Your browser doesn't support javascript.
loading
Developmentally regulated histone modifications in Drosophila follicle cells: initiation of gene amplification is associated with histone H3 and H4 hyperacetylation and H1 phosphorylation.
Hartl, Tom; Boswell, Carl; Orr-Weaver, Terry L; Bosco, Giovanni.
Afiliación
  • Hartl T; Department of Molecular and Cellular Biology, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA.
Chromosoma ; 116(2): 197-214, 2007 Apr.
Article en En | MEDLINE | ID: mdl-17219175
We have used gene amplification in Drosophila follicle cells as a model of metazoan DNA replication to address whether changes in histone modifications are associated with replication origin activation. We observe that replication initiation is associated with distinct histone modifications. Acetylated lysines K5, K8, and K12 on histone H4 and K14 on histone H3 are specifically enriched during replication initiation at the amplification origins. Strikingly, H4 acetylation persists at an amplification origin well after replication forks have progressed significantly outward from the origin, indicating that H4 acetylation is associated with origin regulation and not histone deposition at the replication forks. Origin recognition complex subunit 2 (orc2) mutants with severe amplification defects do not abolish H4 acetylation, whereas the dup/cdt1 mutant delays the appearance of acetylation foci, and mutants in rbf result in temporal persistence. These data indicate that core histone acetylation is associated with origin activity. Furthermore, follicle cells undergoing gene amplification exhibit high levels of histone H1 phosphorylation. The patterns of H1 phosphorylation provide insights into cell cycle states during amplification, as H1 kinase activity in follicle cells is responsive to high Cyclin E activity, and it can be abolished by overexpressing the retinoblastoma homolog, Rbf, that represses Cyclin E. These data suggest that amplification origins are able to initiate when the cells are in a late S-phase, when the genome is normally not licensed for replication.
Asunto(s)
Buscar en Google
Base de datos: MEDLINE Asunto principal: Histonas / Ciclo Celular / Amplificación de Genes / Replicación del ADN / Complejo de Reconocimiento del Origen Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Chromosoma Año: 2007 Tipo del documento: Article País de afiliación: Estados Unidos
Buscar en Google
Base de datos: MEDLINE Asunto principal: Histonas / Ciclo Celular / Amplificación de Genes / Replicación del ADN / Complejo de Reconocimiento del Origen Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals Idioma: En Revista: Chromosoma Año: 2007 Tipo del documento: Article País de afiliación: Estados Unidos