Your browser doesn't support javascript.
loading
Behavior identification based on geotagged photo data set.
Liu, Guo-qi; Zhang, Yi-jia; Fu, Ying-mao; Liu, Ying.
Afiliación
  • Liu GQ; Software College, Northeastern University, Shenyang 110819, China.
  • Zhang YJ; Software College, Northeastern University, Shenyang 110819, China.
  • Fu YM; Software College, Northeastern University, Shenyang 110819, China.
  • Liu Y; Software College, Northeastern University, Shenyang 110819, China.
ScientificWorldJournal ; 2014: 616030, 2014.
Article en En | MEDLINE | ID: mdl-24723818
The popularity of mobile devices has produced a set of image data with geographic information, time information, and text description information, which is called geotagged photo data set. The division of this kind of data by its behavior and the location not only can identify the user's important location and daily behavior, but also helps users to sort the huge image data. This paper proposes a method to build an index based on multiple classification result, which can divide the data set multiple times and distribute labels to the data to build index according to the estimated probability of classification results in order to accomplish the identification of users' important location and daily behaviors. This paper collects 1400 discrete sets of data as experimental data to verify the method proposed in this paper. The result of the experiment shows that the index and actual tagging results have a high inosculation.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Comunicación / Tecnología Inalámbrica / Medios de Comunicación Sociales Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: ScientificWorldJournal Asunto de la revista: MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Comunicación / Tecnología Inalámbrica / Medios de Comunicación Sociales Tipo de estudio: Diagnostic_studies Límite: Humans Idioma: En Revista: ScientificWorldJournal Asunto de la revista: MEDICINA Año: 2014 Tipo del documento: Article País de afiliación: China