Your browser doesn't support javascript.
loading
Cell fate regulation governed by a repurposed bacterial histidine kinase.
Childers, W Seth; Xu, Qingping; Mann, Thomas H; Mathews, Irimpan I; Blair, Jimmy A; Deacon, Ashley M; Shapiro, Lucy.
Afiliación
  • Childers WS; Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America.
  • Xu Q; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America; Joint Center for Structural Genomics, United States of America.
  • Mann TH; Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America.
  • Mathews II; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America.
  • Blair JA; Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America.
  • Deacon AM; Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California, United States of America; Joint Center for Structural Genomics, United States of America.
  • Shapiro L; Department of Developmental Biology, Stanford University School of Medicine, Stanford, California, United States of America.
PLoS Biol ; 12(10): e1001979, 2014 Oct.
Article en En | MEDLINE | ID: mdl-25349992
One of the simplest organisms to divide asymmetrically is the bacterium Caulobacter crescentus. The DivL pseudo-histidine kinase, positioned at one cell pole, regulates cell-fate by controlling the activation of the global transcription factor CtrA via an interaction with the response regulator (RR) DivK. DivL uniquely contains a tyrosine at the histidine phosphorylation site, and can achieve these regulatory functions in vivo without kinase activity. Determination of the DivL crystal structure and biochemical analysis of wild-type and site-specific DivL mutants revealed that the DivL PAS domains regulate binding specificity for DivK∼P over DivK, which is modulated by an allosteric intramolecular interaction between adjacent domains. We discovered that DivL's catalytic domains have been repurposed as a phosphospecific RR input sensor, thereby reversing the flow of information observed in conventional histidine kinase (HK)-RR systems and coupling a complex network of signaling proteins for cell-fate regulation.
Asunto(s)

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Proteínas Quinasas / Proteínas Bacterianas / Caulobacter crescentus Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Proteínas Quinasas / Proteínas Bacterianas / Caulobacter crescentus Idioma: En Revista: PLoS Biol Asunto de la revista: BIOLOGIA Año: 2014 Tipo del documento: Article País de afiliación: Estados Unidos