Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.756
Filtrar
Más filtros

Intervalo de año de publicación
1.
Nat Commun ; 15(1): 8318, 2024 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-39333495

RESUMEN

Autoimmune attack toward pancreatic ß cells causes permanent loss of glucose homeostasis in type 1 diabetes (T1D). Insulin secretory granules store and secrete insulin but are also thought to be tissue messengers for T1D. Here, we show that the crinophagic granules (crinosome), a minor set of vesicles formed by fusing lysosomes with the conventional insulin dense-core granules (DCG), are pathogenic in T1D development in mouse models. Pharmacological inhibition of crinosome formation in ß cells delays T1D progression without affecting the dominant DCGs. Mechanistically, crinophagy inhibition diminishes the epitope repertoire in pancreatic islets, including cryptic, modified and disease-relevant epitopes derived from insulin. These unconventional insulin epitopes are largely undetectable in the MHC-II epitope repertoire of the thymus, where only canonical insulin epitopes are presented. CD4+ T cells targeting unconventional insulin epitopes display autoreactive phenotypes, unlike tolerized T cells recognizing epitopes presented in the thymus. Thus, the crinophagic pathway emerges as a tissue-intrinsic mechanism that transforms insulin from a signature thymic self-protein to a critical autoantigen by creating a peripheral-thymic mismatch in the epitope repertoire.


Asunto(s)
Diabetes Mellitus Tipo 1 , Células Secretoras de Insulina , Insulina , Animales , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Ratones , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo , Insulina/metabolismo , Insulina/inmunología , Epítopos/inmunología , Linfocitos T CD4-Positivos/inmunología , Vesículas Secretoras/metabolismo , Vesículas Secretoras/inmunología , Ratones Endogámicos NOD , Autoantígenos/inmunología , Autoantígenos/metabolismo , Femenino , Modelos Animales de Enfermedad , Timo/inmunología , Humanos , Lisosomas/metabolismo , Lisosomas/inmunología
2.
J Cell Sci ; 137(17)2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39171448

RESUMEN

Fast axonal transport is crucial for neuronal function and is driven by kinesins and cytoplasmic dynein. Here, we investigated the role of kinesin-1 in dense core vesicle (DCV) transport in C. elegans, using mutants in the kinesin light chains (klc-1 and klc-2) and the motor subunit (unc-116) expressing an ida-1::gfp transgene that labels DCVs. DCV transport in both directions was greatly impaired in an unc-116 mutant and had reduced velocity in a klc-2 mutant. In contrast, the speed of retrograde DCV transport was increased in a klc-1 mutant whereas anterograde transport was unaffected. We identified striking differences between the klc mutants in their effects on worm locomotion and responses to drugs affecting neuromuscular junction activity. We also determined lifespan, finding that unc-116 mutant was short-lived whereas the klc single mutant lifespan was wild type. The ida-1::gfp transgenic strain was also short-lived, but surprisingly, klc-1 and klc-2 extended the ida-1::gfp lifespan beyond that of wild type. Our findings suggest that kinesin-1 not only influences anterograde and retrograde DCV transport but is also involved in regulating lifespan and locomotion, with the two kinesin light chains playing distinct roles.


Asunto(s)
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Cinesinas , Locomoción , Longevidad , Animales , Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/genética , Cinesinas/metabolismo , Cinesinas/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Locomoción/genética , Longevidad/genética , Neuronas/metabolismo , Mutación/genética , Vesículas Secretoras/metabolismo , Animales Modificados Genéticamente , Transporte Axonal , Unión Neuromuscular/metabolismo , Proteínas de Ciclo Celular
3.
Elife ; 132024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39190030

RESUMEN

Organelle heterogeneity and inter-organelle contacts within a single cell contribute to the limited sensitivity of current organelle separation techniques, thus hindering organelle subpopulation characterization. Here, we use direct current insulator-based dielectrophoresis (DC-iDEP) as an unbiased separation method and demonstrate its capability by identifying distinct distribution patterns of insulin vesicles from INS-1E insulinoma cells. A multiple voltage DC-iDEP strategy with increased range and sensitivity has been applied, and a differentiation factor (ratio of electrokinetic to dielectrophoretic mobility) has been used to characterize features of insulin vesicle distribution patterns. We observed a significant difference in the distribution pattern of insulin vesicles isolated from glucose-stimulated cells relative to unstimulated cells, in accordance with maturation of vesicles upon glucose stimulation. We interpret the difference in distribution pattern to be indicative of high-resolution separation of vesicle subpopulations. DC-iDEP provides a path for future characterization of subtle biochemical differences of organelle subpopulations within any biological system.


Asunto(s)
Electroforesis , Insulina , Vesículas Secretoras , Electroforesis/métodos , Insulina/metabolismo , Vesículas Secretoras/metabolismo , Vesículas Secretoras/química , Animales , Ratas , Línea Celular Tumoral , Glucosa/metabolismo
4.
Methods Mol Biol ; 2841: 67-73, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39115765

RESUMEN

A working pipeline for proteomic analysis of secreted vesicle proteins from the plant cells has been developed using urea and mass spectrometry-compatible detergent RapiGest SF, where vesicles could be efficiently lysed and membrane-bound proteins could be efficiently dissolved and digested. The vesicle lysis and the protein digestion procedures are performed within one tube to minimize the protein loss. The protein digest is analyzed using LC-MS/MS after desalting with an SPE spin column.


Asunto(s)
Células Vegetales , Proteínas de Plantas , Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Proteínas de Plantas/metabolismo , Espectrometría de Masas en Tándem/métodos , Cromatografía Liquida/métodos , Células Vegetales/metabolismo , Vesículas Secretoras/metabolismo , Proteoma/metabolismo
5.
J Morphol ; 285(9): e21765, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-39152664

RESUMEN

Rotifers possess complex morphologies despite their microscopic size and simple appearance. Part of this complexity is hidden in the structure of their organs, which may be cellular or syncytial. Surprisingly, organs that are cellular in one taxon can be syncytial in another. Pedal glands are widespread across Rotifera and function in substrate attachment and/or egg brooding. These glands are normally absent in Asplanchna, which lack feet and toes that function as outlets for pedal glandular secretions in other rotifers. Here, we describe the ultrastructure of a pedal gland that is singular and syncytial in Asplanchna aff. herricki, but is normally paired and cellular in all other rotifers. Asplanchna aff. herricki has a single large pedal gland that is active and secretory; it has a bipartite, binucleate, syncytial body and a cytosol filled with rough endoplasmic reticulum, Golgi, and several types of secretory vesicles. The most abundant vesicle type is large and contains a spherical electron-dense secretion that appears to be produced through homotypic fusion of condensing vesicles produced by the Golgi. The vesicles appear to undergo a phase transition from condensed to decondensed along their pathway toward the gland lumen. Decondensation changes the contents to a mucin-like matrix that is eventually exocytosed in a "kiss-and-run" fashion with the plasma membrane of the gland lumen. Exocytosed mucus enters the gland lumen and exits through an epithelial duct that is an extension of the syncytial integument. This results in mucus that extends from the rotifer as a long string as the animal swims through the water. The function of this mucus is unknown, but we speculate it may function in temporary attachment, prey capture, or floatation.


Asunto(s)
Rotíferos , Animales , Rotíferos/ultraestructura , Rotíferos/anatomía & histología , Glándulas Exocrinas/ultraestructura , Glándulas Exocrinas/anatomía & histología , Vesículas Secretoras/ultraestructura , Aparato de Golgi/ultraestructura , Microscopía Electrónica de Transmisión
6.
Biochem Soc Trans ; 52(4): 1715-1725, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39082978

RESUMEN

Various cell types release neurotransmitters, hormones and many other compounds that are stored in secretory vesicles by exocytosis via the formation of a fusion pore traversing the vesicular membrane and the plasma membrane. This process of membrane fusion is mediated by the Soluble N-ethylmaleimide-Sensitive Factor Attachment Proteins REceptor (SNARE) protein complex, which in neurons and neuroendocrine cells is composed of the vesicular SNARE protein Synaptobrevin and the plasma membrane proteins Syntaxin and SNAP25 (Synaptosomal-Associated Protein of 25 kDa). Before a vesicle can undergo fusion and release of its contents, it must dock at the plasma membrane and undergo a process named 'priming', which makes it ready for release. The primed vesicles form the readily releasable pool, from which they can be rapidly released in response to stimulation. The stimulus is an increase in Ca2+ concentration near the fusion site, which is sensed primarily by the vesicular Ca2+ sensor Synaptotagmin. Vesicle priming involves at least the SNARE proteins as well as Synaptotagmin and the accessory proteins Munc18, Munc13, and Complexin but additional proteins may also participate in this process. This review discusses the current views of the interactions and the structural changes that occur among the proteins of the vesicle priming machinery.


Asunto(s)
Exocitosis , Fusión de Membrana , Proteínas SNARE , Proteínas SNARE/metabolismo , Humanos , Animales , Exocitosis/fisiología , Vesículas Secretoras/metabolismo , Sinaptotagminas/metabolismo , Calcio/metabolismo , Membrana Celular/metabolismo
7.
Cell Rep ; 43(7): 114482, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-38985670

RESUMEN

Secretory granule (SG) fusion is an intermediate step in SG biogenesis. However, the precise mechanism of this process is not completely understood. We show that Golgi-derived mast cell (MC) SGs enlarge through a mechanism that is dependent on phosphoinositide (PI) remodeling and fusion with LC3+ late endosomes (amphisomes), which serve as hubs for the fusion of multiple individual SGs. Amphisome formation is regulated by the tyrosine phosphatase PTPN9, while the subsequent SG fusion event is additionally regulated by the tetraspanin protein CD63 and by PI4K. We also demonstrate that fusion with amphisomes imparts to SGs their capacity of regulated release of exosomes. Finally, we show that conversion of PI(3,4,5)P3 to PI(4,5)P2 and the subsequent recruitment of dynamin stimulate SG fission. Our data unveil a key role for lipid-regulated interactions with the endocytic and autophagic systems in controlling the size and number of SGs and their capacity to release exosomes.


Asunto(s)
Exosomas , Mastocitos , Vesículas Secretoras , Exosomas/metabolismo , Mastocitos/metabolismo , Animales , Vesículas Secretoras/metabolismo , Tetraspanina 30/metabolismo , Ratones , Endosomas/metabolismo , Fusión de Membrana , Aparato de Golgi/metabolismo
8.
Biochim Biophys Acta Mol Basis Dis ; 1870(7): 167310, 2024 10.
Artículo en Inglés | MEDLINE | ID: mdl-38901651

RESUMEN

The pancreas is a glandular organ with both endocrine and exocrine functions. Researchers have investigated the roles of several Rab proteins, which are major regulators of membrane trafficking, in pancreatic exocytosis of zymogen granules in exocrine cells, also known as acinar cells. However, detailed molecular mechanisms mediated by Rab proteins are not fully understood. RASEF/Rab45 is an atypical Rab GTPase that contains N-terminal EF-hand and coiled-coil domains, as well as a C-terminal Rab-GTPase domain. In this study, we investigated the in vivo role of RASEF in pancreatic acinar cells using RASEF-knockout (KO) mice. Morphological analyses revealed that pancreatic acinar cells in RASEF-KO mice had an increased number of zymogen granules and abnormal formations of organelles, such as the endoplasmic reticulum (ER) and lysosomes. Biochemical analyses showed that ER proteins were decreased, but digestive enzymes were increased in the RASEF-KO pancreas. Moreover, trypsinogen was activated and co-localized with the endo-lysosomal marker LAMP1 in RASEF-KO pancreas. Upon cerulein administration to induce acute pancreatitis, impaired enzyme release from the pancreas was observed in the serum of RASEF-KO mice. These findings suggest that RASEF likely regulates the formation and sorting of zymogen granules and secretion of digestive enzymes by pancreatic acinar cells.


Asunto(s)
Células Acinares , Vesículas Secretoras , Factores de Intercambio de Guanina Nucleótido ras , Animales , Masculino , Ratones , Células Acinares/metabolismo , Retículo Endoplásmico/metabolismo , Exocitosis , Lisosomas/metabolismo , Ratones Noqueados , Páncreas/metabolismo , Páncreas Exocrino/metabolismo , Pancreatitis/metabolismo , Pancreatitis/patología , Pancreatitis/inducido químicamente , Transporte de Proteínas , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Vesículas Secretoras/metabolismo , Tripsinógeno/metabolismo , Factores de Intercambio de Guanina Nucleótido ras/genética , Factores de Intercambio de Guanina Nucleótido ras/metabolismo
9.
J Phys Chem B ; 128(26): 6246-6256, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38861346

RESUMEN

Intracellular transport is a complex process that is difficult to describe by a single general model for motion. Here, we study the transport of insulin containing vesicles, termed granules, in live MIN6 cells. We characterize how the observed heterogeneity is affected by different intracellular factors by constructing a MIN6 cell line by CRISPR-CAS9 that constitutively expresses mCherry fused to insulin and is thus packaged in granules. Confocal microscopy imaging and single particle tracking of the granule transport provide long trajectories of thousands of single granule trajectories for statistical analysis. Mean squared displacement (MSD), angle correlation distribution, and step size distribution analysis allowed identifying five distinct granule transport subpopulations, from nearly immobile and subdiffusive to run-pause and superdiffusive. The subdiffusive subpopulation recapitulates the subordinated random walk we reported earlier (Tabei, 2013; ref 18). We show that the transport characteristics of the five subpopulations have a strong dependence on the age of insulin granules. The five subpopulations also reflect the effect of local microtubule and actin networks on transport in different cellular regions. Our results provide robust metrics to clarify the heterogeneity of granule transport and demonstrate the roles of microtubule versus actin networks with granule age since initial packaging in the Golgi.


Asunto(s)
Células Secretoras de Insulina , Insulina , Insulina/metabolismo , Células Secretoras de Insulina/metabolismo , Células Secretoras de Insulina/citología , Animales , Ratones , Transporte Biológico , Vesículas Secretoras/metabolismo , Línea Celular , Difusión , Microtúbulos/metabolismo , Microtúbulos/química
10.
J Cell Sci ; 137(13)2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38899547

RESUMEN

The Rho family of GTPases plays a crucial role in cellular mechanics by regulating actomyosin contractility through the parallel induction of actin and myosin assembly and function. Using exocytosis of large vesicles in the Drosophila larval salivary gland as a model, we followed the spatiotemporal regulation of Rho1, which in turn creates distinct organization patterns of actin and myosin. After vesicle fusion, low levels of activated Rho1 reach the vesicle membrane and drive actin nucleation in an uneven, spread-out pattern. Subsequently, the Rho1 activator RhoGEF2 distributes as an irregular meshwork on the vesicle membrane, activating Rho1 in a corresponding punctate pattern and driving local myosin II recruitment, resulting in vesicle constriction. Vesicle membrane buckling and subsequent crumpling occur at local sites of high myosin II concentrations. These findings indicate that distinct thresholds for activated Rho1 create a biphasic mode of actomyosin assembly, inducing anisotropic membrane crumpling during exocrine secretion.


Asunto(s)
Proteínas de Drosophila , Exocitosis , Miosina Tipo II , Proteínas de Unión al GTP rho , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Miosina Tipo II/metabolismo , Proteínas de Unión al GTP rho/metabolismo , Proteínas de Unión al GTP rho/genética , Exocitosis/fisiología , Drosophila melanogaster/metabolismo , Actinas/metabolismo , Actomiosina/metabolismo , Larva/metabolismo , Glándulas Salivales/metabolismo , Glándulas Salivales/citología , Factores de Intercambio de Guanina Nucleótido/metabolismo , Factores de Intercambio de Guanina Nucleótido/genética , Vesículas Secretoras/metabolismo
11.
Diabetologia ; 67(8): 1507-1516, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38811417

RESUMEN

In type 1 diabetes, the insulin-producing beta cells of the pancreas are destroyed through the activity of autoreactive T cells. In addition to strong and well-documented HLA class II risk haplotypes, type 1 diabetes is associated with noncoding polymorphisms within the insulin gene locus. Furthermore, autoantibody prevalence data and murine studies implicate insulin as a crucial autoantigen for the disease. Studies identify secretory granules, where proinsulin is processed into mature insulin, stored and released in response to glucose stimulation, as a source of antigenic epitopes and neoepitopes. In this review, we integrate established concepts, including the role that susceptible HLA and thymic selection of the T cell repertoire play in setting the stage for autoimmunity, with emerging insights about beta cell and insulin secretory granule biology. In particular, the acidic, peptide-rich environment of secretory granules combined with its array of enzymes generates a distinct proteome that is unique to functional beta cells. These factors converge to generate non-templated peptide sequences that are recognised by autoreactive T cells. Although unanswered questions remain, formation and presentation of these epitopes and the resulting immune responses appear to be key aspects of disease initiation. In addition, these pathways may represent important opportunities for therapeutic intervention.


Asunto(s)
Autoantígenos , Diabetes Mellitus Tipo 1 , Insulina , Vesículas Secretoras , Diabetes Mellitus Tipo 1/inmunología , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/genética , Humanos , Autoantígenos/inmunología , Autoantígenos/metabolismo , Vesículas Secretoras/metabolismo , Vesículas Secretoras/inmunología , Insulina/metabolismo , Insulina/inmunología , Animales , Células Secretoras de Insulina/inmunología , Células Secretoras de Insulina/metabolismo
12.
Anat Histol Embryol ; 53(3): e13051, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38741549

RESUMEN

Our research aimed to provide complete histological, histochemical and ultrastructural features of the lacrimal gland of the one-humped camel (Camelus dromedarius) as well as novel insights into its adaptability to the Egyptian desert. Our study was applied to 20 fresh lacrimal glands collected from 10 camels instantly after their slaughtering. The results revealed that the gland was a compound tubulo-acinar gland, and its acini were enclosed by a thick connective tissue capsule that was very rich in elastic and collagen fibres. The gland acini had irregular lumens and were composed of conical to pyramidal cells. The nuclei of secretory cells were found in the basal part, and the cytoplasm was eosinophilic and granular. The glandular tissue consisted of serous and mucous acini and seromucous secretory cells. Histochemically, there was a significant amount of neutral mucopolysaccharides in the acini in which mucous cells had a significant periodic acid-Schiff (PAS)-positive reaction, whereas seromucous cells had a mild PAS-positive reaction. Ultrastructurally, the lacrimal cells had numerous secretory vesicles with contents of moderately to highly electron-dense cytoplasm. The nuclear envelope consisted of two prominent membranes surrounding the peri-nuclear cisterna. The acinar cells had numerous electron-lucent and moderately electron-dense secretory granules, mainly situated on the apical surface, and secreted their contents into the lumen. The luminal surface of the mucous secretory cells represents the remains of secretory granules discharged by the merocrine mechanism. In conclusion, the mucous secretion is believed to aid in the washing and moistening of the eyeball, particularly in dry, hot and dusty environments.


Asunto(s)
Camelus , Aparato Lagrimal , Animales , Camelus/anatomía & histología , Aparato Lagrimal/anatomía & histología , Aparato Lagrimal/ultraestructura , Aparato Lagrimal/citología , Masculino , Vesículas Secretoras/ultraestructura , Células Acinares/ultraestructura , Células Acinares/citología , Femenino , Microscopía Electrónica de Transmisión/veterinaria , Reacción del Ácido Peryódico de Schiff/veterinaria
13.
Cell Mol Life Sci ; 81(1): 207, 2024 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-38709385

RESUMEN

The co-localization of the lysosomal protease cathepsin B (CTSB) and the digestive zymogen trypsinogen is a prerequisite for the initiation of acute pancreatitis. However, the exact molecular mechanisms of co-localization are not fully understood. In this study, we investigated the role of lysosomes in the onset of acute pancreatitis by using two different experimental approaches. Using an acinar cell-specific genetic deletion of the ras-related protein Rab7, important for intracellular vesicle trafficking and fusion, we analyzed the subcellular distribution of lysosomal enzymes and the severity of pancreatitis in vivo and ex vivo. Lysosomal permeabilization was performed by the lysosomotropic agent Glycyl-L-phenylalanine 2-naphthylamide (GPN). Acinar cell-specific deletion of Rab7 increased endogenous CTSB activity and despite the lack of re-distribution of CTSB from lysosomes to the secretory vesicles, the activation of CTSB localized in the zymogen compartment still took place leading to trypsinogen activation and pancreatic injury. Disease severity was comparable to controls during the early phase but more severe at later time points. Similarly, GPN did not prevent CTSB activation inside the secretory compartment upon caerulein stimulation, while lysosomal CTSB shifted to the cytosol. Intracellular trypsinogen activation was maintained leading to acute pancreatitis similar to controls. Our results indicate that initiation of acute pancreatitis seems to be independent of the presence of lysosomes and that fusion of lysosomes and zymogen granules is dispensable for the disease onset. Intact lysosomes rather appear to have protective effects at later disease stages.


Asunto(s)
Catepsina B , Lisosomas , Pancreatitis , Vesículas Secretoras , Proteínas de Unión al GTP rab , Proteínas de Unión a GTP rab7 , Animales , Lisosomas/metabolismo , Pancreatitis/metabolismo , Pancreatitis/patología , Pancreatitis/genética , Catepsina B/metabolismo , Catepsina B/genética , Ratones , Vesículas Secretoras/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión a GTP rab7/metabolismo , Enfermedad Aguda , Células Acinares/metabolismo , Células Acinares/patología , Tripsinógeno/metabolismo , Tripsinógeno/genética , Ceruletida , Precursores Enzimáticos/metabolismo , Precursores Enzimáticos/genética , Ratones Endogámicos C57BL , Ratones Noqueados
14.
J Clin Invest ; 134(7)2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557489

RESUMEN

Regulated exocytosis is initiated by increased Ca2+ concentrations in close spatial proximity to secretory granules, which is effectively prevented when the cell is at rest. Here we showed that exocytosis of zymogen granules in acinar cells was driven by Ca2+ directly released from acidic Ca2+ stores including secretory granules through NAADP-activated two-pore channels (TPCs). We identified OCaR1 (encoded by Tmem63a) as an organellar Ca2+ regulator protein integral to the membrane of secretory granules that controlled Ca2+ release via inhibition of TPC1 and TPC2 currents. Deletion of OCaR1 led to extensive Ca2+ release from NAADP-responsive granules under basal conditions as well as upon stimulation of GPCR receptors. Moreover, OCaR1 deletion exacerbated the disease phenotype in murine models of severe and chronic pancreatitis. Our findings showed OCaR1 as a gatekeeper of Ca2+ release that endows NAADP-sensitive secretory granules with an autoregulatory mechanism preventing uncontrolled exocytosis and pancreatic tissue damage.


Asunto(s)
Canales de Calcio , Calcio , Ratones , Animales , Canales de Calcio/genética , Canales de Calcio/metabolismo , Calcio/metabolismo , Páncreas/metabolismo , Exocitosis/fisiología , Vesículas Secretoras/genética
15.
Cell Calcium ; 120: 102883, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38643716

RESUMEN

The basal and glucose-induced insulin secretion from pancreatic beta cells is a tightly regulated process that is triggered in a Ca2+-dependent fashion and further positively modulated by substances that raise intracellular levels of adenosine 3',5'-cyclic monophosphate (cAMP) or by certain antidiabetic drugs. In a previous study, we have temporally resolved the subplasmalemmal [Ca2+]i dynamics in beta cells that are characterized by trains of sharply delimited spikes, reaching peak values up to 5 µM. Applying total internal reflection fluorescence (TIRF) microscopy and synaptopHluorin to visualize fusion events of individual granules, we found that several fusion events can coincide within 50 to 150 ms. To test whether subplasmalemmal [Ca2+]i microdomains around single or clustered Ca2+ channels may cause a synchronized release of insulin-containing vesicles, we applied simultaneous dual-color TIRF microscopy and monitored Ca2+ fluctuations and exocytotic events in INS-1 cells at high frame rates. The results indicate that fusions can be triggered by subplasmalemmal Ca2+ spiking. This, however, does account for a minority of fusion events. About 90 %-95 % of fusion events either happen between Ca2+ spikes or incidentally overlap with subplasmalemmal Ca2+ spikes. We conclude that only a fraction of exocytotic events in glucose-induced and tolbutamide- or forskolin-enhanced insulin release from INS-1 cells is tightly coupled to Ca2+ microdomains around voltage-gated Ca2+ channels.


Asunto(s)
Calcio , Exocitosis , Células Secretoras de Insulina , Insulina , Microscopía Fluorescente , Células Secretoras de Insulina/metabolismo , Calcio/metabolismo , Animales , Ratas , Insulina/metabolismo , Exocitosis/efectos de los fármacos , Señalización del Calcio , Secreción de Insulina/efectos de los fármacos , Glucosa/metabolismo , Vesículas Secretoras/metabolismo
16.
J Biol Chem ; 300(6): 107321, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38677517

RESUMEN

Neuropeptides are the largest group of chemical signals in the brain. More than 100 different neuropeptides modulate various brain functions and their dysregulation has been associated with neurological disorders. Neuropeptides are packed into dense core vesicles (DCVs), which fuse with the plasma membrane in a calcium-dependent manner. Here, we describe a novel high-throughput assay for DCV exocytosis using a chimera of Nanoluc luciferase and the DCV-cargo neuropeptide Y (NPY). The NPY-Nanoluc reporter colocalized with endogenous DCV markers in all neurons with little mislocalization to other cellular compartments. NPY-Nanoluc reported DCV exocytosis in both rodent and induced pluripotent stem cell-derived human neurons, with similar depolarization, Ca2+, RAB3, and STXBP1/MUNC18 dependence as low-throughput assays. Moreover, NPY-Nanoluc accurately reported modulation of DCV exocytosis by known modulators diacylglycerol analog and Ca2+ channel blocker and showed a higher assay sensitivity than a widely used single-cell low-throughput assay. Lastly, we showed that Nanoluc coupled to other secretory markers reports on constitutive secretion. In conclusion, the NPY-Nanoluc is a sensitive reporter of DCV exocytosis in mammalian neurons, suitable for pharmacological and genomic screening for DCV exocytosis genes and for mechanism-based treatments for central nervous system disorders.


Asunto(s)
Exocitosis , Ensayos Analíticos de Alto Rendimiento , Neuronas , Neuropéptido Y , Animales , Humanos , Neuronas/metabolismo , Neuronas/citología , Ratones , Neuropéptido Y/metabolismo , Neuropéptido Y/genética , Ensayos Analíticos de Alto Rendimiento/métodos , Vesículas Secretoras/metabolismo , Neuropéptidos/metabolismo , Neuropéptidos/genética , Calcio/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/citología
17.
Adv Sci (Weinh) ; 11(21): e2309427, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38501900

RESUMEN

Developing time-sustained drug delivery systems is a main goal in innovative medicines. Inspired by the architecture of secretory granules from the mammalian endocrine system it has generated non-toxic microscale amyloid materials through the coordination between divalent metals and poly-histidine stretches. Like their natural counterparts that keep the functionalities of the assembled protein, those synthetic structures release biologically active proteins during a slow self-disintegration process occurring in vitro and upon in vivo administration. Being these granules formed by a single pure protein species and therefore, chemically homogenous, they act as highly promising time-sustained drug delivery systems. Despite their enormous clinical potential, the nature of the clustering process and the quality of the released protein have been so far neglected issues. By using diverse polypeptide species and their protein-only oligomeric nanoscale versions as convenient models, a conformational rearrangement and a stabilization of the building blocks during their transit through the secretory granules, being the released material structurally distinguishable from the original source is proved here. This fact indicates a dynamic nature of secretory amyloids that act as conformational arrangers rather than as plain, inert protein-recruiting/protein-releasing granular depots.


Asunto(s)
Amiloide , Amiloide/metabolismo , Amiloide/química , Humanos , Vesículas Secretoras/metabolismo , Sistemas de Liberación de Medicamentos/métodos , Conformación Proteica
18.
Cell Rep ; 43(4): 113992, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38536815

RESUMEN

Insulin is packaged into secretory granules that depart the Golgi and undergo a maturation process that involves changes in the protein and lipid composition of the granules. Here, we show that insulin secretory granules form physical contacts with the endoplasmic reticulum and that the lipid exchange protein oxysterol-binding protein (OSBP) is recruited to these sites in a Ca2+-dependent manner. OSBP binding to insulin granules is positively regulated by phosphatidylinositol-4 (PI4)-kinases and negatively regulated by the PI4 phosphate (PI(4)P) phosphatase Sac2. Loss of Sac2 results in excess accumulation of cholesterol on insulin granules that is normalized when OSBP expression is reduced, and both acute inhibition and small interfering RNA (siRNA)-mediated knockdown of OSBP suppress glucose-stimulated insulin secretion without affecting insulin production or intracellular Ca2+ signaling. In conclusion, we show that lipid exchange at endoplasmic reticulum (ER)-granule contact sites is involved in the exocytic process and propose that these contacts act as reaction centers with multimodal functions during insulin granule maturation.


Asunto(s)
Colesterol , Retículo Endoplásmico , Secreción de Insulina , Insulina , Antígenos de Histocompatibilidad Menor , Receptores de Esteroides , Vesículas Secretoras , Retículo Endoplásmico/metabolismo , Vesículas Secretoras/metabolismo , Animales , Colesterol/metabolismo , Insulina/metabolismo , Receptores de Esteroides/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Ratones , Humanos , Calcio/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Glucosa/metabolismo
19.
Elife ; 132024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38381485

RESUMEN

The GNOM (GN) Guanine nucleotide Exchange Factor for ARF small GTPases (ARF-GEF) is among the best studied trafficking regulators in plants, playing crucial and unique developmental roles in patterning and polarity. The current models place GN at the Golgi apparatus (GA), where it mediates secretion/recycling, and at the plasma membrane (PM) presumably contributing to clathrin-mediated endocytosis (CME). The mechanistic basis of the developmental function of GN, distinct from the other ARF-GEFs including its closest homologue GNOM-LIKE1 (GNL1), remains elusive. Insights from this study largely extend the current notions of GN function. We show that GN, but not GNL1, localizes to the cell periphery at long-lived structures distinct from clathrin-coated pits, while CME and secretion proceed normally in gn knockouts. The functional GN mutant variant GNfewerroots, absent from the GA, suggests that the cell periphery is the major site of GN action responsible for its developmental function. Following inhibition by Brefeldin A, GN, but not GNL1, relocates to the PM likely on exocytic vesicles, suggesting selective molecular associations en route to the cell periphery. A study of GN-GNL1 chimeric ARF-GEFs indicates that all GN domains contribute to the specific GN function in a partially redundant manner. Together, this study offers significant steps toward the elucidation of the mechanism underlying unique cellular and development functions of GNOM.


Asunto(s)
Epilepsia Generalizada , Aparato de Golgi , Vesículas Secretoras , Convulsiones Febriles , Citoplasma , Membrana Celular , Clatrina
20.
Sci Rep ; 14(1): 3200, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331993

RESUMEN

In the Drosophila larval salivary gland, developmentally programmed fusions between lysosomes and secretory granules (SGs) and their subsequent acidification promote the maturation of SGs that are secreted shortly before puparium formation. Subsequently, ongoing fusions between non-secreted SGs and lysosomes give rise to degradative crinosomes, where the superfluous secretory material is degraded. Lysosomal fusions control both the quality and quantity of SGs, however, its molecular mechanism is incompletely characterized. Here we identify the R-SNARE Ykt6 as a novel regulator of crinosome formation, but not the acidification of maturing SGs. We show that Ykt6 localizes to Lamp1+ carrier vesicles, and forms a SNARE complex with Syntaxin 13 and Snap29 to mediate fusion with SGs. These Lamp1 carriers represent a distinct vesicle population that are functionally different from canonical Arl8+, Cathepsin L+ lysosomes, which also fuse with maturing SGs but are controlled by another SNARE complex composed of Syntaxin 13, Snap29 and Vamp7. Ykt6- and Vamp7-mediated vesicle fusions also determine the fate of SGs, as loss of either of these SNAREs prevents crinosomes from acquiring endosomal PI3P. Our results highlight that fusion events between SGs and different lysosome-related vesicle populations are critical for fine regulation of the maturation and crinophagic degradation of SGs.


Asunto(s)
Proteínas SNARE , Vesículas Secretoras , Proteínas SNARE/genética , Proteínas SNARE/metabolismo , Proteínas R-SNARE/genética , Proteínas R-SNARE/metabolismo , Proteínas Qa-SNARE/metabolismo , Vesículas Secretoras/metabolismo , Fusión de Membrana/fisiología , Lisosomas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA