Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 182
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 495, 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39164753

RESUMEN

BACKGROUND: The Hippo pathway is a conserved tumour suppressor signalling pathway, and its dysregulation is often associated with abnormal cell growth and tumorigenesis. We previously revealed that the transcriptional coactivator Yes-associated protein (YAP), the key effector of the Hippo pathway, is a molecular target for glioblastoma (GBM), the most common malignant brain tumour. Inhibiting YAP with small interfering RNA (siYAP) or the specific inhibitor verteporfin (VP) can diminish GBM growth to a certain degree. RESULTS: In this study, to enhance the anti-GBM effect of siYAP and VP, we designed stepwise-targeting and hypoxia-responsive liposomes (AMVY@NPs), which encapsulate hypoxia-responsive polymetronidazole-coated VP and DOTAP adsorbed siYAP, with angiopep-2 (A2) modification on the surface. AMVY@NPs exhibited excellent blood‒brain barrier crossing, GBM targeting, and hypoxia-responsive and efficient siYAP and VP release properties. By inhibiting the expression and function of YAP, AMVY@NPs synergistically inhibited both the growth and stemness of GBM in vitro. Moreover, AMVY@NPs strongly inhibited the growth of orthotopic U87 xenografts and improved the survival of tumour-bearing mice without adverse effects. CONCLUSION: Specific targeting of YAP with stepwise-targeting and hypoxia-responsive liposome AMVY@NPs carrying siYAP and VP efficiently inhibited GBM progression. This study provides a valuable drug delivery platform and creative insights for molecular targeted treatment of GBM in the future.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Liposomas , Ratones Desnudos , ARN Interferente Pequeño , Verteporfina , Glioblastoma/tratamiento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patología , Liposomas/química , Verteporfina/farmacología , Verteporfina/uso terapéutico , Animales , Humanos , Línea Celular Tumoral , Ratones , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Proteínas Señalizadoras YAP , Nanopartículas/química , Ratones Endogámicos BALB C , Factores de Transcripción/metabolismo , Angiomotinas , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/efectos de los fármacos , Péptidos
2.
ACS Nano ; 18(32): 21009-21023, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39087239

RESUMEN

Acute lung injury (ALI) and its severe form, acute respiratory distress syndrome (ARDS), induce high morbidity and mortality rates, which challenge the present approaches for the treatment of ALI/ARDS. The clinically used photosensitizer verteporfin (VER) exhibits great potential in the treatment of acute lung injury and acute respiratory distress syndrome (ALI/ARDS) by regulating macrophage polarization and reducing inflammation. Nevertheless, its hydrophobic characteristics, nonspecificity, and constrained bioavailability hinder its therapeutic efficacy. In this work, we developed a type of VER-cored artificial exosome (EVM), which was produced by using mesoporous silica nanoparticles (MSNs) to load VER, followed by the exocytosis of internalized VER-MSNs from mouse bone marrow-derived mesenchymal stem cells (mBMSCs) without further modification. Both in vitro and in vivo assessments confirmed the powerful anti-inflammation induced by EVM. EVM also showed significant higher accumulation to inflammatory lungs compared with healthy ones, which was beneficial to the treatment of ALI/ARDS. EVM improved pulmonary function, attenuated lung injury, and reduced mortality in ALI mice with high levels of biocompatibility, exhibiting a 5-fold higher survival rate than the control. This type of artificial exosome emitted near-infrared light in the presence of laser activation, which endowed EVM with trackable ability both in vitro and in vivo. Our work developed a type of clinically used photosensitizer-loaded artificial exosome with membrane integrity and traceability. To the best of our knowledge, this kind of intracellularly synthesized artificial exosome was developed and showed great potential in ALI/ARDS therapy.


Asunto(s)
Lesión Pulmonar Aguda , Exosomas , Dióxido de Silicio , Animales , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/patología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/terapia , Ratones , Exosomas/metabolismo , Exosomas/química , Dióxido de Silicio/química , Verteporfina/farmacología , Verteporfina/química , Verteporfina/uso terapéutico , Nanopartículas/química , Células Madre Mesenquimatosas/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Ratones Endogámicos C57BL , Masculino , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Porosidad
3.
Photodiagnosis Photodyn Ther ; 48: 104250, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38885852

RESUMEN

OBJECTIVE: To characterize the clinical and imaging features of circumscribed choroidal hemangioma (CCH), and to evaluate individualized treatment efficiency of photodynamic therapy (PDT), transpupillary thermotherapy (TTT), or their combination, followed by retrobulbar injection of betamethasone on CCH resolvement. METHODS: Forty-nine patients with CCHs who underwent PDT, TTT or PDT+TTT treatments were retrospectively analyzed. Their treatment efficacy was compared by analyzing the change of best corrected visual acuity (BCVA), subretinal fluid (SRF) and CCH lesion characteristics. RESULTS: PDT, TTT and PDT+TTT were respectively administrated in 17, 11 and 21 patients. No significant difference in age, gender, affected eyes and tumor location across the three groups. Baseline BCVA were 0.41 ± 0.28, 0.62 ± 0.30 and 0.24 ± 0.24 for PDT, TTT and PDT+TTT groups, respectively (F = 6.572, P = 0.003). CCH treated by three strategies showed significant difference in maximum tumor basal diameter, SRF areas and macula involvement prior to the treatment (P < 0.05). Patients receiving PDT+TTT exhibited larger tumor basal diameter, more SRF, higher ratio of macular involvement than other groups. A total of 38 (77.6 %) cases had good visual acidity with final BCVA ≥0.5 after treatments. PDT and PDT+TTT treatment groups acquired more vision improvement (0.27 ± 0.23 and 0.31 ± 0.26) in BCVA than TTT group (0.09 ± 0.13). All SRF were resolved within two weeks of treatment and no recurrent SRF were found. CONCLUSION: The three treatments showed good performance in improving visual function and controlling SRF, and individualized treatment should be selected primarily by the tumor location, and then the tumor size and presence of SRF.


Asunto(s)
Neoplasias de la Coroides , Hemangioma , Hipertermia Inducida , Fotoquimioterapia , Fármacos Fotosensibilizantes , Agudeza Visual , Humanos , Fotoquimioterapia/métodos , Femenino , Neoplasias de la Coroides/terapia , Neoplasias de la Coroides/tratamiento farmacológico , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Hipertermia Inducida/métodos , Hemangioma/terapia , Hemangioma/tratamiento farmacológico , Fármacos Fotosensibilizantes/uso terapéutico , Adulto , Terapia Combinada , Betametasona/uso terapéutico , Anciano , Verteporfina/uso terapéutico , Líquido Subretiniano
4.
Biochemistry (Mosc) ; 89(5): 942-957, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38880654

RESUMEN

Extensive skin damage requires specialized therapy that stimulates regeneration processes without scarring. The possibility of using combination of a collagen gel application as a wound dressing and fibroblast attractant with verteporfin as an antifibrotic agent was examined in vivo and in vitro. In vitro effects of verteporfin on viability and myofibroblast markers expression were evaluated using fibroblasts isolated from human scar tissue. In vivo the collagen gel and verteporfin (individually and in combination) were applied into the wound to investigate scarring during skin regeneration: deviations in skin layer thickness, collagen synthesis, and extracellular matrix fibers were characterized. The results indicate that verteporfin reduces fibrotic phenotype by suppressing expression of the contractile protein Sm22α without inducing cell death. However, administration of verteporfin in combination with the collagen gel disrupts its ability to direct wound healing in a scarless manner, which may be related to incompatibility of the mechanisms by which collagen and verteporfin control regeneration.


Asunto(s)
Colágeno , Fibroblastos , Verteporfina , Verteporfina/farmacología , Verteporfina/uso terapéutico , Humanos , Colágeno/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Animales , Cicatrización de Heridas/efectos de los fármacos , Antifibróticos/farmacología , Antifibróticos/uso terapéutico , Células Cultivadas , Andamios del Tejido/química , Cicatriz/tratamiento farmacológico , Cicatriz/patología , Cicatriz/metabolismo , Masculino , Fibrosis , Piel/efectos de los fármacos , Piel/patología , Piel/metabolismo
5.
BMC Cancer ; 24(1): 587, 2024 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-38741073

RESUMEN

YAP and TAZ, the Hippo pathway terminal transcriptional activators, are frequently upregulated in cancers. In tumor cells, they have been mainly associated with increased tumorigenesis controlling different aspects from cell cycle regulation, stemness, or resistance to chemotherapies. In fewer cases, they have also been shown to oppose cancer progression, including by promoting cell death through the action of the p73/YAP transcriptional complex, in particular after chemotherapeutic drug exposure. Using HCT116 cells, we show here that oxaliplatin treatment led to core Hippo pathway down-regulation and nuclear accumulation of TAZ. We further show that TAZ was required for the increased sensitivity of HCT116 cells to oxaliplatin, an effect that appeared independent of p73, but which required the nuclear relocalization of TAZ. Accordingly, Verteporfin and CA3, two drugs affecting the activity of YAP and TAZ, showed antagonistic effects with oxaliplatin in co-treatments. Importantly, using several colorectal cell lines, we show that the sensitizing action of TAZ to oxaliplatin is dependent on the p53 status of the cells. Our results support thus an early action of TAZ to sensitize cells to oxaliplatin, consistent with a model in which nuclear TAZ in the context of DNA damage and p53 activity pushes cells towards apoptosis.


Asunto(s)
Antineoplásicos , Neoplasias del Colon , Vía de Señalización Hippo , Oxaliplatino , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Transactivadores , Factores de Transcripción , Proteínas Coactivadoras Transcripcionales con Motivo de Unión a PDZ , Proteína p53 Supresora de Tumor , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Neoplasias del Colon/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/genética , Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Células HCT116 , Vía de Señalización Hippo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Compuestos Organoplatinos/farmacología , Compuestos Organoplatinos/uso terapéutico , Oxaliplatino/farmacología , Porfirinas/farmacología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal/efectos de los fármacos , Transactivadores/metabolismo , Transactivadores/genética , Factores de Transcripción/metabolismo , Factores de Transcripción/genética , Proteína Tumoral p73/metabolismo , Proteína Tumoral p73/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Proteínas Supresoras de Tumor/genética , Verteporfina/farmacología , Verteporfina/uso terapéutico , Proteínas Señalizadoras YAP/metabolismo
6.
Photodiagnosis Photodyn Ther ; 48: 104224, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38801855

RESUMEN

PURPOSE: To determine the clinical and imaging biomarkers of the response to half-dose photodynamic therapy (HD-PDT) in patients with central serous chorioretinopathy (CSC) METHODS: Clinical records and baseline ophthalmic images of 67 chronic CSC patients who underwent HD-PDT were assessed. In addition to demographic data, optical coherence tomography (OCT), fluorescein angiography (FA) and fundus autofluorescence (FAF) images were analyzed for specific biomarkers. The patients were categorized to early responder and late responder based on the time needed for complete resolution of subretinal fluid after PDT (less than 1 month vs. more than 1 month). The baseline clinical and imaging biomarkers were compared between the two groups. RESULTS: Seventy-three eyes of 67 patients were included in the study. The mean response time to PDT was 1.63 ± 1.48 months with 82.2% (60/73) of eyes categorized as early responder. The mean response time to PDT in delayed-response group was 4.15±1.51 months. In multivariate analysis, delayed response to PDT was associated with lacking history of systemic corticosteroid consumption, lacking history of pretreatment with eplerenone or acetazolamide before PDT and presence of hyperreflective foci in baseline OCT images (all p values < 0.05). There was no association between final visual outcome and late response to PDT. CONCLUSION: The presence of inflammatory biomarkers such as hyperreflective foci in baseline OCT images might be indicative of resistance to PDT. Moreover, the effect of pretreatment with mineralocorticoid antagonist on the response to PDT in chronic CSC should be explored in future prospective studies.


Asunto(s)
Coriorretinopatía Serosa Central , Angiografía con Fluoresceína , Fotoquimioterapia , Fármacos Fotosensibilizantes , Tomografía de Coherencia Óptica , Humanos , Coriorretinopatía Serosa Central/tratamiento farmacológico , Fotoquimioterapia/métodos , Masculino , Femenino , Tomografía de Coherencia Óptica/métodos , Persona de Mediana Edad , Fármacos Fotosensibilizantes/uso terapéutico , Adulto , Angiografía con Fluoresceína/métodos , Enfermedad Crónica , Biomarcadores , Verteporfina/uso terapéutico , Estudios Retrospectivos , Agudeza Visual , Resultado del Tratamiento
7.
Int J Biol Macromol ; 267(Pt 1): 131386, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38582458

RESUMEN

Verteporfin (VER), a photosensitizer used in macular degeneration therapy, has shown promise in controlling macrophage polarization and alleviating inflammation in acute lung injury (ALI)/acute respiratory distress syndrome (ARDS). However, its hydrophobicity, limited bioavailability, and side effects hinder its therapeutic potential. In this study, we aimed to enhance the therapeutic potential of VER through pulmonary nebulized drug delivery for ALI/ARDS treatment. We combined hydrophilic hyaluronic acid (HA) with an oil-in-water system containing a poly(lactic acid-co-glycolic acid) (PLGA) copolymer of VER to synthesize HA@PLGA-VER (PHV) nanoparticles with favorable surface characteristics to improve the bioavailability and targeting ability of VER. PHV possesses suitable electrical properties, a narrow size distribution (approximately 200 nm), and favorable stability. In vitro and in vivo studies demonstrated the excellent biocompatibility, safety, and anti-inflammatory responses of the PHV by suppressing M1 macrophage polarization while inducing M2 polarization. The in vivo experiments indicated that the treatment with aerosolized nano-VER (PHV) allowed more drugs to accumulate and penetrate into the lungs, improved the pulmonary function and attenuated lung injury, and mortality of ALI mice, achieving improved therapeutic outcomes. These findings highlight the potential of PHV as a promising delivery system via nebulization for enhancing the therapeutic effects of VER in ALI/ARDS.


Asunto(s)
Lesión Pulmonar Aguda , Portadores de Fármacos , Ácido Hialurónico , Nanopartículas , Verteporfina , Lesión Pulmonar Aguda/tratamiento farmacológico , Ácido Hialurónico/química , Animales , Ratones , Verteporfina/administración & dosificación , Verteporfina/farmacología , Verteporfina/uso terapéutico , Nanopartículas/química , Portadores de Fármacos/química , Células RAW 264.7 , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Aerosoles , Masculino , Sistemas de Liberación de Medicamentos , Administración por Inhalación
8.
Int J Nanomedicine ; 19: 2611-2623, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38505166

RESUMEN

Background: The photodynamic therapy (PDT) showed promising potential in treating tongue squamous cell carcinoma (TSCC). The Food and Drug Administration approved Verteporfin (Ver) is a powerful alternative in this field for its penetrating power and high production of reactive oxygen species (ROS). However, its applications in the treatment of TSCC are still rare. Methods: Ver was loaded onto Poly (lactic-co-glycolic acid) (PLGA) nanoparticles, followed by the modification with RGD peptide as the ligand. The nanostructured was named as RPV. In vitro assessments were conducted to evaluate the cytotoxicity of RPV through the Live/Dead assay analysis and Cell Counting Kit-8 (CCK-8) assay. Using the reactive oxygen species assay kit, the potential for inducing targeted tumor cell death upon laser irradiation by promoting ROS production was investigated. In vivo experiments involved with the biological distribution of RPV, the administration with RPV followed by laser irradiation, and the measurement of the tumor volumes. Immunohistochemical analysis was used to detect the Ki-67 expression, and apoptosis induced by RPV-treated group. Systemic toxicity was evaluated through hematoxylin-eosin staining and blood routine analysis. Real-time monitoring was employed to track RPV accumulation at tumor sites. Results: The in vitro assessments demonstrated the low cytotoxicity of RPV and indicated its potential for targeted killing TSCC cells under laser irradiation. In vivo experiments revealed significant tumor growth inhibition with RPV treatment and laser irradiation. Immunohistochemical analysis showed a notable decrease in Ki-67 expression, suggesting the effective suppression of cell proliferation, and TUNEL assay indicated the increased apoptosis in the RPV-treated group. Pathological examination and blood routine analysis revealed no significant systemic toxicity. Real-time monitoring exhibited selective accumulation of RPV at tumor sites. Conclusion: The findings collectively suggest that RPV holds promise as a safe and effective therapeutic strategy for TSCC, offering a combination of targeted drug delivery with photodynamic therapy.


Asunto(s)
Carcinoma de Células Escamosas , Nanopartículas , Fotoquimioterapia , Neoplasias de la Lengua , Humanos , Verteporfina/uso terapéutico , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/patología , Neoplasias de la Lengua/tratamiento farmacológico , Neoplasias de la Lengua/metabolismo , Neoplasias de la Lengua/patología , Especies Reactivas de Oxígeno/metabolismo , Antígeno Ki-67 , Línea Celular Tumoral , Lengua/metabolismo , Lengua/patología , Fármacos Fotosensibilizantes
9.
Photodiagnosis Photodyn Ther ; 46: 104067, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38548042

RESUMEN

BACKGROUND: To the best of our knowledge, no studies have been performed to determine the optimal parameters of photodynamic therapy (PDT) combined with subconjunctival injection of bevacizumab for corneal neovascularization. This study aimed to compare the effect of photodynamic therapy with two different sets of parameters combined with subconjunctival injection of bevacizumab for corneal neovascularization. METHODS: Patients with stable corneal neovascularization (CNV) unresponsive to conventional treatment (topical steroid) were included in this study. Patients were divided into two groups, receiving PDT with two different sets of parameters (group 1 receiving fluence of 50 J/cm2 at 15 min after intravenous injection of verteporfin with, group 2 receiving fluence of 150 J/cm2 at 60 min after intravenous injection of verteporfin with). Subconjunctival injection of bevacizumab was performed immediately after PDT. All patients were followed for 6 months. Best-corrected visual acuity and intraocular pressure were evaluated, and slit-lamp biomicroscopy as well as digital photography were performed. Average diameter and cumulative length of corneal neovascular were measured to evaluate the corneal neovascularization. RESULTS: Seventeen patients (20 eyes) were included in this study. At the last visit, the vision was improved in 12 eyes (60 %), steady in 4 eyes (20 %) and worsen in 4 eyes (20 %). The intraocular pressure (IOP) of all patients remained in normal range. A significant decrease in corneal neovascularization was showed in all the eyes after treatment. At 6 months after the combined treatment, the average diameter and cumulative length of vessels significantly decreased to 0.041 ± 0.023 mm (P < 0.05) and 18.78 ± 17.73 mm (P < 0.05), respectively, compared with the pretreatment data (0.062 ± 0.015 mm, 31.48 ± 18.21 mm). The reduction was more remarkable in group 2 compared to group 1.In group 1, the average diameter was 0.062 ± 0.013mm before and 0.056 ± 0.017mm after, the cumulative length of vessels was 38.66 ± 22.55mm before and 31.21 ± 17.30 after. In group 2, the date were 0.061 ± 0.016mm before and 0.029 ± 0.020mm after, 25.60 ± 8.95 mm before and 8.61 ± 8.26 mm. The reported complications included epithelial defect in four eyes, small white filaments in two eyes and corneal epithelial erosion in two eyes. CONCLUSION: The PDT combined with subconjunctival injection of bevacizumab was effective for the chronic corneal neovascularization. A more promising treatment outcome was observed when PDT was performed at 60 min after intravenous injection of verteporfin with fluence of 150 J/cm2. No serious complications or systemic events were observed throughout the follow-up period.


Asunto(s)
Inhibidores de la Angiogénesis , Bevacizumab , Neovascularización de la Córnea , Fotoquimioterapia , Fármacos Fotosensibilizantes , Verteporfina , Agudeza Visual , Humanos , Fotoquimioterapia/métodos , Bevacizumab/administración & dosificación , Bevacizumab/uso terapéutico , Neovascularización de la Córnea/tratamiento farmacológico , Femenino , Masculino , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/uso terapéutico , Verteporfina/uso terapéutico , Inhibidores de la Angiogénesis/administración & dosificación , Persona de Mediana Edad , Agudeza Visual/efectos de los fármacos , Adulto , Anciano , Terapia Combinada , Inyecciones Intraoculares , Presión Intraocular/efectos de los fármacos , Porfirinas/administración & dosificación , Conjuntiva/irrigación sanguínea
10.
Adv Sci (Weinh) ; 11(17): e2302872, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38445882

RESUMEN

Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure-drug nanoformulation of VP, termed "NanoVP", eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65-150 nm) and 1500-fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2-fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP-PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5-aminolevulinic acid (5-ALA). Moreover, low-dose NanoVP-PDT can safely open the blood-brain barrier, increasing drug accumulation in rat brains by 5.5-fold compared to 5-ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Sistemas de Liberación de Medicamentos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Verteporfina , Animales , Fotoquimioterapia/métodos , Verteporfina/farmacología , Verteporfina/uso terapéutico , Ratones , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Nanopartículas/química , Modelos Animales de Enfermedad , Humanos , Ratas , Liposomas , Línea Celular Tumoral , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
11.
Mol Pharm ; 21(5): 2340-2350, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38546166

RESUMEN

Uveal melanoma (UM) is the most common primary ocular malignancy in adults and has high mortality. Recurrence, metastasis, and therapeutic resistance are frequently observed in UM, but no beneficial systemic therapy is available, presenting an urgent need for developing effective therapeutic drugs. Verteporfin (VP) is a photosensitizer and a Yes-Associated Protein (YAP) inhibitor that has been used in clinical practice. However, VP's lack of tumor targetability, poor biocompatibility, and relatively low treatment efficacy hamper its application in UM management. Herein, we developed a biocompatible CD44-targeting hyaluronic acid nanoparticle (HANP) carrying VP (HANP/VP) to improve UM treatment efficacy. We found that HANP/VP showed a stronger inhibitory effect on cell proliferation than that of free VP in UM cells. Systemic delivery of HANP/VP led to targeted accumulation in the UM-tumor-bearing mouse model. Notably, HANP/VP mediated photodynamic therapy (PDT) significantly inhibited UM tumor growth after laser irradiation compared with no treatment or free VP treatment. Consistently, in HANP/VP treated tumors after laser irradiation, the tumor proliferation and YAP expression level were decreased, while the apoptotic tumor cell and CD8+ immune cell levels were elevated, contributing to effective tumor growth inhibition. Overall, the results of this preclinical study showed that HANP/VP is an effective nanomedicine for tumor treatment through PDT and inhibition of YAP in the UM tumor mouse model. Combining phototherapy and molecular-targeted therapy offers a promising approach for aggressive UM management.


Asunto(s)
Proliferación Celular , Ácido Hialurónico , Melanoma , Nanopartículas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Neoplasias de la Úvea , Verteporfina , Verteporfina/farmacología , Verteporfina/uso terapéutico , Animales , Fotoquimioterapia/métodos , Neoplasias de la Úvea/tratamiento farmacológico , Neoplasias de la Úvea/patología , Ratones , Melanoma/tratamiento farmacológico , Melanoma/patología , Humanos , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Línea Celular Tumoral , Nanopartículas/química , Proliferación Celular/efectos de los fármacos , Ácido Hialurónico/química , Receptores de Hialuranos/metabolismo , Apoptosis/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto , Proteínas Señalizadoras YAP , Ratones Desnudos , Terapia Molecular Dirigida/métodos , Ratones Endogámicos BALB C , Femenino
12.
BMC Ophthalmol ; 24(1): 8, 2024 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-38178104

RESUMEN

BACKGROUND: To compare real-life anatomical and functional outcomes of half-dose photodynamic therapy (HD-PDT) and 577 nm subthreshold pulse laser therapy (SPL) in treatment-naïve patients with central serous chorioretinopathy (CSC). METHODS: We retrospectively reviewed consecutive treatment-naïve CSC patients with non-resolving subretinal fluid (SRF) for more than 2 months who received either HD-PDT or SPL treatment. One repetition of the same treatment was allowed in patients with persistent SRF after first treatment. Functional and anatomical outcomes were assessed after first treatment and at final visit. RESULTS: We included 95 patients (HD-PDT group, n = 49; SPL group, n = 46). Complete resolution of SRF after a single treatment was observed in 42.9% of HD-PDT-treated patients (n = 21; median time to resolution 7.1 weeks) and in 41.3% of SPL-treated patients (n = 19; median time to resolution 7.0 weeks). In the HD-PDT-group, 44.9% of patients (n = 22) and in the SPL-group, 43.5% (n = 20) of patients, received a second treatment due to persistent SRF, while 12.2% (n = 6) and 15.2% (n = 7), respectively, opted against a second treatment despite persistent SRF. After the final treatment, complete SRF resolution was observed in 61.2% of all HD-PDT-treated patients (n = 30; median time to resolution 8.8 weeks) and 60.9% of all SPL-treated patients (n = 28; median time to resolution 13.7 weeks, p = 0.876). In the final visit, both groups showed significant improvement of BCVA in comparison to baseline (p < 0.001 for all). The change in BCVA from baseline to final visit was similar for the two groups (HD-PDT, median BCVA change 0.10 logMAR (IQR: 0.0-0.2); in SPL group, median BCVA change 0.10 logMAR (IQR: 0.0-0.2), P = 0.344). The CSC subclassification (simple versus complex) had no influence on the anatomical or functional outcome. CONCLUSIONS: High-density 577 nm SPL resulted in as good anatomical and functional treatment as HD-PDT and may thus represent a treatment alternative to HD-PDT in CSC.


Asunto(s)
Coriorretinopatía Serosa Central , Terapia por Láser , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Coriorretinopatía Serosa Central/diagnóstico , Coriorretinopatía Serosa Central/tratamiento farmacológico , Verteporfina/uso terapéutico , Estudios Retrospectivos , Estudios de Seguimiento , Fotoquimioterapia/métodos , Terapia por Láser/métodos , Tomografía de Coherencia Óptica , Angiografía con Fluoresceína , Enfermedad Crónica
13.
Free Radic Biol Med ; 212: 493-504, 2024 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-38184120

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) has extremely poor prognosis, with a 5-year survival rate of approximately 11 %. Yes-associated protein (YAP) is a major downstream effector of the Hippo-YAP pathway and plays a pivotal role in regulation of cell proliferation and organ regeneration and tumorigenesis. Activation of YAP signaling has been associated with PDAC progression and drug resistance. Verteporfin (VP) is a photosensitizer used for photodynamic therapy and previous work showed that it can function as a YAP inhibitor. The efficacy of VP on human cancer are being tested in several trials. In this study, we examined the effect of VP on reactive oxygen species (ROS) and lipid peroxidation in pancreatic cancer cells, by using fluorescent molecular probes and by measuring the levels of malondialdehyde, a metabolic byproduct and marker of lipid peroxidation. We found that VP causes rapid increase of both overall ROS and lipid peroxide levels, independent of light activation. These effects were not dependent on YAP, as knockdown of YAP did not cause ROS or lipid peroxidation or enhance VP-induced ROS production. Temoporfin, another photodynamic drug, did not show similar activities. In addition, VP treatment led to loss of cell membrane integrity and reduction of viability. Notably, the activity of VP to induce lipid peroxidation was neutralized by ferroptosis inhibitors ferrostatin-1 or liproxstatin-1. VP treatment also reduced the levels of glutathione peroxidase 4 (GPX4), an enzyme that protects against lipid peroxidation. These results indicate that VP can induce lipid peroxidation and ferroptosis in the absence of light activation. Our findings reveal a novel mechanism by which VP inhibits tumor growth and provide insights into development of new therapeutic strategies for the treatment of pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Ferroptosis , Neoplasias Pancreáticas , Humanos , Verteporfina/farmacología , Verteporfina/uso terapéutico , Peroxidación de Lípido , Especies Reactivas de Oxígeno , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética
14.
Int Dent J ; 74(3): 597-606, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38184457

RESUMEN

OBJECTIVES: The aim of this study was to investigate the molecular mechanism underlying odontoblast damage repair in dentin hypersensitivity (DH) and the role of Yes-associated protein (YAP) in this process. METHODS: The DH model was constructed in Sprague-Dawley (SD) rats, and the in vivo expression of Piezo1, Integrin αvß3, YAP, and dentin sialophosphoprotein (DSPP) was detected by immunohistochemistry. COMSOL Multiphysics software was used to simulate the dentinal tubule fluid flow velocity and corresponding fluid shear stress (FSS) on the odontoblast processes. MDPC-23 cells were cultured in vitro and loaded with a peristaltic pump for 1 hour at FSS values of 0.1, 0.3, 0.5, and 0.7 dyne/cm2. The expression of Piezo1, Integrin αvß3, and YAP was detected by immunofluorescence. Verteporfin (a YAP-specific inhibitor) was utilised to confirm the effect of YAP on the expression of dentineogenesis-related protein under FSS. RESULTS: The level and duration of external mechanical stimuli have an effect on the functional expression of odontoblasts. In DH, the harder the food that is chewed, the faster the flow of the dentinal tubule fluid and the greater the FSS on the odontoblast processes. The expression of Piezo1, Integrin αvß3, and YAP can be promoted when the FSS is less than 0.3 dyne/cm2. After YAP inhibition, the DSPP protein expression level was reduced at 0.3 dyne/cm2 FSS. CONCLUSIONS: These results suggest that appropriate FSS can enhance the expression of odontoblast-related factors in odontoblasts via the Piezo1-Integrin αvß3-YAP mechanotransduction pathway and the YAP appears to play an essential role in the response of odontoblasts to external mechanical stimuli.


Asunto(s)
Sensibilidad de la Dentina , Odontoblastos , Proteínas Señalizadoras YAP , Animales , Ratas , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Sensibilidad de la Dentina/genética , Sensibilidad de la Dentina/metabolismo , Modelos Animales de Enfermedad , Proteínas de la Matriz Extracelular/metabolismo , Inmunohistoquímica , Integrina alfaVbeta3/metabolismo , Canales Iónicos/metabolismo , Proteínas de la Membrana , Odontoblastos/metabolismo , Fosfoproteínas/metabolismo , Ratas Sprague-Dawley , Sialoglicoproteínas/metabolismo , Estrés Mecánico , Verteporfina/farmacología , Verteporfina/uso terapéutico
15.
Graefes Arch Clin Exp Ophthalmol ; 262(6): 1811-1818, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38294513

RESUMEN

PURPOSE: To examine the long-term visual outcomes after initial treatment with combined photodynamic therapy (PDT) or aflibercept treat-and-extend (TAE) monotherapy in patients with pachychoroid neovasculopathy (PNV). METHODS: Patients diagnosed with PNV, initially treated with PDT combined with anti-vascular endothelial growth factor (VEGF) or intravitreal aflibercept (IVA) monotherapy in the TAE protocol and followed up for at least 6 months, were included in the study. Medical records were retrospectively reviewed. Survival analysis was performed, in which deterioration in logMAR visual acuity by 0.1 or 0.3 is defined as "death." The annual number of treatments was also analyzed. Sub-analysis was performed on 33 patients diagnosed with PNV without polypoidal lesions. RESULTS: This study included 46 patients (23 in the initial combined PDT group and 23 in the IVA TAE group). Mean age, sex, mean baseline logMAR visual acuity, or duration of observation (3.6 ± 3.2 years vs. 3.1 ± 1.9 years) in both groups were comparable. As for visual outcome, no significant differences were found in survival analysis based on worsening of 0.1 or 0.3 logMAR (3-year survival; 26% vs. 26%, 91% vs. 90%, respectively). Meanwhile, the additional number of anti-VEGF injections per year was significantly lower in the initial combined PDT group than in the IVA TAE group (1.0 ± 1.3 vs. 4.1 ± 1.5, p < 0.0001). No significant differences were found in the number of additional PDTs per year (0.07 ± 0.20 vs. 0.02 ± 0.09, p = 0.27). Similar results were found in a sub-analysis of 33 patients without polyps. CONCLUSION: In the treatment of PNV, regardless of the presence of polyps, the long-term visual outcomes were similar between the initial combined PDT and IVA TAE monotherapy. However, the annual number of anti-VEGF injections was lower in the initial combined PDT group than in the aflibercept TAE group, whereas that of PDT was comparable.


Asunto(s)
Inhibidores de la Angiogénesis , Neovascularización Coroidal , Angiografía con Fluoresceína , Fondo de Ojo , Inyecciones Intravítreas , Fotoquimioterapia , Fármacos Fotosensibilizantes , Receptores de Factores de Crecimiento Endotelial Vascular , Proteínas Recombinantes de Fusión , Tomografía de Coherencia Óptica , Factor A de Crecimiento Endotelial Vascular , Agudeza Visual , Humanos , Fotoquimioterapia/métodos , Masculino , Femenino , Estudios Retrospectivos , Receptores de Factores de Crecimiento Endotelial Vascular/administración & dosificación , Proteínas Recombinantes de Fusión/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/antagonistas & inhibidores , Inhibidores de la Angiogénesis/administración & dosificación , Inhibidores de la Angiogénesis/uso terapéutico , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/diagnóstico , Neovascularización Coroidal/fisiopatología , Tomografía de Coherencia Óptica/métodos , Angiografía con Fluoresceína/métodos , Anciano , Resultado del Tratamiento , Fármacos Fotosensibilizantes/uso terapéutico , Estudios de Seguimiento , Persona de Mediana Edad , Factores de Tiempo , Verteporfina/uso terapéutico , Coroides/irrigación sanguínea , Ranibizumab/administración & dosificación
16.
Acta Ophthalmol ; 102(3): 274-284, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-37551858

RESUMEN

Central serous chorioretinopathy (CSC) is a prevalent exudative maculopathy and the ongoing verteporfin shortage restricts current treatment possibilities. Topical non-steroidal anti-inflammatory drugs (NSAID) have previously been proposed as a treatment for CSC, although its exact efficacy remains unclear. In this systematic review and meta-analysis, we outlined the efficacy of topical NSAIDs for the treatment of CSC. We searched 11 literature databases on 13 December 2022, for any study describing topical NSAID treatment for CSC. Thirteen eligible studies were included with a total of 1001 eyes of 994 patients with CSC. Six studies were case reports, two were cohort studies and five were non-randomized comparative studies. Where specified, topical NSAIDs used were bromfenac 0.09%, diclofenac 0.1%, ketorolac 0.4% and 0.5%, pranoprofen 0.1%, and nepafenac 0.1% and 0.3%. Studies were predominantly of cases with acute CSC and several case studies reported treatment outcomes simultaneously with discontinuation of corticosteroid use, which complicated treatment evaluation. Meta-analyses of comparative studies revealed a statistically significant but clinically irrelevant best-corrected visual acuity improvement of -0.04 logMAR (95% CI: -0.07 to -0.01 logMAR; p = 0.01) at 1-month follow-up, which became statistically insignificant at 3-month follow-up (-0.03 logMAR; 95% CI: -0.06 to 0.003 logMAR; p = 0.08). Further, we found no benefit in complete subretinal fluid resolution at 1-month follow-up (OR: 1.20; 95% CI: 0.81-1.76; p = 0.37) or 3-month follow-up (OR: 1.17; 95% CI: 0.86 to 1.59; p = 0.33). Taken together, available evidence does not support the use of topical NSAIDs for the treatment of CSC.


Asunto(s)
Coriorretinopatía Serosa Central , Fotoquimioterapia , Humanos , Coriorretinopatía Serosa Central/diagnóstico , Coriorretinopatía Serosa Central/tratamiento farmacológico , Resultado del Tratamiento , Verteporfina/uso terapéutico , Antiinflamatorios no Esteroideos , Tomografía de Coherencia Óptica , Angiografía con Fluoresceína
17.
Exp Eye Res ; 238: 109747, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38072353

RESUMEN

Corneal neovascularization (CNV) is a vision-threatening disease that is becoming a growing public health concern. While Yes-associated protein (YAP) plays a critical role in neovascular disease and allow for the sprouting angiogenesis. Verteporfin (VP) is a classical inhibitor of the YAP-TEAD complex, which is used for clinical treatment of neovascular macular degeneration through photodynamic therapy. The purpose of this study is to explore the effect of verteporfin (VP) on the inhibition of CNV and its potential mechanism. Rat CNV model were established by suturing in the central cornea and randomly divided into three groups (control, CNV and VP group). Neovascularization was observed by slit lamp to extend along the corneal limbus to the suture line. RNA-sequencing was used to reveal the related pathways on the CNV and the results revealed the vasculature development process and genes related with angiogenesis in CNV. In CNV group, we detected the nuclear translocation of YAP and the expression of CD31 in corneal neovascular endothelial cells through immunofluorescence. After the application of VP, the proliferation, migration and the tube formation of HUVECs were significantly inhibited. Furthermore, VP showed the CNV inhibition by tail vein injection without photoactivation. Then we found that the expression of phosphorylated YAP significantly decreased, and its downstream target protein connective tissue growth factor (CTGF) increased in the CNV group, while the expression was just opposite in other groups. Besides, both the expression of vascular endothelial growth factor receptor 2 (VEGFR2) and cofilin significantly increased in CNV group, and decreased after VP treatment. Therefore, we conclude that Verteporfin could significantly inhibited the CNV without photoactivation by regulating the activation of YAP.


Asunto(s)
Neovascularización Coroidal , Neovascularización de la Córnea , Verteporfina , Animales , Ratas , Neovascularización Coroidal/tratamiento farmacológico , Neovascularización Coroidal/metabolismo , Neovascularización de la Córnea/tratamiento farmacológico , Células Endoteliales/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Verteporfina/farmacología , Verteporfina/uso terapéutico
19.
BMC Ophthalmol ; 23(1): 511, 2023 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-38097999

RESUMEN

PURPOSE: To evaluate the long-term prognosis of polypoidal choroidal vasculopathy (PCV) treated with anti-vascular endothelial growth factor (anti-VEGF) combined with verteporfin photodynamic therapy (PDT), according to polypoidal lesion regression. METHODS: This study retrospectively reviewed the data of 33 naïve eyes with PCV treated with anti-VEGF combined with verteporfin PDT and followed-up for at least 7 years. The collected data included demographic profile, best-corrected visual acuity (BCVA), central foveal thickness (CFT), PED volume, and presence of submacular hemorrhage. Regression of polypoidal lesion was determined using indocyanine green angiography and optical coherence tomography. All eyes were divided into regression or persistent groups, based on the polypoidal lesion regression one year after the initial combined treatment. RESULTS: BCVA improvement was maintained for 3 years in the regression (p = 0.001) and 1 year in the persistent (p = 0.006) groups, respectively. The mean BCVA of the regression group was better than that of the persistent group over 7 years, but the difference was significant only at 1 year (p = 0.037). The number of eyes which maintained BCVA less than or equal to 0.3 logMAR at 7 years was 11 eyes (64.7%) in regression group and 4 eyes (25.0%) in persistent group (p = 0.022). CONCLUSIONS: Regression of the polypoidal lesion at 1 year after the initial combination treatment was associated with favorable long-term visual prognosis, particularly in terms of maintaining good visual acuity.


Asunto(s)
Enfermedades de la Coroides , Fotoquimioterapia , Humanos , Verteporfina/uso terapéutico , Inhibidores de la Angiogénesis/uso terapéutico , Factores de Crecimiento Endotelial/uso terapéutico , Fotoquimioterapia/métodos , Factor A de Crecimiento Endotelial Vascular , Vasculopatía Coroidea Polipoidea , Estudios Retrospectivos , Enfermedades de la Coroides/diagnóstico , Enfermedades de la Coroides/tratamiento farmacológico , Angiografía con Fluoresceína , Inyecciones Intravítreas , Tomografía de Coherencia Óptica
20.
Int J Nanomedicine ; 18: 6185-6198, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37933297

RESUMEN

Background: Photodynamic therapy (PDT) has emerged as a promising strategy for oral cancer treatment. Verteporfin is a powerful photosensitizer and widely used in the treatment of macular degeneration. However, rare work has reported its potential in the treatment of oral cancer. Methods: In this study, we introduce an innovative approach of nano-photosensitizer based on Verteporfin, which was prepared by utilizing macrophage membrane to coat Verteporfin-loaded zeolitic imidazolate framework 8 (ZIF-8) for effective photodynamic therapy against oral cancer. Nanoparticle characteristics were assessed including size, zeta potential, and PDI. Cellular uptake studies were conducted using CAL-27 cells. Furthermore, inhibitory effects in both in vitro and in vivo settings were observed, ensuring biosafety. Assessment of anticancer efficacy involved tumor volume measurement, histological analyses, and immunohistochemical staining. Results: In vitro experiments indicated that the nano-photosensitizer showed efficient cellular uptake in the oral cancer cells. Upon the laser irradiation, the nano-photosensitizer induced the generation of reactive oxygen species (ROS), leading to cancer cell apoptosis. The in vivo experiments indicated that the coating with cell membranes enhanced the circulation time of nano-photosensitizer. Moreover, the specificity of the nano-photosensitizer to the cancer cells was also improved by the cell membrane-camouflaged structure in the tumor-bearing mouse model, which inhibited the tumor growth significantly by the photodynamic effect in the presence of laser irradiation. Conclusion: Overall, our findings demonstrate the potential of macrophage membrane-coated ZIF-8-based nanoparticles loaded with Verteporfin for effective photodynamic therapy in oral cancer treatment. This nano-system holds promise for synergistic cancer therapy by combining the cytotoxic effects of PDT with the activation of the immune system, providing a novel therapeutic strategy for combating cancer.


Asunto(s)
Neoplasias de la Boca , Nanopartículas , Fotoquimioterapia , Ratones , Animales , Fármacos Fotosensibilizantes/farmacología , Verteporfina/uso terapéutico , Fototerapia , Neoplasias de la Boca/tratamiento farmacológico , Nanopartículas/química , Modelos Animales de Enfermedad , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA