Your browser doesn't support javascript.
loading
Putative bacterial interactions from metagenomic knowledge with an integrative systems ecology approach.
Bordron, Philippe; Latorre, Mauricio; Cortés, Maria-Paz; González, Mauricio; Thiele, Sven; Siegel, Anne; Maass, Alejandro; Eveillard, Damien.
Afiliación
  • Bordron P; Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.
  • Latorre M; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile.
  • Cortés MP; Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.
  • González M; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile.
  • Thiele S; Laboratorio de Bioinformática y Expresión Génica, INTA, Universidad de Chile, Santiago, Chile.
  • Siegel A; Mathomics, Center for Mathematical Modeling, Universidad de Chile, Santiago, Chile.
  • Maass A; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile.
  • Eveillard D; Center for Genome Regulation (Fondap 15090007), Universidad de Chile, Santiago, Chile.
Microbiologyopen ; 5(1): 106-17, 2016 Feb.
Article en En | MEDLINE | ID: mdl-26677108
ABSTRACT
Following the trend of studies that investigate microbial ecosystems using different metagenomic techniques, we propose a new integrative systems ecology approach that aims to decipher functional roles within a consortium through the integration of genomic and metabolic knowledge at genome scale. For the sake of application, using public genomes of five bacterial strains involved in copper bioleaching Acidiphilium cryptum, Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, Leptospirillum ferriphilum, and Sulfobacillus thermosulfidooxidans, we first reconstructed a global metabolic network. Next, using a parsimony assumption, we deciphered sets of genes, called Sets from Genome Segments (SGS), that (1) are close on their respective genomes, (2) take an active part in metabolic pathways and (3) whose associated metabolic reactions are also closely connected within metabolic networks. Overall, this SGS paradigm depicts genomic functional units that emphasize respective roles of bacterial strains to catalyze metabolic pathways and environmental processes. Our analysis suggested that only few functional metabolic genes are horizontally transferred within the consortium and that no single bacterial strain can accomplish by itself the whole copper bioleaching. The use of SGS pinpoints a functional compartmentalization among the investigated species and exhibits putative bacterial interactions necessary for promoting these pathways.
Asunto(s)
Palabras clave

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Genoma Bacteriano / Cobre / Acidiphilium / Acidithiobacillus / Redes y Vías Metabólicas / Clostridiales Idioma: En Revista: Microbiologyopen Año: 2016 Tipo del documento: Article País de afiliación: Chile

Texto completo: 1 Base de datos: MEDLINE Asunto principal: Genoma Bacteriano / Cobre / Acidiphilium / Acidithiobacillus / Redes y Vías Metabólicas / Clostridiales Idioma: En Revista: Microbiologyopen Año: 2016 Tipo del documento: Article País de afiliación: Chile