Your browser doesn't support javascript.
loading
Nitrogen deposition and greenhouse gas emissions from grasslands: uncertainties and future directions.
Gomez-Casanovas, Nuria; Hudiburg, Tara W; Bernacchi, Carl J; Parton, William J; DeLucia, Evan H.
Afiliación
  • Gomez-Casanovas N; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Hudiburg TW; Institute of Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Bernacchi CJ; Energy Biosciences Institute, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
  • Parton WJ; Department of Forest, Rangeland, and Fire Sciences, University of Idaho, Moscow, ID, 83844, USA.
  • DeLucia EH; Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
Glob Chang Biol ; 22(4): 1348-60, 2016 Apr.
Article en En | MEDLINE | ID: mdl-26661794
Increases in atmospheric nitrogen deposition (Ndep) can strongly affect the greenhouse gas (GHG; CO2, CH4, and N2O) sink capacity of grasslands as well as other terrestrial ecosystems. Robust predictions of the net GHG sink strength of grasslands depend on how experimental N loads compare to projected Ndep rates, and how accurately the relationship between GHG fluxes and Ndep is characterized. A literature review revealed that the vast majority of experimental N loads were higher than levels these ecosystems are predicted to experience in the future. Using a process-based biogeochemical model, we predicted that low levels of Ndep either enhanced or reduced the net GHG sink strength of most grasslands, but as experimental N loads continued to increase, grasslands transitioned to a N saturation-decline stage, where the sensitivity of GHG exchange to further increases in Ndep declined. Most published studies represented treatments well into the N saturation-decline stage. Our model results predict that the responses of GHG fluxes to N are highly nonlinear and that the N saturation thresholds for GHGs varied greatly among grasslands and with fire management. We predict that during the 21st century some grasslands will be in the N limitation stage where others will transition into the N saturation-decline stage. The linear relationship between GHG sink strength and N load assumed by most studies can overestimate or underestimate predictions of the net GHG sink strength of grasslands depending on their N baseline status. The next generation of global change experiments should be designed at multiple N loads consistent with future Ndep rates to improve our empirical understanding and predictive ability.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Dióxido de Carbono / Pradera / Contaminantes Atmosféricos / Metano / Nitrógeno / Óxido Nitroso Tipo de estudio: Prognostic_studies Idioma: En Revista: Glob Chang Biol Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Dióxido de Carbono / Pradera / Contaminantes Atmosféricos / Metano / Nitrógeno / Óxido Nitroso Tipo de estudio: Prognostic_studies Idioma: En Revista: Glob Chang Biol Año: 2016 Tipo del documento: Article País de afiliación: Estados Unidos