLINE | ID: mdl-39044270

RESUMEN

BACKGROUND: Depressive symptoms often occur in patients with Alzheimer's disease (AD) and exacerbate the pathogenesis of AD. However, the neural circuit mechanisms underlying the AD-associated depression remain unclear. The serotonergic system plays crucial roles in both AD and depression. METHODS: We used a combination of in vivo trans-synaptic circuit-dissecting anatomical approaches, chemogenetic manipulations, optogenetic manipulations, pharmacological methods, behavioral testing, and electrophysiological recording to investigate dorsal raphe nucleus serotonergic circuit in AD-associated depression in AD mouse model. RESULTS: We found that the activity of dorsal raphe nucleus serotonin neurons (DRN5-HT) and their projections to the dorsal hippocampal CA1 (dCA1) terminals (DRN5-HT-dCA1CaMKII) both decreased in brains of early 5×FAD mice. Chemogenetic or optogenetic activation of the DRN5-HT-dCA1CaMKII neural circuit attenuated the depressive symptoms and cognitive impairments in 5×FAD mice through serotonin receptor 1B (5-HT1BR) and 4 (5-HT4R). Pharmacological activation of 5-HT1BR or 5-HT4R attenuated the depressive symptoms and cognitive impairments in 5×FAD mice by regulating the DRN5-HT-dCA1CaMKII neural circuit to improve synaptic plasticity. CONCLUSIONS: These findings provide a new mechanistic connection between depression and AD and provide potential pharmaceutical prevention targets for AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Depresión , Modelos Animales de Enfermedad , Núcleo Dorsal del Rafe , Ratones Transgénicos , Neuronas Serotoninérgicas , Animales , Núcleo Dorsal del Rafe/metabolismo , Masculino , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Disfunción Cognitiva/psicología , Disfunción Cognitiva/fisiopatología , Ratones , Neuronas Serotoninérgicas/metabolismo , Neuronas Serotoninérgicas/fisiología , Depresión/metabolismo , Depresión/genética , Depresión/psicología , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/psicología , Hipocampo/metabolismo , Serotonina/metabolismo , Optogenética , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiopatología
6.
PLoS Biol ; 22(7): e3002646, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39012916

RESUMEN

Autism spectrum disorders (ASDs) are considered neural dysconnectivity syndromes. To better understand ASD and uncover potential treatments, it is imperative to know and dissect the connectivity deficits under conditions of autism. Here, we apply a whole-brain immunostaining and quantification platform to demonstrate impaired structural and functional connectivity and aberrant whole-brain synchronization in a Tbr1+/- autism mouse model. We express a channelrhodopsin variant oChIEF fused with Citrine at the basolateral amygdala (BLA) to outline the axonal projections of BLA neurons. By activating the BLA under blue light theta-burst stimulation (TBS), we then evaluate the effect of BLA activation on C-FOS expression at a whole brain level to represent neural activity. We show that Tbr1 haploinsufficiency almost completely disrupts contralateral BLA axonal projections and results in mistargeting in both ipsilateral and contralateral hemispheres, thereby globally altering BLA functional connectivity. Based on correlated C-FOS expression among brain regions, we further show that Tbr1 deficiency severely disrupts whole-brain synchronization in the absence of salient stimulation. Tbr1+/- and wild-type (WT) mice exhibit opposing responses to TBS-induced amygdalar activation, reducing synchronization in WT mice but enhancing it in Tbr1+/- mice. Whole-brain modular organization and intermodule connectivity are also affected by Tbr1 deficiency and amygdalar activation. Following BLA activation by TBS, the synchronizations of the whole brain and the default mode network, a specific subnetwork highly relevant to ASD, are enhanced in Tbr1+/- mice, implying a potential ameliorating effect of amygdalar stimulation on brain function. Indeed, TBS-mediated BLA activation increases nose-to-nose social interactions of Tbr1+/- mice, strengthening evidence for the role of amygdalar connectivity in social behaviors. Our high-resolution analytical platform reveals the inter- and intrahemispheric connectopathies arising from ASD. Our study emphasizes the defective synchronization at a whole-brain scale caused by Tbr1 deficiency and implies a potential beneficial effect of deep brain stimulation at the amygdala for TBR1-linked autism.


Asunto(s)
Trastorno del Espectro Autista , Complejo Nuclear Basolateral , Estimulación Encefálica Profunda , Modelos Animales de Enfermedad , Conducta Social , Proteínas de Dominio T Box , Animales , Trastorno del Espectro Autista/fisiopatología , Trastorno del Espectro Autista/metabolismo , Trastorno del Espectro Autista/genética , Proteínas de Dominio T Box/metabolismo , Proteínas de Dominio T Box/genética , Complejo Nuclear Basolateral/metabolismo , Complejo Nuclear Basolateral/fisiopatología , Ratones , Estimulación Encefálica Profunda/métodos , Masculino , Amígdala del Cerebelo/metabolismo , Amígdala del Cerebelo/fisiopatología , Encéfalo/metabolismo , Encéfalo/fisiopatología , Ratones Endogámicos C57BL , Vías Nerviosas/fisiopatología , Vías Nerviosas/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
7.
Biol Psychol ; 192: 108847, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39038634

RESUMEN

The locus coeruleus (LC) produces the neuromodulators norepinephrine and dopamine, and projects widely to subcortical and cortical brain regions. The LC has been a focus of neuroimaging biomarker development for the early detection of Alzheimer's disease (AD) since it was identified as one of the earliest brain regions to develop tau pathology. Our recent research established the use of positron emission tomography (PET) to measure LC catecholamine synthesis capacity in cognitively unimpaired older adults. We extend this work by investigating the possible influence of pathology and LC neurochemical function on LC network activity using functional magnetic resonance imaging (fMRI). In separate sessions, participants underwent PET imaging to measure LC catecholamine synthesis capacity ([18F]Fluoro-m-tyrosine), tau pathology ([18F]Flortaucipir), and amyloid-ß pathology ([11C]Pittsburgh compound B), and fMRI imaging to measure LC functional network activity at rest. Consistent with a growing body of research in aging and preclinical AD, we find that higher functional network activity is associated with higher tau burden in individuals at risk of developing AD (amyloid-ß positive). Critically, relationships between higher LC network activity and higher pathology (amyloid-ß and tau) were moderated by LC catecholamine synthesis capacity. High levels of LC catecholamine synthesis capacity reduced relationships between higher network activity and pathology. Broadly, these findings support the view that individual differences in functional network activity are shaped by interactions between pathology and neuromodulator function, and point to catecholamine systems as potential therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer , Locus Coeruleus , Imagen por Resonancia Magnética , Tomografía de Emisión de Positrones , Proteínas tau , Humanos , Locus Coeruleus/diagnóstico por imagen , Locus Coeruleus/metabolismo , Masculino , Femenino , Anciano , Proteínas tau/metabolismo , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/fisiopatología , Persona de Mediana Edad , Péptidos beta-Amiloides/metabolismo , Catecolaminas/metabolismo , Mapeo Encefálico , Anciano de 80 o más Años , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/metabolismo
8.
Nat Neurosci ; 27(9): 1783-1793, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38965445

RESUMEN

The role of the striatum in motor control is commonly assumed to be mediated by the two striatal efferent pathways characterized by striatal projection neurons (SPNs) expressing dopamine (DA) D1 receptors or D2 receptors (D1-SPNs and D2-SPNs, respectively), without regard to SPNs coexpressing both receptors (D1/D2-SPNs). Here we developed an approach to target these hybrid SPNs in mice and demonstrate that, although these SPNs are less abundant, they have a major role in guiding the motor function of the other two populations. D1/D2-SPNs project exclusively to the external globus pallidus and have specific electrophysiological features with distinctive integration of DA signals. Gain- and loss-of-function experiments indicate that D1/D2-SPNs potentiate the prokinetic and antikinetic functions of D1-SPNs and D2-SPNs, respectively, and restrain the integrated motor response to psychostimulants. Overall, our findings demonstrate the essential role of this population of D1/D2-coexpressing neurons in orchestrating the fine-tuning of DA regulation in thalamo-cortico-striatal loops.


Asunto(s)
Cuerpo Estriado , Neuronas , Receptores de Dopamina D1 , Receptores de Dopamina D2 , Animales , Receptores de Dopamina D1/metabolismo , Receptores de Dopamina D2/metabolismo , Cuerpo Estriado/metabolismo , Ratones , Neuronas/metabolismo , Masculino , Ratones Transgénicos , Ratones Endogámicos C57BL , Actividad Motora/fisiología , Actividad Motora/efectos de los fármacos , Vías Nerviosas/fisiología , Vías Nerviosas/metabolismo , Femenino , Globo Pálido/metabolismo
9.
Physiol Behav ; 284: 114639, 2024 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-39004195

RESUMEN

Understanding the central nervous system (CNS) circuitry and its different neurotransmitters that underlie reward is essential to improve treatment for many common health issues, such as addiction. Here, we concentrate on understanding how the mesolimbic circuitry and neurotransmitters are organized and function, and how drug exposure affects synaptic and structural changes in this circuitry. While the role of some reward circuits, like the cerebral dopamine (DA)/glutamate (Glu)/gamma aminobutyric acid (GABA)ergic pathways, in drug reward, is well known, new research using molecular-based methods has shown functional alterations throughout the reward circuitry that contribute to various aspects of addiction, including craving and relapse. A new understanding of the fundamental connections between brain regions as well as the molecular alterations within these particular microcircuits, such as neurotrophic factor and molecular signaling or distinct receptor function, that underlie synaptic and structural plasticity evoked by drugs of abuse has been made possible by the ability to observe and manipulate neuronal activity within specific cell types and circuits. It is exciting that these discoveries from preclinical animal research are now being applied in the clinic, where therapies for human drug dependence, such as deep brain stimulation and transcranial magnetic stimulation, are being tested. Therefore, this chapter seeks to summarize the current understanding of the important brain regions (especially, mesolimbic circuitry) and neurotransmitters implicated in drug-related behaviors and the molecular mechanisms that contribute to altered connectivity between these areas, with the postulation that increased knowledge of the plasticity within the drug reward circuit will lead to new and improved treatments for addiction.


Asunto(s)
Neurotransmisores , Trastornos Relacionados con Sustancias , Humanos , Animales , Neurotransmisores/metabolismo , Trastornos Relacionados con Sustancias/metabolismo , Trastornos Relacionados con Sustancias/fisiopatología , Vías Nerviosas/metabolismo , Vías Nerviosas/fisiología , Recompensa , Encéfalo/metabolismo , Sistema Límbico/metabolismo , Red Nerviosa/metabolismo , Conducta Adictiva/metabolismo , Conducta Adictiva/fisiopatología
10.
J Neurochem ; 168(9): 3116-3131, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39032068

RESUMEN

The nucleus of the solitary tract (NTS) receives direct viscerosensory vagal afferent input that drives autonomic reflexes, neuroendocrine function and modulates behaviour. A subpopulation of NTS neurons project to the nucleus accumbens (NAc); however, the function of this NTS-NAc pathway remains unknown. A combination of neuroanatomical tracing, slice electrophysiology and fibre photometry was used in mice and/or rats to determine how NTS-NAc neurons fit within the viscerosensory network. NTS-NAc projection neurons are predominantly located in the medial and caudal portions of the NTS with 54 ± 7% (mice) and 65 ± 3% (rat) being TH-positive, representing the A2 NTS cell group. In horizontal brainstem slices, solitary tract (ST) stimulation evoked excitatory post-synaptic currents (EPSCs) in NTS-NAc projection neurons. The majority (75%) received low-jitter, zero-failure EPSCs characteristic of monosynaptic ST afferent input that identifies them as second order to primary sensory neurons. We then examined whether NTS-NAc neurons respond to cholecystokinin (CCK, 20 µg/kg ip) in vivo in both mice and rats. Surprisingly, there was no difference in the number of activated NTS-NAc cells between CCK and saline-treated mice. In rats, just 6% of NTS-NAc cells were recruited by CCK. As NTS TH neurons are the primary source for NAc noradrenaline, we measured noradrenaline release in the NAc and showed that NAc noradrenaline levels declined in response to cue-induced reward retrieval but not foot shock. Combined, these findings suggest that high-fidelity afferent information from viscerosensory afferents reaches the NAc. These signals are likely unrelated to CCK-sensitive vagal afferents but could interact with other sensory and higher order inputs to modulate learned appetitive behaviours.


Asunto(s)
Ratones Endogámicos C57BL , Núcleo Accumbens , Núcleo Solitario , Animales , Núcleo Accumbens/metabolismo , Núcleo Accumbens/fisiología , Núcleo Solitario/metabolismo , Núcleo Solitario/fisiología , Ratones , Masculino , Ratas , Ratas Sprague-Dawley , Potenciales Postsinápticos Excitadores/fisiología , Colecistoquinina/metabolismo , Vías Nerviosas/fisiología , Vías Nerviosas/metabolismo , Transducción de Señal/fisiología
11.
Eur J Neurosci ; 60(5): 4861-4876, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39054660

RESUMEN

Accumulating evidence suggests that electroacupuncture (EA) has obvious therapeutic effects and unique advantages in alleviating myocardial ischemia-reperfusion injury (MIRI), while the underlying neuromolecular mechanisms of EA intervention for MIRI have not been fully elucidated. The aim of the study is to investigate the role of the neural pathway of hypothalamic paraventricular nucleus (PVN) neurons projecting to the rostral ventrolateral medulla (RVLM) in the alleviation of MIRI rats by EA preconditioning. MIRI models were established by ligating the left anterior descending coronary artery for 30 min followed by reperfusion for 2 h. Electrocardiogram recording, chemogenetics, enzyme-linked immunosorbent assay, multichannel physiology recording and haematoxylin-eosin and immunofluorescence staining methods were conducted to demonstrate that the firing frequencies of neurons in the PVN and the expression of c-Fos decreased by EA pretreatment. Meanwhile, EA preconditioning significantly reduced the levels of creatine kinase isoenzymes (CK-MB), cardiac troponin I (cTnI) and lactic dehydrogenase (LDH). Virus tracing showed a projection connection between PVN and RVLM. The inhibition of the PVN-RVLM neural pathway could replicate the protective effect of EA pretreatment on MIRI rats. However, the activation of the pathway weakened the effect of EA preconditioning. EA pretreatment alleviated MIRI by regulating PVN neurons projecting to RVLM. This work provides novel evidence of EA pretreatment for alleviating MIRI.


Asunto(s)
Electroacupuntura , Bulbo Raquídeo , Daño por Reperfusión Miocárdica , Neuronas , Núcleo Hipotalámico Paraventricular , Ratas Sprague-Dawley , Animales , Electroacupuntura/métodos , Núcleo Hipotalámico Paraventricular/metabolismo , Bulbo Raquídeo/metabolismo , Bulbo Raquídeo/fisiología , Masculino , Neuronas/fisiología , Neuronas/metabolismo , Daño por Reperfusión Miocárdica/terapia , Daño por Reperfusión Miocárdica/metabolismo , Ratas , Vías Nerviosas/fisiología , Vías Nerviosas/metabolismo , Troponina I/metabolismo , Proteínas Proto-Oncogénicas c-fos/metabolismo
12.
Science ; 384(6702): eadh5548, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38900896

RESUMEN

The molecular mechanisms that regulate breast cancer cell (BCC) metastasis and proliferation within the leptomeninges (LM) are poorly understood, which limits the development of effective therapies. In this work, we show that BCCs in mice can invade the LM by abluminal migration along blood vessels that connect vertebral or calvarial bone marrow and meninges, bypassing the blood-brain barrier. This process is dependent on BCC engagement with vascular basement membrane laminin through expression of the neuronal pathfinding molecule integrin α6. Once in the LM, BCCs colocalize with perivascular meningeal macrophages and induce their expression of the prosurvival neurotrophin glial-derived neurotrophic factor (GDNF). Intrathecal GDNF blockade, macrophage-specific GDNF ablation, or deletion of the GDNF receptor neural cell adhesion molecule (NCAM) from BCCs inhibits breast cancer growth within the LM. These data suggest integrin α6 and the GDNF signaling axis as new therapeutic targets against breast cancer LM metastasis.


Asunto(s)
Neoplasias Óseas , Neoplasias de la Mama , Integrina alfa6 , Neoplasias Meníngeas , Meninges , Vías Nerviosas , Animales , Femenino , Humanos , Ratones , Membrana Basal/metabolismo , Neoplasias Óseas/secundario , Neoplasias Óseas/metabolismo , Neoplasias de la Mama/patología , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/genética , Línea Celular Tumoral , Movimiento Celular , Factor Neurotrófico Derivado de la Línea Celular Glial/genética , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Integrina alfa6/metabolismo , Laminina/metabolismo , Macrófagos/metabolismo , Neoplasias Meníngeas/metabolismo , Neoplasias Meníngeas/secundario , Meninges/patología , Invasividad Neoplásica , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Moléculas de Adhesión de Célula Nerviosa/genética , Transducción de Señal , Vías Nerviosas/metabolismo , Ratones SCID , Ratones Noqueados
13.
Neuropsychopharmacology ; 49(12): 1905-1915, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-38926603

RESUMEN

Converging evidence indicates that both dopamine and glutamate neurotransmission within the nucleus accumbens (NAc) play a role in psychostimulant self-administration and relapse in rodent models. Increased NAc dopamine release from ventral tegmental area (VTA) inputs is critical to psychostimulant self-administration and NAc glutamate release from prelimbic prefrontal cortex (PFC) inputs synapsing on medium spiny neurons (MSNs) is critical to reinstatement of psychostimulant-seeking after extinction. The regulation of the activity of MSNs by VTA dopamine inputs has been extensively studied, and recent findings have demonstrated that VTA glutamate neurons target the NAc medial shell. Here, we determined whether the mesoaccumbal glutamatergic pathway plays a role in psychostimulant conditioned place preference and self-administration in mice. We used optogenetics to induce NAc release of glutamate from VTA inputs during the acquisition, expression, and reinstatement phases of cocaine- or methamphetamine-induced conditioned place preference (CPP), and during priming-induced reinstatement of cocaine-seeking behavior. We found that NAc medial shell release of glutamate resulting from the activation of VTA glutamatergic fibers did not affect the acquisition of cocaine-induced CPP, but it blocked the expression, stress- and priming-induced reinstatement of cocaine- and methamphetamine CPP, as well as it blocked the priming-induced reinstatement of cocaine-seeking behavior after extinction. These findings indicate that in contrast to the well-recognized mesoaccumbal dopamine system that is critical to psychostimulant reward and relapse, there is a parallel mesoaccumbal glutamatergic system that suppresses reward and psychostimulant-seeking behavior.


Asunto(s)
Estimulantes del Sistema Nervioso Central , Cocaína , Comportamiento de Búsqueda de Drogas , Ácido Glutámico , Metanfetamina , Ratones Endogámicos C57BL , Núcleo Accumbens , Optogenética , Autoadministración , Área Tegmental Ventral , Animales , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/metabolismo , Área Tegmental Ventral/efectos de los fármacos , Área Tegmental Ventral/metabolismo , Ácido Glutámico/metabolismo , Comportamiento de Búsqueda de Drogas/efectos de los fármacos , Comportamiento de Búsqueda de Drogas/fisiología , Masculino , Metanfetamina/farmacología , Estimulantes del Sistema Nervioso Central/farmacología , Cocaína/farmacología , Cocaína/administración & dosificación , Ratones , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/fisiología , Vías Nerviosas/metabolismo , Condicionamiento Operante/efectos de los fármacos , Condicionamiento Operante/fisiología , Extinción Psicológica/efectos de los fármacos , Extinción Psicológica/fisiología
14.
J Neurochem ; 168(9): 2814-2831, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38877776

RESUMEN

Irritable bowel syndrome (IBS), which is characterized by chronic abdominal pain, has a high global prevalence. The anterior cingulate cortex (ACC), which is a pivotal region involved in pain processing, should be further investigated regarding its role in the regulation of visceral sensitivity and mental disorders. A C57BL/6J mouse model for IBS was established using chronic acute combining stress (CACS). IBS-like symptoms were assessed using behavioral tests, intestinal motility measurements, and abdominal withdrawal reflex scores. Fluoro-Gold retrograde tracing and immunohistochemistry techniques were employed to investigate the projection of ACC gamma-aminobutyric acid-producing (GABAergic) neurons to the lateral hypothalamus area (LHA). Chemogenetic approaches enabled the selective activation or inhibition of the ACC-LHA GABAergic pathway. Enzyme-linked immunosorbent assay (ELISA) and western blot analyses were conducted to determine the expression of histamine, 5-hydroxytryptamine (5-HT), and transient receptor potential vanilloid 4 (TRPV4). Our findings suggest that CACS induced IBS-like symptoms in mice. The GABA type A receptors (GABAAR) within LHA played a regulatory role in modulating IBS-like symptoms. The chemogenetic activation of ACC-LHA GABAergic neurons elicited anxiety-like behaviors, intestinal dysfunction, and visceral hypersensitivity in normal mice; however, these effects were effectively reversed by the administration of the GABAAR antagonist Bicuculline. Conversely, the chemogenetic inhibition of ACC-LHA GABAergic neurons alleviated anxiety-like behaviors, intestinal dysfunction, and visceral hypersensitivity in the mouse model for IBS. These results highlight the crucial involvement of the ACC-LHA GABAergic pathway in modulating anxiety-like behaviors, intestinal motility alterations, and visceral hypersensitivity, suggesting a potential therapeutic strategy for alleviating IBS-like symptoms.


Asunto(s)
Neuronas GABAérgicas , Giro del Cíngulo , Área Hipotalámica Lateral , Síndrome del Colon Irritable , Ratones Endogámicos C57BL , Animales , Síndrome del Colon Irritable/metabolismo , Giro del Cíngulo/metabolismo , Giro del Cíngulo/efectos de los fármacos , Ratones , Masculino , Área Hipotalámica Lateral/metabolismo , Neuronas GABAérgicas/metabolismo , Neuronas GABAérgicas/efectos de los fármacos , Ácido gamma-Aminobutírico/metabolismo , Vías Nerviosas/metabolismo , Canales Catiónicos TRPV/metabolismo , Estrés Psicológico/metabolismo
15.
J Neurosci ; 44(24)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38719447

RESUMEN

Acetylcholine is a robust neuromodulator of the limbic system and a critical regulator of arousal and emotions. The anterior cingulate cortex (ACC) and the amygdala (AMY) are key limbic structures that are both densely innervated by cholinergic afferents and interact with each other for emotional regulation. The ACC is composed of functionally distinct dorsal (A24), rostral (A32), and ventral (A25) areas that differ in their connections with the AMY. The structural substrates of cholinergic modulation of distinct ACC microcircuits and outputs to AMY are thought to depend on the laminar and subcellular localization of cholinergic receptors. The present study examines the distribution of muscarinic acetylcholine receptors, m1 and m2, on distinct excitatory and inhibitory neurons and on AMY-targeting projection neurons within ACC areas, via immunohistochemistry and injections of neural tracers into the basolateral AMY in adult rhesus monkeys of both sexes. We found that laminar densities of m1+ and m2+ expressing excitatory and inhibitory neurons depended on area and cell type. Among the ACC areas, ventral subgenual ACC A25 exhibited greater m2+ localization on presynaptic inhibitory axon terminals and greater density of m1+ and m2+ expressing AMY-targeting (tracer+) pyramidal neurons. These patterns suggest robust cholinergic disinhibition and potentiation of amygdalar outputs from the limbic ventral ACC, which may be linked to the hyperexcitability of this subgenual ACC area in depression. These findings reveal the anatomical substrate of diverse cholinergic modulation of specific ACC microcircuits and amygdalar outputs that mediate cognitive-emotional integration and dysfunctions underlying stress and affective disorders.


Asunto(s)
Giro del Cíngulo , Macaca mulatta , Animales , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiología , Masculino , Femenino , Receptor Muscarínico M2/metabolismo , Receptor Muscarínico M1/metabolismo , Red Nerviosa/metabolismo , Red Nerviosa/fisiología , Acetilcolina/metabolismo , Vías Nerviosas/fisiología , Vías Nerviosas/metabolismo , Neuronas/metabolismo , Neuronas/fisiología
16.
Prog Neurobiol ; 238: 102629, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38763506

RESUMEN

The dorsomedial striatum (DMS) is associated with flexible goal seeking, as opposed to routinized habits. Whether local mechanisms brake this function, for instance when habits may be adaptive, is incompletely understood. We find that a sub-population of dopamine D1 receptor-containing striatal neurons express the melanocortin-4 receptor (MC4R) for α-melanocyte stimulating hormone. These neurons within the DMS are necessary and sufficient for controlling the capacity of mice to flexibly adjust actions based on the likelihood that they will be rewarded. In investigating MC4R function, we found that it suppresses immediate-early gene levels in the DMS and concurrently, flexible goal seeking. MC4R+ neurons receive input from the central nucleus of the amygdala, and behavioral experiments indicate that they are functionally integrated into an amygdalo-striatal circuit that suppresses action flexibility in favor of routine. Publicly available spatial transcriptomics datasets were analyzed for gene transcript correlates of Mc4r expression across the striatal subregions, revealing considerable co-variation in dorsal structures. This insight led to the discovery that the function of MC4R in the dorsolateral striatum complements that in the DMS, in this case suppressing habit-like behavior. Altogether, our findings suggest that striatal MC4R controls the capacity for goal-directed and inflexible actions alike.


Asunto(s)
Núcleo Amigdalino Central , Cuerpo Estriado , Objetivos , Receptor de Melanocortina Tipo 4 , Animales , Receptor de Melanocortina Tipo 4/metabolismo , Ratones , Núcleo Amigdalino Central/metabolismo , Núcleo Amigdalino Central/fisiología , Cuerpo Estriado/metabolismo , Cuerpo Estriado/fisiología , Masculino , Receptores de Dopamina D1/metabolismo , Melanocortinas/metabolismo , Ratones Endogámicos C57BL , Vías Nerviosas/fisiología , Vías Nerviosas/metabolismo
17.
Curr Opin Neurol ; 37(4): 353-360, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38813843

RESUMEN

PURPOSE OF REVIEW: Molecular imaging has traditionally been used and interpreted primarily in the context of localized and relatively static neurochemical processes. New understanding of brain function and development of novel molecular imaging protocols and analysis methods highlights the relevance of molecular networks that co-exist and interact with functional and structural networks. Although the concept and evidence of disease-specific metabolic brain patterns has existed for some time, only recently has such an approach been applied in the neurotransmitter domain and in the context of multitracer and multimodal studies. This review briefly summarizes initial findings and highlights emerging applications enabled by this new approach. RECENT FINDINGS: Connectivity based approaches applied to molecular and multimodal imaging have uncovered molecular networks with neurodegeneration-related alterations to metabolism and neurotransmission that uniquely relate to clinical findings; better disease stratification paradigms; an improved understanding of the relationships between neurochemical and functional networks and their related alterations, although the directionality of these relationships are still unresolved; and a new understanding of the molecular underpinning of disease-related alteration in resting-state brain activity. SUMMARY: Connectivity approaches are poised to greatly enhance the information that can be extracted from molecular imaging. While currently mostly contributing to enhancing understanding of brain function, they are highly likely to contribute to the identification of specific biomarkers that will improve disease management and clinical care.


Asunto(s)
Encéfalo , Enfermedades Neurodegenerativas , Tomografía de Emisión de Positrones , Humanos , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/metabolismo , Tomografía de Emisión de Positrones/métodos , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Vías Nerviosas/diagnóstico por imagen , Vías Nerviosas/metabolismo
18.
Brain Behav Immun ; 120: 44-53, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38777282

RESUMEN

The functional alterations of the brain in bipolar II depression (BDII-D) and their clinical and inflammatory associations are understudied. We aim to investigate the functional brain alterations in BDII-D and their relationships with inflammation, childhood adversity, and psychiatric symptoms, and to examine the moderating effects among these factors. Using z-normalized amplitude of low-frequency fluctuation (zALFF), we assessed the whole-brain resting-state functional activity between 147 BDII-D individuals and 150 healthy controls (HCs). Differential ALFF regions were selected as seeds for functional connectivity analysis to observe brain connectivity alterations resulting from abnormal regional activity. Four inflammatory cytokines including interleukin (IL)-6, IL-1ß, tumor necrosis factor (TNF)-α, and C-reactive protein (CRP) and five clinical scales including Hamilton Depression Scale (HAMD), Hamilton Anxiety Scale (HAMA), Positive and Negative Syndrome Scale (PANSS), Columbia-Suicide Severity Rating Scale (C-SSRS), and Childhood Trauma Questionnaire (CTQ) were tested and assessed in BDII-D. Partial correlations with multiple comparison corrections identified relationships between brain function and inflammation, childhood adversity, and psychiatric symptoms. Moderation analysis was conducted based on correlation results and previous findings. Compared to HCs, BDII-D individuals displayed significantly lower zALFF in the superior and middle frontal gyri (SFG and MFG) and insula, but higher zALFF in the occipital-temporal area. Only the MFG and insula-related connectivity exhibited significant differences between groups. Within BDII-D, lower right insula zALFF value correlated with higher IL-6, CRP, and emotional adversity scores, while lower right MFG zALFF was related to higher CRP and physical abuse scores. Higher right MFG-mid-anterior cingulate cortex (mACC) connectivity was associated with higher IL-1ß. Moreover, IL-1ß moderated associations between higher right MFG-mACC/insula connectivity and greater depressive symptoms. This study reveals that abnormal functional alterations in the right MFG and right insula were associated with elevated inflammation, childhood adversity, and depressive symptoms in BDII-D. IL-1ß may moderate the relationship between MFG-related connectivity and depressive symptoms.


Asunto(s)
Trastorno Bipolar , Depresión , Interleucina-1beta , Imagen por Resonancia Magnética , Humanos , Femenino , Masculino , Trastorno Bipolar/metabolismo , Trastorno Bipolar/fisiopatología , Adulto , Interleucina-1beta/metabolismo , Depresión/metabolismo , Depresión/fisiopatología , Imagen por Resonancia Magnética/métodos , Inflamación/metabolismo , Corteza Insular/metabolismo , Persona de Mediana Edad , Encéfalo/metabolismo , Encéfalo/fisiopatología , Escalas de Valoración Psiquiátrica , Experiencias Adversas de la Infancia , Vías Nerviosas/fisiopatología , Vías Nerviosas/metabolismo , Mapeo Encefálico/métodos , Adulto Joven , Lóbulo Frontal/metabolismo , Lóbulo Frontal/fisiopatología
19.
Neurochem Res ; 49(8): 2060-2074, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38814359

RESUMEN

Since the clinical introduction of general anesthesia, its underlying mechanisms have not been fully elucidated. The ventral tegmental area (VTA) and parabrachial nucleus (PBN) play pivotal roles in the mechanisms underlying general anesthesia. However, whether dopaminergic (DA) projections from the VTA to the PBN play a role in mediating the effects of general anesthesia is unclear. We microinjected 6-hydroxydopamine into the PBN to damage tyrosine hydroxylase positive (TH+) neurons and found a prolonged recovery time from propofol anesthesia. We used calcium fiber photometry recording to explore the activity of TH + neurons in the PBN. Then, we used chemogenetic and optogenetic approaches either activate the VTADA-PBN pathway, shortening the propofol anesthesia emergence time, or inhibit this pathway, prolonging the emergence time. These data indicate the crucial involvement of TH + neurons in the PBN in regulating emergence from propofol anesthesia, while the activation of the VTADA-PBN pathway facilitates the emergence of propofol anesthesia.


Asunto(s)
Anestésicos Intravenosos , Neuronas Dopaminérgicas , Núcleos Parabraquiales , Propofol , Ratas Sprague-Dawley , Área Tegmental Ventral , Propofol/farmacología , Animales , Área Tegmental Ventral/efectos de los fármacos , Masculino , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/metabolismo , Núcleos Parabraquiales/efectos de los fármacos , Núcleos Parabraquiales/fisiología , Anestésicos Intravenosos/farmacología , Ratas , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Periodo de Recuperación de la Anestesia , Oxidopamina/farmacología
20.
J Comp Neurol ; 532(5): e25623, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38803103

RESUMEN

In Alzheimer´s disease (AD), hyperphosphorylated tau spreads along the cerebral cortex in a stereotypical pattern that parallels cognitive deterioration. Tau seems to spread transsynaptically along cortico-cotical pathways that, according to synaptic tract-tracing studies in nonhuman primates, have specific laminar patterns related to the cortical type of the connected areas. This relation is described in the Structural Model. In the present article, we study the laminar distribution of hyperphosphorylated tau, labeled with the antibody AT8, along temporal cortical types in postmortem human brains with different AD stages to test the predictions of the Structural Model. Brains from donors without dementia had scant AT8-immunorreactive (AT8-ir) neurons in allo-, meso-, and isocortical types. In early AD stages, the mesocortical dysgranular type, including part of the transentorhinal cortex, had the highest AT8 immunostaining and AT8-ir neurons density. In advanced AD stages, AT8 immunostaining increased along the isocortical types until reaching the auditory koniocortex. Regarding laminar patterns, in early AD stages there were more AT8-ir neurons in supragranular layers in each de novo involved neocortical type; in advanced AD stages, AT8-ir neurons were equally distributed in supra- and infragranular layers. These AT8-ir laminar patterns are compatible with the predictions of the Structural Model. In summary, we show that hyperphosphorylated tau initially accumulates in allo-, meso-, and isocortical types, offer a proof of concept for the validity of the Structural Model to predict synaptic pathway organization in the human cerebral cortex, and highlight the relevance of nonhuman primate tract-tracing studies to understand human neuropathology.


Asunto(s)
Enfermedad de Alzheimer , Corteza Cerebral , Vías Nerviosas , Proteínas tau , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/metabolismo , Humanos , Proteínas tau/metabolismo , Masculino , Femenino , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Anciano , Fosforilación , Anciano de 80 o más Años , Vías Nerviosas/metabolismo , Vías Nerviosas/patología , Vías Nerviosas/química , Persona de Mediana Edad , Modelos Neurológicos , Neuronas/metabolismo , Neuronas/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA