Your browser doesn't support javascript.
loading
Increasing shape modelling accuracy by adjusting for subject positioning: an application to the analysis of radiographic proximal femur symmetry using data from the Osteoarthritis Initiative.
Lindner, C; Wallis, G A; Cootes, T F.
Afiliación
  • Lindner C; Centre for Imaging Sciences, The University of Manchester, Manchester M13 9PT, UK. Electronic address: claudia.lindner@postgrad.manchester.ac.uk.
  • Wallis GA; Wellcome Trust Centre for Cell Matrix Research, The University of Manchester, Manchester M13 9PT, UK.
  • Cootes TF; Centre for Imaging Sciences, The University of Manchester, Manchester M13 9PT, UK.
Bone ; 61: 64-70, 2014 Apr.
Article en En | MEDLINE | ID: mdl-24440168
ABSTRACT
In total hip arthroplasty, the shape of the contra-lateral femur frequently serves as a template for preoperative planning. Previous research on contra-lateral femoral symmetry has been based on conventional hip geometric measurements (which reduce shape to a series of linear measurements) and did not take the effect of subject positioning on radiographic femur shape into account. The aim of this study was to analyse proximal femur symmetry based on statistical shape models (SSMs) which quantify global femoral shape while also adjusting for differences in subject positioning during image acquisition. We applied our recently developed fully automatic shape model matching (FASMM) system to automatically segment the proximal femur from AP pelvic radiographs to generate SSMs of the proximal femurs of 1258 Caucasian females (mean age 61.3 SD=9.0). We used a combined SSM (capturing the left and right femurs) to identify and adjust for shape variation attributable to subject positioning as well as a single SSM (including all femurs as left femurs) to analyse proximal femur symmetry. We also calculated conventional hip geometric measurements (head diameter, neck width, shaft width and neck-shaft angle) using the output of the FASMM system. The combined SSM revealed two modes that were clearly attributable to subject positioning. The average difference (mean point-to-curve distance) between left and right femur shape was 1.0mm before and 0.8mm after adjusting for these two modes. The automatic calculation of conventional hip geometric measurements after adjustment gave an average absolute percent asymmetry of within 3.1% and an average absolute difference of within 1.1mm or 2.9° for all measurements. We conclude that (i) for Caucasian females the global shape of the right and left proximal femurs is symmetric without isolated locations of asymmetry; (ii) a combined left-right SSM can be used to adjust for radiographic shape variation due to subject positioning; and (iii) adjusting for subject positioning increases the accuracy of predicting the shape of the contra-lateral hip.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Modelos Estadísticos / Cirugía Asistida por Computador / Fémur Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Middle aged Idioma: En Revista: Bone Asunto de la revista: METABOLISMO / ORTOPEDIA Año: 2014 Tipo del documento: Article

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Modelos Estadísticos / Cirugía Asistida por Computador / Fémur Tipo de estudio: Diagnostic_studies / Prognostic_studies / Risk_factors_studies Límite: Aged / Female / Humans / Middle aged Idioma: En Revista: Bone Asunto de la revista: METABOLISMO / ORTOPEDIA Año: 2014 Tipo del documento: Article