Your browser doesn't support javascript.
loading
Synthesis of palladium/helical carbon nanofiber hybrid nanostructures and their application for hydrogen peroxide and glucose detection.
Jia, Xueen; Hu, Guangzhi; Nitze, Florian; Barzegar, Hamid Reza; Sharifi, Tiva; Tai, Cheuk-Wai; Wågberg, Thomas.
Afiliación
  • Jia X; Department of Physics, Umeå University , S-901 87 Umeå, Sweden.
ACS Appl Mater Interfaces ; 5(22): 12017-22, 2013 Nov 27.
Article en En | MEDLINE | ID: mdl-24180258
ABSTRACT
We report on a novel sensing platform for H2O2 and glucose based on immobilization of palladium-helical carbon nanofiber (Pd-HCNF) hybrid nanostructures and glucose oxidase (GOx) with Nafion on a glassy carbon electrode (GCE). HCNFs were synthesized by a chemical vapor deposition process on a C60-supported Pd catalyst. Pd-HCNF nanocomposites were prepared by a one-step reduction free method in dimethylformamide (DMF). The prepared materials were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), and Raman spectroscopy. The Nafion/Pd-HCNF/GCE sensor exhibits excellent electrocatalytic sensitivity toward H2O2 (315 mA M(-1) cm(-2)) as probed by cyclic voltammetry (CV) and chronoamperometry. We show that Pd-HCNF-modified electrodes significantly reduce the overpotential and enhance the electron transfer rate. A linear range from 5.0 µM to 2.1 mM with a detection limit of 3.0 µM (based on the S/N = 3) and good reproducibility were obtained. Furthermore, a sensing platform for glucose was prepared by immobilizing the Pd-HCNFs and glucose oxidase (GOx) with Nafion on a glassy carbon electrode. The resulting biosensor exhibits a good response to glucose with a wide linear range (0.06-6.0 mM) with a detection limit of 0.03 mM and a sensitivity of 13 mA M(-1) cm(-2). We show that small size and homogeneous distribution of the Pd nanoparticles in combination with good conductivity and large surface area of the HCNFs lead to a H2O2 and glucose sensing platform that performs in the top range of the herein reported sensor platforms.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Paladio / Carbono / Técnicas Electroquímicas / Nanofibras / Glucosa / Peróxido de Hidrógeno Tipo de estudio: Diagnostic_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2013 Tipo del documento: Article País de afiliación: Suecia

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Paladio / Carbono / Técnicas Electroquímicas / Nanofibras / Glucosa / Peróxido de Hidrógeno Tipo de estudio: Diagnostic_studies Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2013 Tipo del documento: Article País de afiliación: Suecia